123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- /* SPDX-License-Identifier: GPL-2.0-only */
- /*
- * Copyright (C) 2012,2013 - ARM Ltd
- * Author: Marc Zyngier <[email protected]>
- */
- #ifndef __ARM64_KVM_ARM_H__
- #define __ARM64_KVM_ARM_H__
- #include <asm/esr.h>
- #include <asm/memory.h>
- #include <asm/types.h>
- /* Hyp Configuration Register (HCR) bits */
- #define HCR_TID5 (UL(1) << 58)
- #define HCR_DCT (UL(1) << 57)
- #define HCR_ATA_SHIFT 56
- #define HCR_ATA (UL(1) << HCR_ATA_SHIFT)
- #define HCR_AMVOFFEN (UL(1) << 51)
- #define HCR_FIEN (UL(1) << 47)
- #define HCR_FWB (UL(1) << 46)
- #define HCR_API (UL(1) << 41)
- #define HCR_APK (UL(1) << 40)
- #define HCR_TEA (UL(1) << 37)
- #define HCR_TERR (UL(1) << 36)
- #define HCR_TLOR (UL(1) << 35)
- #define HCR_E2H (UL(1) << 34)
- #define HCR_ID (UL(1) << 33)
- #define HCR_CD (UL(1) << 32)
- #define HCR_RW_SHIFT 31
- #define HCR_RW (UL(1) << HCR_RW_SHIFT)
- #define HCR_TRVM (UL(1) << 30)
- #define HCR_HCD (UL(1) << 29)
- #define HCR_TDZ (UL(1) << 28)
- #define HCR_TGE (UL(1) << 27)
- #define HCR_TVM (UL(1) << 26)
- #define HCR_TTLB (UL(1) << 25)
- #define HCR_TPU (UL(1) << 24)
- #define HCR_TPC (UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
- #define HCR_TSW (UL(1) << 22)
- #define HCR_TACR (UL(1) << 21)
- #define HCR_TIDCP (UL(1) << 20)
- #define HCR_TSC (UL(1) << 19)
- #define HCR_TID3 (UL(1) << 18)
- #define HCR_TID2 (UL(1) << 17)
- #define HCR_TID1 (UL(1) << 16)
- #define HCR_TID0 (UL(1) << 15)
- #define HCR_TWE (UL(1) << 14)
- #define HCR_TWI (UL(1) << 13)
- #define HCR_DC (UL(1) << 12)
- #define HCR_BSU (3 << 10)
- #define HCR_BSU_IS (UL(1) << 10)
- #define HCR_FB (UL(1) << 9)
- #define HCR_VSE (UL(1) << 8)
- #define HCR_VI (UL(1) << 7)
- #define HCR_VF (UL(1) << 6)
- #define HCR_AMO (UL(1) << 5)
- #define HCR_IMO (UL(1) << 4)
- #define HCR_FMO (UL(1) << 3)
- #define HCR_PTW (UL(1) << 2)
- #define HCR_SWIO (UL(1) << 1)
- #define HCR_VM (UL(1) << 0)
- #define HCR_RES0 ((UL(1) << 48) | (UL(1) << 39))
- /*
- * The bits we set in HCR:
- * TLOR: Trap LORegion register accesses
- * RW: 64bit by default, can be overridden for 32bit VMs
- * TACR: Trap ACTLR
- * TSC: Trap SMC
- * TSW: Trap cache operations by set/way
- * TWE: Trap WFE
- * TWI: Trap WFI
- * TIDCP: Trap L2CTLR/L2ECTLR
- * BSU_IS: Upgrade barriers to the inner shareable domain
- * FB: Force broadcast of all maintenance operations
- * AMO: Override CPSR.A and enable signaling with VA
- * IMO: Override CPSR.I and enable signaling with VI
- * FMO: Override CPSR.F and enable signaling with VF
- * SWIO: Turn set/way invalidates into set/way clean+invalidate
- * PTW: Take a stage2 fault if a stage1 walk steps in device memory
- * TID3: Trap EL1 reads of group 3 ID registers
- */
- #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
- HCR_BSU_IS | HCR_FB | HCR_TACR | \
- HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
- HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3 )
- #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
- #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
- #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
- #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
- /* TCR_EL2 Registers bits */
- #define TCR_EL2_RES1 ((1U << 31) | (1 << 23))
- #define TCR_EL2_TBI (1 << 20)
- #define TCR_EL2_PS_SHIFT 16
- #define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT)
- #define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT)
- #define TCR_EL2_TG0_MASK TCR_TG0_MASK
- #define TCR_EL2_SH0_MASK TCR_SH0_MASK
- #define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
- #define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
- #define TCR_EL2_T0SZ_MASK 0x3f
- #define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
- TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
- /* VTCR_EL2 Registers bits */
- #define VTCR_EL2_RES1 (1U << 31)
- #define VTCR_EL2_HD (1 << 22)
- #define VTCR_EL2_HA (1 << 21)
- #define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT
- #define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK
- #define VTCR_EL2_TG0_MASK TCR_TG0_MASK
- #define VTCR_EL2_TG0_4K TCR_TG0_4K
- #define VTCR_EL2_TG0_16K TCR_TG0_16K
- #define VTCR_EL2_TG0_64K TCR_TG0_64K
- #define VTCR_EL2_SH0_MASK TCR_SH0_MASK
- #define VTCR_EL2_SH0_INNER TCR_SH0_INNER
- #define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
- #define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA
- #define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
- #define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA
- #define VTCR_EL2_SL0_SHIFT 6
- #define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT)
- #define VTCR_EL2_T0SZ_MASK 0x3f
- #define VTCR_EL2_VS_SHIFT 19
- #define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT)
- #define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT)
- #define VTCR_EL2_T0SZ(x) TCR_T0SZ(x)
- /*
- * We configure the Stage-2 page tables to always restrict the IPA space to be
- * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
- * not known to exist and will break with this configuration.
- *
- * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
- *
- * Note that when using 4K pages, we concatenate two first level page tables
- * together. With 16K pages, we concatenate 16 first level page tables.
- *
- */
- #define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
- VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
- /*
- * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
- * Interestingly, it depends on the page size.
- * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
- *
- * -----------------------------------------
- * | Entry level | 4K | 16K/64K |
- * ------------------------------------------
- * | Level: 0 | 2 | - |
- * ------------------------------------------
- * | Level: 1 | 1 | 2 |
- * ------------------------------------------
- * | Level: 2 | 0 | 1 |
- * ------------------------------------------
- * | Level: 3 | - | 0 |
- * ------------------------------------------
- *
- * The table roughly translates to :
- *
- * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
- *
- * Where TGRAN_SL0_BASE is a magic number depending on the page size:
- * TGRAN_SL0_BASE(4K) = 2
- * TGRAN_SL0_BASE(16K) = 3
- * TGRAN_SL0_BASE(64K) = 3
- * provided we take care of ruling out the unsupported cases and
- * Entry_Level = 4 - Number_of_levels.
- *
- */
- #ifdef CONFIG_ARM64_64K_PAGES
- #define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K
- #define VTCR_EL2_TGRAN_SL0_BASE 3UL
- #elif defined(CONFIG_ARM64_16K_PAGES)
- #define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K
- #define VTCR_EL2_TGRAN_SL0_BASE 3UL
- #else /* 4K */
- #define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K
- #define VTCR_EL2_TGRAN_SL0_BASE 2UL
- #endif
- #define VTCR_EL2_LVLS_TO_SL0(levels) \
- ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
- #define VTCR_EL2_SL0_TO_LVLS(sl0) \
- ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
- #define VTCR_EL2_LVLS(vtcr) \
- VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
- #define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
- #define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
- /*
- * ARM VMSAv8-64 defines an algorithm for finding the translation table
- * descriptors in section D4.2.8 in ARM DDI 0487C.a.
- *
- * The algorithm defines the expectations on the translation table
- * addresses for each level, based on PAGE_SIZE, entry level
- * and the translation table size (T0SZ). The variable "x" in the
- * algorithm determines the alignment of a table base address at a given
- * level and thus determines the alignment of VTTBR:BADDR for stage2
- * page table entry level.
- * Since the number of bits resolved at the entry level could vary
- * depending on the T0SZ, the value of "x" is defined based on a
- * Magic constant for a given PAGE_SIZE and Entry Level. The
- * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
- * x = PAGE_SHIFT).
- *
- * The value of "x" for entry level is calculated as :
- * x = Magic_N - T0SZ
- *
- * where Magic_N is an integer depending on the page size and the entry
- * level of the page table as below:
- *
- * --------------------------------------------
- * | Entry level | 4K 16K 64K |
- * --------------------------------------------
- * | Level: 0 (4 levels) | 28 | - | - |
- * --------------------------------------------
- * | Level: 1 (3 levels) | 37 | 31 | 25 |
- * --------------------------------------------
- * | Level: 2 (2 levels) | 46 | 42 | 38 |
- * --------------------------------------------
- * | Level: 3 (1 level) | - | 53 | 51 |
- * --------------------------------------------
- *
- * We have a magic formula for the Magic_N below:
- *
- * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
- *
- * where Number_of_levels = (4 - Level). We are only interested in the
- * value for Entry_Level for the stage2 page table.
- *
- * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
- *
- * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
- * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
- *
- * Here is one way to explain the Magic Formula:
- *
- * x = log2(Size_of_Entry_Level_Table)
- *
- * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
- * PAGE_SHIFT bits in the PTE, we have :
- *
- * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
- * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
- * where n = number of levels, and since each pointer is 8bytes, we have:
- *
- * x = Bits_Entry_Level + 3
- * = IPA_SHIFT - (PAGE_SHIFT - 3) * n
- *
- * The only constraint here is that, we have to find the number of page table
- * levels for a given IPA size (which we do, see stage2_pt_levels())
- */
- #define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
- #define VTTBR_CNP_BIT (UL(1))
- #define VTTBR_VMID_SHIFT (UL(48))
- #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
- /* Hyp System Trap Register */
- #define HSTR_EL2_T(x) (1 << x)
- /* Hyp Coprocessor Trap Register Shifts */
- #define CPTR_EL2_TFP_SHIFT 10
- /* Hyp Coprocessor Trap Register */
- #define CPTR_EL2_TCPAC (1U << 31)
- #define CPTR_EL2_TAM (1 << 30)
- #define CPTR_EL2_TTA (1 << 20)
- #define CPTR_EL2_TSM (1 << 12)
- #define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT)
- #define CPTR_EL2_TZ (1 << 8)
- #define CPTR_NVHE_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
- #define CPTR_EL2_DEFAULT CPTR_NVHE_EL2_RES1
- #define CPTR_NVHE_EL2_RES0 (GENMASK(63, 32) | \
- GENMASK(29, 21) | \
- GENMASK(19, 14) | \
- BIT(11))
- /* Hyp Debug Configuration Register bits */
- #define MDCR_EL2_E2TB_MASK (UL(0x3))
- #define MDCR_EL2_E2TB_SHIFT (UL(24))
- #define MDCR_EL2_HPMFZS (UL(1) << 36)
- #define MDCR_EL2_HPMFZO (UL(1) << 29)
- #define MDCR_EL2_MTPME (UL(1) << 28)
- #define MDCR_EL2_TDCC (UL(1) << 27)
- #define MDCR_EL2_HLP (UL(1) << 26)
- #define MDCR_EL2_HCCD (UL(1) << 23)
- #define MDCR_EL2_TTRF (UL(1) << 19)
- #define MDCR_EL2_HPMD (UL(1) << 17)
- #define MDCR_EL2_TPMS (UL(1) << 14)
- #define MDCR_EL2_E2PB_MASK (UL(0x3))
- #define MDCR_EL2_E2PB_SHIFT (UL(12))
- #define MDCR_EL2_TDRA (UL(1) << 11)
- #define MDCR_EL2_TDOSA (UL(1) << 10)
- #define MDCR_EL2_TDA (UL(1) << 9)
- #define MDCR_EL2_TDE (UL(1) << 8)
- #define MDCR_EL2_HPME (UL(1) << 7)
- #define MDCR_EL2_TPM (UL(1) << 6)
- #define MDCR_EL2_TPMCR (UL(1) << 5)
- #define MDCR_EL2_HPMN_MASK (UL(0x1F))
- #define MDCR_EL2_RES0 (GENMASK(63, 37) | \
- GENMASK(35, 30) | \
- GENMASK(25, 24) | \
- GENMASK(22, 20) | \
- BIT(18) | \
- GENMASK(16, 15))
- /* For compatibility with fault code shared with 32-bit */
- #define FSC_FAULT ESR_ELx_FSC_FAULT
- #define FSC_ACCESS ESR_ELx_FSC_ACCESS
- #define FSC_PERM ESR_ELx_FSC_PERM
- #define FSC_SEA ESR_ELx_FSC_EXTABT
- #define FSC_SEA_TTW0 (0x14)
- #define FSC_SEA_TTW1 (0x15)
- #define FSC_SEA_TTW2 (0x16)
- #define FSC_SEA_TTW3 (0x17)
- #define FSC_SECC (0x18)
- #define FSC_SECC_TTW0 (0x1c)
- #define FSC_SECC_TTW1 (0x1d)
- #define FSC_SECC_TTW2 (0x1e)
- #define FSC_SECC_TTW3 (0x1f)
- /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
- #define HPFAR_MASK (~UL(0xf))
- /*
- * We have
- * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
- * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
- */
- #define PAR_TO_HPFAR(par) \
- (((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
- #define FAR_MASK GENMASK_ULL(11, 0)
- #define ECN(x) { ESR_ELx_EC_##x, #x }
- #define kvm_arm_exception_class \
- ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
- ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
- ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
- ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
- ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
- ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
- ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
- ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
- ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
- #define CPACR_EL1_TTA (1 << 28)
- #define CPACR_EL1_DEFAULT (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |\
- CPACR_EL1_ZEN_EL1EN)
- /*
- * ARMv8 Reset Values
- */
- #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
- PSR_F_BIT | PSR_D_BIT)
- #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
- PSR_AA32_I_BIT | PSR_AA32_F_BIT)
- #endif /* __ARM64_KVM_ARM_H__ */
|