copypage-v4mc.c 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * linux/arch/arm/lib/copypage-armv4mc.S
  4. *
  5. * Copyright (C) 1995-2005 Russell King
  6. *
  7. * This handles the mini data cache, as found on SA11x0 and XScale
  8. * processors. When we copy a user page page, we map it in such a way
  9. * that accesses to this page will not touch the main data cache, but
  10. * will be cached in the mini data cache. This prevents us thrashing
  11. * the main data cache on page faults.
  12. */
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/highmem.h>
  16. #include <linux/pagemap.h>
  17. #include <asm/tlbflush.h>
  18. #include <asm/cacheflush.h>
  19. #include "mm.h"
  20. #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
  21. L_PTE_MT_MINICACHE)
  22. static DEFINE_RAW_SPINLOCK(minicache_lock);
  23. /*
  24. * ARMv4 mini-dcache optimised copy_user_highpage
  25. *
  26. * We flush the destination cache lines just before we write the data into the
  27. * corresponding address. Since the Dcache is read-allocate, this removes the
  28. * Dcache aliasing issue. The writes will be forwarded to the write buffer,
  29. * and merged as appropriate.
  30. *
  31. * Note: We rely on all ARMv4 processors implementing the "invalidate D line"
  32. * instruction. If your processor does not supply this, you have to write your
  33. * own copy_user_highpage that does the right thing.
  34. */
  35. static void mc_copy_user_page(void *from, void *to)
  36. {
  37. int tmp;
  38. asm volatile ("\
  39. .syntax unified\n\
  40. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  41. 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
  42. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  43. ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\
  44. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  45. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  46. mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
  47. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  48. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  49. subs %2, %2, #1 @ 1\n\
  50. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  51. ldmiane %0!, {r2, r3, ip, lr} @ 4\n\
  52. bne 1b @ "
  53. : "+&r" (from), "+&r" (to), "=&r" (tmp)
  54. : "2" (PAGE_SIZE / 64)
  55. : "r2", "r3", "ip", "lr");
  56. }
  57. void v4_mc_copy_user_highpage(struct page *to, struct page *from,
  58. unsigned long vaddr, struct vm_area_struct *vma)
  59. {
  60. void *kto = kmap_atomic(to);
  61. if (!test_and_set_bit(PG_dcache_clean, &from->flags))
  62. __flush_dcache_page(page_mapping_file(from), from);
  63. raw_spin_lock(&minicache_lock);
  64. set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot));
  65. mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto);
  66. raw_spin_unlock(&minicache_lock);
  67. kunmap_atomic(kto);
  68. }
  69. /*
  70. * ARMv4 optimised clear_user_page
  71. */
  72. void v4_mc_clear_user_highpage(struct page *page, unsigned long vaddr)
  73. {
  74. void *ptr, *kaddr = kmap_atomic(page);
  75. asm volatile("\
  76. mov r1, %2 @ 1\n\
  77. mov r2, #0 @ 1\n\
  78. mov r3, #0 @ 1\n\
  79. mov ip, #0 @ 1\n\
  80. mov lr, #0 @ 1\n\
  81. 1: mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\
  82. stmia %0!, {r2, r3, ip, lr} @ 4\n\
  83. stmia %0!, {r2, r3, ip, lr} @ 4\n\
  84. mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\
  85. stmia %0!, {r2, r3, ip, lr} @ 4\n\
  86. stmia %0!, {r2, r3, ip, lr} @ 4\n\
  87. subs r1, r1, #1 @ 1\n\
  88. bne 1b @ 1"
  89. : "=r" (ptr)
  90. : "0" (kaddr), "I" (PAGE_SIZE / 64)
  91. : "r1", "r2", "r3", "ip", "lr");
  92. kunmap_atomic(kaddr);
  93. }
  94. struct cpu_user_fns v4_mc_user_fns __initdata = {
  95. .cpu_clear_user_highpage = v4_mc_clear_user_highpage,
  96. .cpu_copy_user_highpage = v4_mc_copy_user_highpage,
  97. };