pgtable.h 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. /* SPDX-License-Identifier: GPL-2.0-only */
  2. /*
  3. * Copyright (C) 2012 ARM Ltd.
  4. */
  5. #ifndef __ASM_PGTABLE_H
  6. #define __ASM_PGTABLE_H
  7. #include <asm/bug.h>
  8. #include <asm/proc-fns.h>
  9. #include <asm/memory.h>
  10. #include <asm/mte.h>
  11. #include <asm/pgtable-hwdef.h>
  12. #include <asm/pgtable-prot.h>
  13. #include <asm/tlbflush.h>
  14. /*
  15. * VMALLOC range.
  16. *
  17. * VMALLOC_START: beginning of the kernel vmalloc space
  18. * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
  19. * and fixed mappings
  20. */
  21. #define VMALLOC_START (MODULES_END)
  22. #define VMALLOC_END (VMEMMAP_START - SZ_256M)
  23. #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
  24. #ifndef __ASSEMBLY__
  25. #include <asm/cmpxchg.h>
  26. #include <asm/fixmap.h>
  27. #include <linux/mmdebug.h>
  28. #include <linux/mm_types.h>
  29. #include <linux/sched.h>
  30. #include <linux/page_table_check.h>
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  32. #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
  33. /* Set stride and tlb_level in flush_*_tlb_range */
  34. #define flush_pmd_tlb_range(vma, addr, end) \
  35. __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
  36. #define flush_pud_tlb_range(vma, addr, end) \
  37. __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
  38. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  39. static inline bool arch_thp_swp_supported(void)
  40. {
  41. return !system_supports_mte();
  42. }
  43. #define arch_thp_swp_supported arch_thp_swp_supported
  44. /*
  45. * Outside of a few very special situations (e.g. hibernation), we always
  46. * use broadcast TLB invalidation instructions, therefore a spurious page
  47. * fault on one CPU which has been handled concurrently by another CPU
  48. * does not need to perform additional invalidation.
  49. */
  50. #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
  51. /*
  52. * ZERO_PAGE is a global shared page that is always zero: used
  53. * for zero-mapped memory areas etc..
  54. */
  55. extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
  56. #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
  57. #define pte_ERROR(e) \
  58. pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
  59. /*
  60. * Macros to convert between a physical address and its placement in a
  61. * page table entry, taking care of 52-bit addresses.
  62. */
  63. #ifdef CONFIG_ARM64_PA_BITS_52
  64. static inline phys_addr_t __pte_to_phys(pte_t pte)
  65. {
  66. return (pte_val(pte) & PTE_ADDR_LOW) |
  67. ((pte_val(pte) & PTE_ADDR_HIGH) << 36);
  68. }
  69. static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
  70. {
  71. return (phys | (phys >> 36)) & PTE_ADDR_MASK;
  72. }
  73. #else
  74. #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
  75. #define __phys_to_pte_val(phys) (phys)
  76. #endif
  77. #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
  78. #define pfn_pte(pfn,prot) \
  79. __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
  80. #define pte_none(pte) (!pte_val(pte))
  81. #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
  82. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  83. /*
  84. * The following only work if pte_present(). Undefined behaviour otherwise.
  85. */
  86. #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
  87. #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
  88. #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
  89. #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
  90. #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
  91. #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
  92. #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
  93. #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
  94. #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
  95. PTE_ATTRINDX(MT_NORMAL_TAGGED))
  96. #define pte_cont_addr_end(addr, end) \
  97. ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
  98. (__boundary - 1 < (end) - 1) ? __boundary : (end); \
  99. })
  100. #define pmd_cont_addr_end(addr, end) \
  101. ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
  102. (__boundary - 1 < (end) - 1) ? __boundary : (end); \
  103. })
  104. #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
  105. #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
  106. #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
  107. #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
  108. /*
  109. * Execute-only user mappings do not have the PTE_USER bit set. All valid
  110. * kernel mappings have the PTE_UXN bit set.
  111. */
  112. #define pte_valid_not_user(pte) \
  113. ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
  114. /*
  115. * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
  116. * so that we don't erroneously return false for pages that have been
  117. * remapped as PROT_NONE but are yet to be flushed from the TLB.
  118. * Note that we can't make any assumptions based on the state of the access
  119. * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
  120. * TLB.
  121. */
  122. #define pte_accessible(mm, pte) \
  123. (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
  124. /*
  125. * p??_access_permitted() is true for valid user mappings (PTE_USER
  126. * bit set, subject to the write permission check). For execute-only
  127. * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
  128. * not set) must return false. PROT_NONE mappings do not have the
  129. * PTE_VALID bit set.
  130. */
  131. #define pte_access_permitted(pte, write) \
  132. (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
  133. #define pmd_access_permitted(pmd, write) \
  134. (pte_access_permitted(pmd_pte(pmd), (write)))
  135. #define pud_access_permitted(pud, write) \
  136. (pte_access_permitted(pud_pte(pud), (write)))
  137. static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
  138. {
  139. pte_val(pte) &= ~pgprot_val(prot);
  140. return pte;
  141. }
  142. static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
  143. {
  144. pte_val(pte) |= pgprot_val(prot);
  145. return pte;
  146. }
  147. static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
  148. {
  149. pmd_val(pmd) &= ~pgprot_val(prot);
  150. return pmd;
  151. }
  152. static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
  153. {
  154. pmd_val(pmd) |= pgprot_val(prot);
  155. return pmd;
  156. }
  157. static inline pte_t pte_mkwrite(pte_t pte)
  158. {
  159. pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
  160. pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
  161. return pte;
  162. }
  163. static inline pte_t pte_mkclean(pte_t pte)
  164. {
  165. pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
  166. pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
  167. return pte;
  168. }
  169. static inline pte_t pte_mkdirty(pte_t pte)
  170. {
  171. pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
  172. if (pte_write(pte))
  173. pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
  174. return pte;
  175. }
  176. static inline pte_t pte_wrprotect(pte_t pte)
  177. {
  178. /*
  179. * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
  180. * clear), set the PTE_DIRTY bit.
  181. */
  182. if (pte_hw_dirty(pte))
  183. pte = pte_mkdirty(pte);
  184. pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
  185. pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
  186. return pte;
  187. }
  188. static inline pte_t pte_mkold(pte_t pte)
  189. {
  190. return clear_pte_bit(pte, __pgprot(PTE_AF));
  191. }
  192. static inline pte_t pte_mkyoung(pte_t pte)
  193. {
  194. return set_pte_bit(pte, __pgprot(PTE_AF));
  195. }
  196. static inline pte_t pte_mkspecial(pte_t pte)
  197. {
  198. return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
  199. }
  200. static inline pte_t pte_mkcont(pte_t pte)
  201. {
  202. pte = set_pte_bit(pte, __pgprot(PTE_CONT));
  203. return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
  204. }
  205. static inline pte_t pte_mknoncont(pte_t pte)
  206. {
  207. return clear_pte_bit(pte, __pgprot(PTE_CONT));
  208. }
  209. static inline pte_t pte_mkpresent(pte_t pte)
  210. {
  211. return set_pte_bit(pte, __pgprot(PTE_VALID));
  212. }
  213. static inline pmd_t pmd_mkcont(pmd_t pmd)
  214. {
  215. return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
  216. }
  217. static inline pte_t pte_mkdevmap(pte_t pte)
  218. {
  219. return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
  220. }
  221. static inline void set_pte(pte_t *ptep, pte_t pte)
  222. {
  223. WRITE_ONCE(*ptep, pte);
  224. /*
  225. * Only if the new pte is valid and kernel, otherwise TLB maintenance
  226. * or update_mmu_cache() have the necessary barriers.
  227. */
  228. if (pte_valid_not_user(pte)) {
  229. dsb(ishst);
  230. isb();
  231. }
  232. }
  233. extern void __sync_icache_dcache(pte_t pteval);
  234. /*
  235. * PTE bits configuration in the presence of hardware Dirty Bit Management
  236. * (PTE_WRITE == PTE_DBM):
  237. *
  238. * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
  239. * 0 0 | 1 0 0
  240. * 0 1 | 1 1 0
  241. * 1 0 | 1 0 1
  242. * 1 1 | 0 1 x
  243. *
  244. * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
  245. * the page fault mechanism. Checking the dirty status of a pte becomes:
  246. *
  247. * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
  248. */
  249. static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
  250. pte_t pte)
  251. {
  252. pte_t old_pte;
  253. if (!IS_ENABLED(CONFIG_DEBUG_VM))
  254. return;
  255. old_pte = READ_ONCE(*ptep);
  256. if (!pte_valid(old_pte) || !pte_valid(pte))
  257. return;
  258. if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
  259. return;
  260. /*
  261. * Check for potential race with hardware updates of the pte
  262. * (ptep_set_access_flags safely changes valid ptes without going
  263. * through an invalid entry).
  264. */
  265. VM_WARN_ONCE(!pte_young(pte),
  266. "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
  267. __func__, pte_val(old_pte), pte_val(pte));
  268. VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
  269. "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
  270. __func__, pte_val(old_pte), pte_val(pte));
  271. }
  272. #include <asm/android_erratum_pgtable.h>
  273. static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
  274. pte_t *ptep, pte_t pte)
  275. {
  276. if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
  277. __sync_icache_dcache(pte);
  278. /*
  279. * If the PTE would provide user space access to the tags associated
  280. * with it then ensure that the MTE tags are synchronised. Although
  281. * pte_access_permitted() returns false for exec only mappings, they
  282. * don't expose tags (instruction fetches don't check tags).
  283. */
  284. if (system_supports_mte() && pte_access_permitted(pte, false) &&
  285. !pte_special(pte) && pte_tagged(pte))
  286. mte_sync_tags(pte);
  287. __check_racy_pte_update(mm, ptep, pte);
  288. arm64_update_cacheable_aliases(ptep, pte);
  289. set_pte(ptep, pte);
  290. }
  291. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  292. pte_t *ptep, pte_t pte)
  293. {
  294. page_table_check_pte_set(mm, addr, ptep, pte);
  295. return __set_pte_at(mm, addr, ptep, pte);
  296. }
  297. /*
  298. * Huge pte definitions.
  299. */
  300. #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
  301. /*
  302. * Hugetlb definitions.
  303. */
  304. #define HUGE_MAX_HSTATE 4
  305. #define HPAGE_SHIFT PMD_SHIFT
  306. #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
  307. #define HPAGE_MASK (~(HPAGE_SIZE - 1))
  308. #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
  309. static inline pte_t pgd_pte(pgd_t pgd)
  310. {
  311. return __pte(pgd_val(pgd));
  312. }
  313. static inline pte_t p4d_pte(p4d_t p4d)
  314. {
  315. return __pte(p4d_val(p4d));
  316. }
  317. static inline pte_t pud_pte(pud_t pud)
  318. {
  319. return __pte(pud_val(pud));
  320. }
  321. static inline pud_t pte_pud(pte_t pte)
  322. {
  323. return __pud(pte_val(pte));
  324. }
  325. static inline pmd_t pud_pmd(pud_t pud)
  326. {
  327. return __pmd(pud_val(pud));
  328. }
  329. static inline pte_t pmd_pte(pmd_t pmd)
  330. {
  331. return __pte(pmd_val(pmd));
  332. }
  333. static inline pmd_t pte_pmd(pte_t pte)
  334. {
  335. return __pmd(pte_val(pte));
  336. }
  337. static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
  338. {
  339. return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
  340. }
  341. static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
  342. {
  343. return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
  344. }
  345. #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
  346. static inline pte_t pte_swp_mkexclusive(pte_t pte)
  347. {
  348. return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
  349. }
  350. static inline int pte_swp_exclusive(pte_t pte)
  351. {
  352. return pte_val(pte) & PTE_SWP_EXCLUSIVE;
  353. }
  354. static inline pte_t pte_swp_clear_exclusive(pte_t pte)
  355. {
  356. return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
  357. }
  358. /*
  359. * Select all bits except the pfn
  360. */
  361. static inline pgprot_t pte_pgprot(pte_t pte)
  362. {
  363. unsigned long pfn = pte_pfn(pte);
  364. return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
  365. }
  366. #ifdef CONFIG_NUMA_BALANCING
  367. /*
  368. * See the comment in include/linux/pgtable.h
  369. */
  370. static inline int pte_protnone(pte_t pte)
  371. {
  372. return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
  373. }
  374. static inline int pmd_protnone(pmd_t pmd)
  375. {
  376. return pte_protnone(pmd_pte(pmd));
  377. }
  378. #endif
  379. #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
  380. static inline int pmd_present(pmd_t pmd)
  381. {
  382. return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
  383. }
  384. /*
  385. * THP definitions.
  386. */
  387. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  388. static inline int pmd_trans_huge(pmd_t pmd)
  389. {
  390. return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
  391. }
  392. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  393. #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
  394. #define pmd_young(pmd) pte_young(pmd_pte(pmd))
  395. #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
  396. #define pmd_user(pmd) pte_user(pmd_pte(pmd))
  397. #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
  398. #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
  399. #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
  400. #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
  401. #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
  402. #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
  403. #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
  404. #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
  405. static inline pmd_t pmd_mkinvalid(pmd_t pmd)
  406. {
  407. pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
  408. pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
  409. return pmd;
  410. }
  411. #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
  412. #define pmd_write(pmd) pte_write(pmd_pte(pmd))
  413. #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
  414. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  415. #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
  416. #endif
  417. static inline pmd_t pmd_mkdevmap(pmd_t pmd)
  418. {
  419. return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
  420. }
  421. #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
  422. #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
  423. #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
  424. #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
  425. #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
  426. #define pud_young(pud) pte_young(pud_pte(pud))
  427. #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
  428. #define pud_write(pud) pte_write(pud_pte(pud))
  429. #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
  430. #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
  431. #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
  432. #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
  433. #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
  434. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  435. pmd_t *pmdp, pmd_t pmd)
  436. {
  437. WARN_ON(prot_needs_stage2_update(__pgprot(pmd_val(pmd))));
  438. page_table_check_pmd_set(mm, addr, pmdp, pmd);
  439. return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
  440. }
  441. static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
  442. pud_t *pudp, pud_t pud)
  443. {
  444. WARN_ON(prot_needs_stage2_update(__pgprot(pud_val(pud))));
  445. page_table_check_pud_set(mm, addr, pudp, pud);
  446. return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
  447. }
  448. #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
  449. #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
  450. #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
  451. #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
  452. #define __pgprot_modify(prot,mask,bits) \
  453. __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
  454. #define pgprot_nx(prot) \
  455. __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
  456. /*
  457. * Mark the prot value as uncacheable and unbufferable.
  458. */
  459. #define pgprot_noncached(prot) \
  460. __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
  461. #define pgprot_writecombine(prot) \
  462. __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
  463. #define pgprot_device(prot) \
  464. __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
  465. #define pgprot_tagged(prot) \
  466. __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
  467. #define pgprot_mhp pgprot_tagged
  468. /*
  469. * DMA allocations for non-coherent devices use what the Arm architecture calls
  470. * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
  471. * and merging of writes. This is different from "Device-nGnR[nE]" memory which
  472. * is intended for MMIO and thus forbids speculation, preserves access size,
  473. * requires strict alignment and can also force write responses to come from the
  474. * endpoint.
  475. */
  476. #define pgprot_dmacoherent(prot) \
  477. __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
  478. PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
  479. /*
  480. * Mark the prot value as outer cacheable and inner non-cacheable. Non-coherent
  481. * devices on a system with support for a system or last level cache use these
  482. * attributes to cache allocations in the system cache.
  483. */
  484. #define pgprot_syscached(prot) \
  485. __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
  486. PTE_ATTRINDX(MT_NORMAL_iNC_oWB) | PTE_PXN | PTE_UXN)
  487. #define __HAVE_PHYS_MEM_ACCESS_PROT
  488. struct file;
  489. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  490. unsigned long size, pgprot_t vma_prot);
  491. #define pmd_none(pmd) (!pmd_val(pmd))
  492. #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
  493. PMD_TYPE_TABLE)
  494. #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
  495. PMD_TYPE_SECT)
  496. #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
  497. #define pmd_bad(pmd) (!pmd_table(pmd))
  498. #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
  499. #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
  500. #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
  501. static inline bool pud_sect(pud_t pud) { return false; }
  502. static inline bool pud_table(pud_t pud) { return true; }
  503. #else
  504. #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
  505. PUD_TYPE_SECT)
  506. #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
  507. PUD_TYPE_TABLE)
  508. #endif
  509. extern pgd_t init_pg_dir[PTRS_PER_PGD];
  510. extern pgd_t init_pg_end[];
  511. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  512. extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
  513. extern pgd_t idmap_pg_end[];
  514. extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
  515. extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
  516. extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
  517. static inline bool in_swapper_pgdir(void *addr)
  518. {
  519. return ((unsigned long)addr & PAGE_MASK) ==
  520. ((unsigned long)swapper_pg_dir & PAGE_MASK);
  521. }
  522. static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
  523. {
  524. #ifdef __PAGETABLE_PMD_FOLDED
  525. if (in_swapper_pgdir(pmdp)) {
  526. set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
  527. return;
  528. }
  529. #endif /* __PAGETABLE_PMD_FOLDED */
  530. WRITE_ONCE(*pmdp, pmd);
  531. if (pmd_valid(pmd)) {
  532. dsb(ishst);
  533. isb();
  534. }
  535. }
  536. static inline void pmd_clear(pmd_t *pmdp)
  537. {
  538. set_pmd(pmdp, __pmd(0));
  539. }
  540. static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
  541. {
  542. return __pmd_to_phys(pmd);
  543. }
  544. static inline unsigned long pmd_page_vaddr(pmd_t pmd)
  545. {
  546. return (unsigned long)__va(pmd_page_paddr(pmd));
  547. }
  548. /* Find an entry in the third-level page table. */
  549. #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
  550. #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
  551. #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
  552. #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
  553. #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
  554. /* use ONLY for statically allocated translation tables */
  555. #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
  556. /*
  557. * Conversion functions: convert a page and protection to a page entry,
  558. * and a page entry and page directory to the page they refer to.
  559. */
  560. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
  561. #if CONFIG_PGTABLE_LEVELS > 2
  562. #define pmd_ERROR(e) \
  563. pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
  564. #define pud_none(pud) (!pud_val(pud))
  565. #define pud_bad(pud) (!pud_table(pud))
  566. #define pud_present(pud) pte_present(pud_pte(pud))
  567. #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
  568. #define pud_valid(pud) pte_valid(pud_pte(pud))
  569. #define pud_user(pud) pte_user(pud_pte(pud))
  570. #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
  571. static inline void set_pud(pud_t *pudp, pud_t pud)
  572. {
  573. #ifdef __PAGETABLE_PUD_FOLDED
  574. if (in_swapper_pgdir(pudp)) {
  575. set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
  576. return;
  577. }
  578. #endif /* __PAGETABLE_PUD_FOLDED */
  579. WRITE_ONCE(*pudp, pud);
  580. if (pud_valid(pud)) {
  581. dsb(ishst);
  582. isb();
  583. }
  584. }
  585. static inline void pud_clear(pud_t *pudp)
  586. {
  587. set_pud(pudp, __pud(0));
  588. }
  589. static inline phys_addr_t pud_page_paddr(pud_t pud)
  590. {
  591. return __pud_to_phys(pud);
  592. }
  593. static inline pmd_t *pud_pgtable(pud_t pud)
  594. {
  595. return (pmd_t *)__va(pud_page_paddr(pud));
  596. }
  597. /* Find an entry in the second-level page table. */
  598. #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
  599. #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
  600. #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
  601. #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
  602. #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
  603. /* use ONLY for statically allocated translation tables */
  604. #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
  605. #else
  606. #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
  607. /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
  608. #define pmd_set_fixmap(addr) NULL
  609. #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
  610. #define pmd_clear_fixmap()
  611. #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
  612. #endif /* CONFIG_PGTABLE_LEVELS > 2 */
  613. #if CONFIG_PGTABLE_LEVELS > 3
  614. #define pud_ERROR(e) \
  615. pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
  616. #define p4d_none(p4d) (!p4d_val(p4d))
  617. #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
  618. #define p4d_present(p4d) (p4d_val(p4d))
  619. static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
  620. {
  621. if (in_swapper_pgdir(p4dp)) {
  622. set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
  623. return;
  624. }
  625. WRITE_ONCE(*p4dp, p4d);
  626. dsb(ishst);
  627. isb();
  628. }
  629. static inline void p4d_clear(p4d_t *p4dp)
  630. {
  631. set_p4d(p4dp, __p4d(0));
  632. }
  633. static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
  634. {
  635. return __p4d_to_phys(p4d);
  636. }
  637. static inline pud_t *p4d_pgtable(p4d_t p4d)
  638. {
  639. return (pud_t *)__va(p4d_page_paddr(p4d));
  640. }
  641. /* Find an entry in the first-level page table. */
  642. #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
  643. #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
  644. #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
  645. #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
  646. #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
  647. /* use ONLY for statically allocated translation tables */
  648. #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
  649. #else
  650. #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
  651. #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
  652. /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
  653. #define pud_set_fixmap(addr) NULL
  654. #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
  655. #define pud_clear_fixmap()
  656. #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
  657. #endif /* CONFIG_PGTABLE_LEVELS > 3 */
  658. #define pgd_ERROR(e) \
  659. pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
  660. #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
  661. #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
  662. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  663. {
  664. /*
  665. * Normal and Normal-Tagged are two different memory types and indices
  666. * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
  667. */
  668. const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
  669. PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
  670. PTE_ATTRINDX_MASK;
  671. /* preserve the hardware dirty information */
  672. if (pte_hw_dirty(pte))
  673. pte = pte_mkdirty(pte);
  674. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  675. return pte;
  676. }
  677. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  678. {
  679. return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
  680. }
  681. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  682. extern int ptep_set_access_flags(struct vm_area_struct *vma,
  683. unsigned long address, pte_t *ptep,
  684. pte_t entry, int dirty);
  685. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  686. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  687. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  688. unsigned long address, pmd_t *pmdp,
  689. pmd_t entry, int dirty)
  690. {
  691. return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
  692. }
  693. static inline int pud_devmap(pud_t pud)
  694. {
  695. return 0;
  696. }
  697. static inline int pgd_devmap(pgd_t pgd)
  698. {
  699. return 0;
  700. }
  701. #endif
  702. #ifdef CONFIG_PAGE_TABLE_CHECK
  703. static inline bool pte_user_accessible_page(pte_t pte)
  704. {
  705. return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
  706. }
  707. static inline bool pmd_user_accessible_page(pmd_t pmd)
  708. {
  709. return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
  710. }
  711. static inline bool pud_user_accessible_page(pud_t pud)
  712. {
  713. return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
  714. }
  715. #endif
  716. /*
  717. * Atomic pte/pmd modifications.
  718. */
  719. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  720. static inline int __ptep_test_and_clear_young(pte_t *ptep)
  721. {
  722. pte_t old_pte, pte;
  723. pte = READ_ONCE(*ptep);
  724. do {
  725. old_pte = pte;
  726. pte = pte_mkold(pte);
  727. pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
  728. pte_val(old_pte), pte_val(pte));
  729. } while (pte_val(pte) != pte_val(old_pte));
  730. return pte_young(pte);
  731. }
  732. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  733. unsigned long address,
  734. pte_t *ptep)
  735. {
  736. return __ptep_test_and_clear_young(ptep);
  737. }
  738. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  739. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  740. unsigned long address, pte_t *ptep)
  741. {
  742. int young = ptep_test_and_clear_young(vma, address, ptep);
  743. if (young) {
  744. /*
  745. * We can elide the trailing DSB here since the worst that can
  746. * happen is that a CPU continues to use the young entry in its
  747. * TLB and we mistakenly reclaim the associated page. The
  748. * window for such an event is bounded by the next
  749. * context-switch, which provides a DSB to complete the TLB
  750. * invalidation.
  751. */
  752. flush_tlb_page_nosync(vma, address);
  753. }
  754. return young;
  755. }
  756. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  757. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  758. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  759. unsigned long address,
  760. pmd_t *pmdp)
  761. {
  762. return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
  763. }
  764. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  765. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  766. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  767. unsigned long address, pte_t *ptep)
  768. {
  769. pte_t pte;
  770. arm64_update_cacheable_aliases(ptep, __pte(0));
  771. pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
  772. page_table_check_pte_clear(mm, address, pte);
  773. return pte;
  774. }
  775. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  776. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  777. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  778. unsigned long address, pmd_t *pmdp)
  779. {
  780. pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
  781. page_table_check_pmd_clear(mm, address, pmd);
  782. return pmd;
  783. }
  784. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  785. /*
  786. * ptep_set_wrprotect - mark read-only while trasferring potential hardware
  787. * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
  788. */
  789. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  790. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
  791. {
  792. pte_t old_pte, pte;
  793. pte = READ_ONCE(*ptep);
  794. do {
  795. old_pte = pte;
  796. pte = pte_wrprotect(pte);
  797. pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
  798. pte_val(old_pte), pte_val(pte));
  799. } while (pte_val(pte) != pte_val(old_pte));
  800. }
  801. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  802. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  803. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  804. unsigned long address, pmd_t *pmdp)
  805. {
  806. ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
  807. }
  808. #define pmdp_establish pmdp_establish
  809. static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
  810. unsigned long address, pmd_t *pmdp, pmd_t pmd)
  811. {
  812. page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
  813. return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
  814. }
  815. #endif
  816. /*
  817. * Encode and decode a swap entry:
  818. * bits 0-1: present (must be zero)
  819. * bits 2: remember PG_anon_exclusive
  820. * bits 3-7: swap type
  821. * bits 8-57: swap offset
  822. * bit 58: PTE_PROT_NONE (must be zero)
  823. */
  824. #define __SWP_TYPE_SHIFT 3
  825. #define __SWP_TYPE_BITS 5
  826. #define __SWP_OFFSET_BITS 50
  827. #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
  828. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  829. #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
  830. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  831. #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
  832. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  833. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  834. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  835. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  836. #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
  837. #define __swp_entry_to_pmd(swp) __pmd((swp).val)
  838. #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
  839. /*
  840. * Ensure that there are not more swap files than can be encoded in the kernel
  841. * PTEs.
  842. */
  843. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  844. extern int kern_addr_valid(unsigned long addr);
  845. #ifdef CONFIG_ARM64_MTE
  846. #define __HAVE_ARCH_PREPARE_TO_SWAP
  847. static inline int arch_prepare_to_swap(struct page *page)
  848. {
  849. if (system_supports_mte())
  850. return mte_save_tags(page);
  851. return 0;
  852. }
  853. #define __HAVE_ARCH_SWAP_INVALIDATE
  854. static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
  855. {
  856. if (system_supports_mte())
  857. mte_invalidate_tags(type, offset);
  858. }
  859. static inline void arch_swap_invalidate_area(int type)
  860. {
  861. if (system_supports_mte())
  862. mte_invalidate_tags_area(type);
  863. }
  864. #define __HAVE_ARCH_SWAP_RESTORE
  865. static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
  866. {
  867. if (system_supports_mte())
  868. mte_restore_tags(entry, &folio->page);
  869. }
  870. #endif /* CONFIG_ARM64_MTE */
  871. /*
  872. * On AArch64, the cache coherency is handled via the set_pte_at() function.
  873. */
  874. static inline void update_mmu_cache(struct vm_area_struct *vma,
  875. unsigned long addr, pte_t *ptep)
  876. {
  877. /*
  878. * We don't do anything here, so there's a very small chance of
  879. * us retaking a user fault which we just fixed up. The alternative
  880. * is doing a dsb(ishst), but that penalises the fastpath.
  881. */
  882. }
  883. #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
  884. #ifdef CONFIG_ARM64_PA_BITS_52
  885. #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
  886. #else
  887. #define phys_to_ttbr(addr) (addr)
  888. #endif
  889. /*
  890. * On arm64 without hardware Access Flag, copying from user will fail because
  891. * the pte is old and cannot be marked young. So we always end up with zeroed
  892. * page after fork() + CoW for pfn mappings. We don't always have a
  893. * hardware-managed access flag on arm64.
  894. */
  895. #define arch_has_hw_pte_young cpu_has_hw_af
  896. /*
  897. * Experimentally, it's cheap to set the access flag in hardware and we
  898. * benefit from prefaulting mappings as 'old' to start with.
  899. */
  900. #define arch_wants_old_prefaulted_pte cpu_has_hw_af
  901. static inline bool pud_sect_supported(void)
  902. {
  903. return PAGE_SIZE == SZ_4K;
  904. }
  905. #endif /* !__ASSEMBLY__ */
  906. #endif /* __ASM_PGTABLE_H */