clock.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * arch/arm/mach-ep93xx/clock.c
  4. * Clock control for Cirrus EP93xx chips.
  5. *
  6. * Copyright (C) 2006 Lennert Buytenhek <[email protected]>
  7. */
  8. #define pr_fmt(fmt) "ep93xx " KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/clk.h>
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/string.h>
  14. #include <linux/io.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/clkdev.h>
  17. #include <linux/clk-provider.h>
  18. #include <linux/soc/cirrus/ep93xx.h>
  19. #include "hardware.h"
  20. #include <asm/div64.h>
  21. #include "soc.h"
  22. static DEFINE_SPINLOCK(clk_lock);
  23. static char fclk_divisors[] = { 1, 2, 4, 8, 16, 1, 1, 1 };
  24. static char hclk_divisors[] = { 1, 2, 4, 5, 6, 8, 16, 32 };
  25. static char pclk_divisors[] = { 1, 2, 4, 8 };
  26. static char adc_divisors[] = { 16, 4 };
  27. static char sclk_divisors[] = { 2, 4 };
  28. static char lrclk_divisors[] = { 32, 64, 128 };
  29. static const char * const mux_parents[] = {
  30. "xtali",
  31. "pll1",
  32. "pll2"
  33. };
  34. /*
  35. * PLL rate = 14.7456 MHz * (X1FBD + 1) * (X2FBD + 1) / (X2IPD + 1) / 2^PS
  36. */
  37. static unsigned long calc_pll_rate(unsigned long long rate, u32 config_word)
  38. {
  39. int i;
  40. rate *= ((config_word >> 11) & 0x1f) + 1; /* X1FBD */
  41. rate *= ((config_word >> 5) & 0x3f) + 1; /* X2FBD */
  42. do_div(rate, (config_word & 0x1f) + 1); /* X2IPD */
  43. for (i = 0; i < ((config_word >> 16) & 3); i++) /* PS */
  44. rate >>= 1;
  45. return (unsigned long)rate;
  46. }
  47. struct clk_psc {
  48. struct clk_hw hw;
  49. void __iomem *reg;
  50. u8 bit_idx;
  51. u32 mask;
  52. u8 shift;
  53. u8 width;
  54. char *div;
  55. u8 num_div;
  56. spinlock_t *lock;
  57. };
  58. #define to_clk_psc(_hw) container_of(_hw, struct clk_psc, hw)
  59. static int ep93xx_clk_is_enabled(struct clk_hw *hw)
  60. {
  61. struct clk_psc *psc = to_clk_psc(hw);
  62. u32 val = readl(psc->reg);
  63. return (val & BIT(psc->bit_idx)) ? 1 : 0;
  64. }
  65. static int ep93xx_clk_enable(struct clk_hw *hw)
  66. {
  67. struct clk_psc *psc = to_clk_psc(hw);
  68. unsigned long flags = 0;
  69. u32 val;
  70. if (psc->lock)
  71. spin_lock_irqsave(psc->lock, flags);
  72. val = __raw_readl(psc->reg);
  73. val |= BIT(psc->bit_idx);
  74. ep93xx_syscon_swlocked_write(val, psc->reg);
  75. if (psc->lock)
  76. spin_unlock_irqrestore(psc->lock, flags);
  77. return 0;
  78. }
  79. static void ep93xx_clk_disable(struct clk_hw *hw)
  80. {
  81. struct clk_psc *psc = to_clk_psc(hw);
  82. unsigned long flags = 0;
  83. u32 val;
  84. if (psc->lock)
  85. spin_lock_irqsave(psc->lock, flags);
  86. val = __raw_readl(psc->reg);
  87. val &= ~BIT(psc->bit_idx);
  88. ep93xx_syscon_swlocked_write(val, psc->reg);
  89. if (psc->lock)
  90. spin_unlock_irqrestore(psc->lock, flags);
  91. }
  92. static const struct clk_ops clk_ep93xx_gate_ops = {
  93. .enable = ep93xx_clk_enable,
  94. .disable = ep93xx_clk_disable,
  95. .is_enabled = ep93xx_clk_is_enabled,
  96. };
  97. static struct clk_hw *ep93xx_clk_register_gate(const char *name,
  98. const char *parent_name,
  99. void __iomem *reg,
  100. u8 bit_idx)
  101. {
  102. struct clk_init_data init;
  103. struct clk_psc *psc;
  104. struct clk *clk;
  105. psc = kzalloc(sizeof(*psc), GFP_KERNEL);
  106. if (!psc)
  107. return ERR_PTR(-ENOMEM);
  108. init.name = name;
  109. init.ops = &clk_ep93xx_gate_ops;
  110. init.flags = CLK_SET_RATE_PARENT;
  111. init.parent_names = (parent_name ? &parent_name : NULL);
  112. init.num_parents = (parent_name ? 1 : 0);
  113. psc->reg = reg;
  114. psc->bit_idx = bit_idx;
  115. psc->hw.init = &init;
  116. psc->lock = &clk_lock;
  117. clk = clk_register(NULL, &psc->hw);
  118. if (IS_ERR(clk)) {
  119. kfree(psc);
  120. return ERR_CAST(clk);
  121. }
  122. return &psc->hw;
  123. }
  124. static u8 ep93xx_mux_get_parent(struct clk_hw *hw)
  125. {
  126. struct clk_psc *psc = to_clk_psc(hw);
  127. u32 val = __raw_readl(psc->reg);
  128. if (!(val & EP93XX_SYSCON_CLKDIV_ESEL))
  129. return 0;
  130. if (!(val & EP93XX_SYSCON_CLKDIV_PSEL))
  131. return 1;
  132. return 2;
  133. }
  134. static int ep93xx_mux_set_parent_lock(struct clk_hw *hw, u8 index)
  135. {
  136. struct clk_psc *psc = to_clk_psc(hw);
  137. unsigned long flags = 0;
  138. u32 val;
  139. if (index >= ARRAY_SIZE(mux_parents))
  140. return -EINVAL;
  141. if (psc->lock)
  142. spin_lock_irqsave(psc->lock, flags);
  143. val = __raw_readl(psc->reg);
  144. val &= ~(EP93XX_SYSCON_CLKDIV_ESEL | EP93XX_SYSCON_CLKDIV_PSEL);
  145. if (index != 0) {
  146. val |= EP93XX_SYSCON_CLKDIV_ESEL;
  147. val |= (index - 1) ? EP93XX_SYSCON_CLKDIV_PSEL : 0;
  148. }
  149. ep93xx_syscon_swlocked_write(val, psc->reg);
  150. if (psc->lock)
  151. spin_unlock_irqrestore(psc->lock, flags);
  152. return 0;
  153. }
  154. static bool is_best(unsigned long rate, unsigned long now,
  155. unsigned long best)
  156. {
  157. return abs(rate - now) < abs(rate - best);
  158. }
  159. static int ep93xx_mux_determine_rate(struct clk_hw *hw,
  160. struct clk_rate_request *req)
  161. {
  162. unsigned long rate = req->rate;
  163. struct clk *best_parent = NULL;
  164. unsigned long __parent_rate;
  165. unsigned long best_rate = 0, actual_rate, mclk_rate;
  166. unsigned long best_parent_rate;
  167. int __div = 0, __pdiv = 0;
  168. int i;
  169. /*
  170. * Try the two pll's and the external clock
  171. * Because the valid predividers are 2, 2.5 and 3, we multiply
  172. * all the clocks by 2 to avoid floating point math.
  173. *
  174. * This is based on the algorithm in the ep93xx raster guide:
  175. * http://be-a-maverick.com/en/pubs/appNote/AN269REV1.pdf
  176. *
  177. */
  178. for (i = 0; i < ARRAY_SIZE(mux_parents); i++) {
  179. struct clk *parent = clk_get_sys(mux_parents[i], NULL);
  180. __parent_rate = clk_get_rate(parent);
  181. mclk_rate = __parent_rate * 2;
  182. /* Try each predivider value */
  183. for (__pdiv = 4; __pdiv <= 6; __pdiv++) {
  184. __div = mclk_rate / (rate * __pdiv);
  185. if (__div < 2 || __div > 127)
  186. continue;
  187. actual_rate = mclk_rate / (__pdiv * __div);
  188. if (is_best(rate, actual_rate, best_rate)) {
  189. best_rate = actual_rate;
  190. best_parent_rate = __parent_rate;
  191. best_parent = parent;
  192. }
  193. }
  194. }
  195. if (!best_parent)
  196. return -EINVAL;
  197. req->best_parent_rate = best_parent_rate;
  198. req->best_parent_hw = __clk_get_hw(best_parent);
  199. req->rate = best_rate;
  200. return 0;
  201. }
  202. static unsigned long ep93xx_ddiv_recalc_rate(struct clk_hw *hw,
  203. unsigned long parent_rate)
  204. {
  205. struct clk_psc *psc = to_clk_psc(hw);
  206. unsigned long rate = 0;
  207. u32 val = __raw_readl(psc->reg);
  208. int __pdiv = ((val >> EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) & 0x03);
  209. int __div = val & 0x7f;
  210. if (__div > 0)
  211. rate = (parent_rate * 2) / ((__pdiv + 3) * __div);
  212. return rate;
  213. }
  214. static int ep93xx_ddiv_set_rate(struct clk_hw *hw, unsigned long rate,
  215. unsigned long parent_rate)
  216. {
  217. struct clk_psc *psc = to_clk_psc(hw);
  218. int pdiv = 0, div = 0;
  219. unsigned long best_rate = 0, actual_rate, mclk_rate;
  220. int __div = 0, __pdiv = 0;
  221. u32 val;
  222. mclk_rate = parent_rate * 2;
  223. for (__pdiv = 4; __pdiv <= 6; __pdiv++) {
  224. __div = mclk_rate / (rate * __pdiv);
  225. if (__div < 2 || __div > 127)
  226. continue;
  227. actual_rate = mclk_rate / (__pdiv * __div);
  228. if (is_best(rate, actual_rate, best_rate)) {
  229. pdiv = __pdiv - 3;
  230. div = __div;
  231. best_rate = actual_rate;
  232. }
  233. }
  234. if (!best_rate)
  235. return -EINVAL;
  236. val = __raw_readl(psc->reg);
  237. /* Clear old dividers */
  238. val &= ~0x37f;
  239. /* Set the new pdiv and div bits for the new clock rate */
  240. val |= (pdiv << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | div;
  241. ep93xx_syscon_swlocked_write(val, psc->reg);
  242. return 0;
  243. }
  244. static const struct clk_ops clk_ddiv_ops = {
  245. .enable = ep93xx_clk_enable,
  246. .disable = ep93xx_clk_disable,
  247. .is_enabled = ep93xx_clk_is_enabled,
  248. .get_parent = ep93xx_mux_get_parent,
  249. .set_parent = ep93xx_mux_set_parent_lock,
  250. .determine_rate = ep93xx_mux_determine_rate,
  251. .recalc_rate = ep93xx_ddiv_recalc_rate,
  252. .set_rate = ep93xx_ddiv_set_rate,
  253. };
  254. static struct clk_hw *clk_hw_register_ddiv(const char *name,
  255. void __iomem *reg,
  256. u8 bit_idx)
  257. {
  258. struct clk_init_data init;
  259. struct clk_psc *psc;
  260. struct clk *clk;
  261. psc = kzalloc(sizeof(*psc), GFP_KERNEL);
  262. if (!psc)
  263. return ERR_PTR(-ENOMEM);
  264. init.name = name;
  265. init.ops = &clk_ddiv_ops;
  266. init.flags = 0;
  267. init.parent_names = mux_parents;
  268. init.num_parents = ARRAY_SIZE(mux_parents);
  269. psc->reg = reg;
  270. psc->bit_idx = bit_idx;
  271. psc->lock = &clk_lock;
  272. psc->hw.init = &init;
  273. clk = clk_register(NULL, &psc->hw);
  274. if (IS_ERR(clk)) {
  275. kfree(psc);
  276. return ERR_CAST(clk);
  277. }
  278. return &psc->hw;
  279. }
  280. static unsigned long ep93xx_div_recalc_rate(struct clk_hw *hw,
  281. unsigned long parent_rate)
  282. {
  283. struct clk_psc *psc = to_clk_psc(hw);
  284. u32 val = __raw_readl(psc->reg);
  285. u8 index = (val & psc->mask) >> psc->shift;
  286. if (index > psc->num_div)
  287. return 0;
  288. return DIV_ROUND_UP_ULL(parent_rate, psc->div[index]);
  289. }
  290. static long ep93xx_div_round_rate(struct clk_hw *hw, unsigned long rate,
  291. unsigned long *parent_rate)
  292. {
  293. struct clk_psc *psc = to_clk_psc(hw);
  294. unsigned long best = 0, now, maxdiv;
  295. int i;
  296. maxdiv = psc->div[psc->num_div - 1];
  297. for (i = 0; i < psc->num_div; i++) {
  298. if ((rate * psc->div[i]) == *parent_rate)
  299. return DIV_ROUND_UP_ULL((u64)*parent_rate, psc->div[i]);
  300. now = DIV_ROUND_UP_ULL((u64)*parent_rate, psc->div[i]);
  301. if (is_best(rate, now, best))
  302. best = now;
  303. }
  304. if (!best)
  305. best = DIV_ROUND_UP_ULL(*parent_rate, maxdiv);
  306. return best;
  307. }
  308. static int ep93xx_div_set_rate(struct clk_hw *hw, unsigned long rate,
  309. unsigned long parent_rate)
  310. {
  311. struct clk_psc *psc = to_clk_psc(hw);
  312. u32 val = __raw_readl(psc->reg) & ~psc->mask;
  313. int i;
  314. for (i = 0; i < psc->num_div; i++)
  315. if (rate == parent_rate / psc->div[i]) {
  316. val |= i << psc->shift;
  317. break;
  318. }
  319. if (i == psc->num_div)
  320. return -EINVAL;
  321. ep93xx_syscon_swlocked_write(val, psc->reg);
  322. return 0;
  323. }
  324. static const struct clk_ops ep93xx_div_ops = {
  325. .enable = ep93xx_clk_enable,
  326. .disable = ep93xx_clk_disable,
  327. .is_enabled = ep93xx_clk_is_enabled,
  328. .recalc_rate = ep93xx_div_recalc_rate,
  329. .round_rate = ep93xx_div_round_rate,
  330. .set_rate = ep93xx_div_set_rate,
  331. };
  332. static struct clk_hw *clk_hw_register_div(const char *name,
  333. const char *parent_name,
  334. void __iomem *reg,
  335. u8 enable_bit,
  336. u8 shift,
  337. u8 width,
  338. char *clk_divisors,
  339. u8 num_div)
  340. {
  341. struct clk_init_data init;
  342. struct clk_psc *psc;
  343. struct clk *clk;
  344. psc = kzalloc(sizeof(*psc), GFP_KERNEL);
  345. if (!psc)
  346. return ERR_PTR(-ENOMEM);
  347. init.name = name;
  348. init.ops = &ep93xx_div_ops;
  349. init.flags = 0;
  350. init.parent_names = (parent_name ? &parent_name : NULL);
  351. init.num_parents = 1;
  352. psc->reg = reg;
  353. psc->bit_idx = enable_bit;
  354. psc->mask = GENMASK(shift + width - 1, shift);
  355. psc->shift = shift;
  356. psc->div = clk_divisors;
  357. psc->num_div = num_div;
  358. psc->lock = &clk_lock;
  359. psc->hw.init = &init;
  360. clk = clk_register(NULL, &psc->hw);
  361. if (IS_ERR(clk)) {
  362. kfree(psc);
  363. return ERR_CAST(clk);
  364. }
  365. return &psc->hw;
  366. }
  367. struct ep93xx_gate {
  368. unsigned int bit;
  369. const char *dev_id;
  370. const char *con_id;
  371. };
  372. static struct ep93xx_gate ep93xx_uarts[] = {
  373. {EP93XX_SYSCON_DEVCFG_U1EN, "apb:uart1", NULL},
  374. {EP93XX_SYSCON_DEVCFG_U2EN, "apb:uart2", NULL},
  375. {EP93XX_SYSCON_DEVCFG_U3EN, "apb:uart3", NULL},
  376. };
  377. static void __init ep93xx_uart_clock_init(void)
  378. {
  379. unsigned int i;
  380. struct clk_hw *hw;
  381. u32 value;
  382. unsigned int clk_uart_div;
  383. value = __raw_readl(EP93XX_SYSCON_PWRCNT);
  384. if (value & EP93XX_SYSCON_PWRCNT_UARTBAUD)
  385. clk_uart_div = 1;
  386. else
  387. clk_uart_div = 2;
  388. hw = clk_hw_register_fixed_factor(NULL, "uart", "xtali", 0, 1, clk_uart_div);
  389. /* parenting uart gate clocks to uart clock */
  390. for (i = 0; i < ARRAY_SIZE(ep93xx_uarts); i++) {
  391. hw = ep93xx_clk_register_gate(ep93xx_uarts[i].dev_id,
  392. "uart",
  393. EP93XX_SYSCON_DEVCFG,
  394. ep93xx_uarts[i].bit);
  395. clk_hw_register_clkdev(hw, NULL, ep93xx_uarts[i].dev_id);
  396. }
  397. }
  398. static struct ep93xx_gate ep93xx_dmas[] = {
  399. {EP93XX_SYSCON_PWRCNT_DMA_M2P0, NULL, "m2p0"},
  400. {EP93XX_SYSCON_PWRCNT_DMA_M2P1, NULL, "m2p1"},
  401. {EP93XX_SYSCON_PWRCNT_DMA_M2P2, NULL, "m2p2"},
  402. {EP93XX_SYSCON_PWRCNT_DMA_M2P3, NULL, "m2p3"},
  403. {EP93XX_SYSCON_PWRCNT_DMA_M2P4, NULL, "m2p4"},
  404. {EP93XX_SYSCON_PWRCNT_DMA_M2P5, NULL, "m2p5"},
  405. {EP93XX_SYSCON_PWRCNT_DMA_M2P6, NULL, "m2p6"},
  406. {EP93XX_SYSCON_PWRCNT_DMA_M2P7, NULL, "m2p7"},
  407. {EP93XX_SYSCON_PWRCNT_DMA_M2P8, NULL, "m2p8"},
  408. {EP93XX_SYSCON_PWRCNT_DMA_M2P9, NULL, "m2p9"},
  409. {EP93XX_SYSCON_PWRCNT_DMA_M2M0, NULL, "m2m0"},
  410. {EP93XX_SYSCON_PWRCNT_DMA_M2M1, NULL, "m2m1"},
  411. };
  412. static void __init ep93xx_dma_clock_init(void)
  413. {
  414. unsigned int i;
  415. struct clk_hw *hw;
  416. int ret;
  417. for (i = 0; i < ARRAY_SIZE(ep93xx_dmas); i++) {
  418. hw = clk_hw_register_gate(NULL, ep93xx_dmas[i].con_id,
  419. "hclk", 0,
  420. EP93XX_SYSCON_PWRCNT,
  421. ep93xx_dmas[i].bit,
  422. 0,
  423. &clk_lock);
  424. ret = clk_hw_register_clkdev(hw, ep93xx_dmas[i].con_id, NULL);
  425. if (ret)
  426. pr_err("%s: failed to register lookup %s\n",
  427. __func__, ep93xx_dmas[i].con_id);
  428. }
  429. }
  430. static int __init ep93xx_clock_init(void)
  431. {
  432. u32 value;
  433. struct clk_hw *hw;
  434. unsigned long clk_pll1_rate;
  435. unsigned long clk_f_rate;
  436. unsigned long clk_h_rate;
  437. unsigned long clk_p_rate;
  438. unsigned long clk_pll2_rate;
  439. unsigned int clk_f_div;
  440. unsigned int clk_h_div;
  441. unsigned int clk_p_div;
  442. unsigned int clk_usb_div;
  443. unsigned long clk_spi_div;
  444. hw = clk_hw_register_fixed_rate(NULL, "xtali", NULL, 0, EP93XX_EXT_CLK_RATE);
  445. clk_hw_register_clkdev(hw, NULL, "xtali");
  446. /* Determine the bootloader configured pll1 rate */
  447. value = __raw_readl(EP93XX_SYSCON_CLKSET1);
  448. if (!(value & EP93XX_SYSCON_CLKSET1_NBYP1))
  449. clk_pll1_rate = EP93XX_EXT_CLK_RATE;
  450. else
  451. clk_pll1_rate = calc_pll_rate(EP93XX_EXT_CLK_RATE, value);
  452. hw = clk_hw_register_fixed_rate(NULL, "pll1", "xtali", 0, clk_pll1_rate);
  453. clk_hw_register_clkdev(hw, NULL, "pll1");
  454. /* Initialize the pll1 derived clocks */
  455. clk_f_div = fclk_divisors[(value >> 25) & 0x7];
  456. clk_h_div = hclk_divisors[(value >> 20) & 0x7];
  457. clk_p_div = pclk_divisors[(value >> 18) & 0x3];
  458. hw = clk_hw_register_fixed_factor(NULL, "fclk", "pll1", 0, 1, clk_f_div);
  459. clk_f_rate = clk_get_rate(hw->clk);
  460. hw = clk_hw_register_fixed_factor(NULL, "hclk", "pll1", 0, 1, clk_h_div);
  461. clk_h_rate = clk_get_rate(hw->clk);
  462. hw = clk_hw_register_fixed_factor(NULL, "pclk", "hclk", 0, 1, clk_p_div);
  463. clk_p_rate = clk_get_rate(hw->clk);
  464. clk_hw_register_clkdev(hw, "apb_pclk", NULL);
  465. ep93xx_dma_clock_init();
  466. /* Determine the bootloader configured pll2 rate */
  467. value = __raw_readl(EP93XX_SYSCON_CLKSET2);
  468. if (!(value & EP93XX_SYSCON_CLKSET2_NBYP2))
  469. clk_pll2_rate = EP93XX_EXT_CLK_RATE;
  470. else if (value & EP93XX_SYSCON_CLKSET2_PLL2_EN)
  471. clk_pll2_rate = calc_pll_rate(EP93XX_EXT_CLK_RATE, value);
  472. else
  473. clk_pll2_rate = 0;
  474. hw = clk_hw_register_fixed_rate(NULL, "pll2", "xtali", 0, clk_pll2_rate);
  475. clk_hw_register_clkdev(hw, NULL, "pll2");
  476. /* Initialize the pll2 derived clocks */
  477. /*
  478. * These four bits set the divide ratio between the PLL2
  479. * output and the USB clock.
  480. * 0000 - Divide by 1
  481. * 0001 - Divide by 2
  482. * 0010 - Divide by 3
  483. * 0011 - Divide by 4
  484. * 0100 - Divide by 5
  485. * 0101 - Divide by 6
  486. * 0110 - Divide by 7
  487. * 0111 - Divide by 8
  488. * 1000 - Divide by 9
  489. * 1001 - Divide by 10
  490. * 1010 - Divide by 11
  491. * 1011 - Divide by 12
  492. * 1100 - Divide by 13
  493. * 1101 - Divide by 14
  494. * 1110 - Divide by 15
  495. * 1111 - Divide by 1
  496. * On power-on-reset these bits are reset to 0000b.
  497. */
  498. clk_usb_div = (((value >> 28) & 0xf) + 1);
  499. hw = clk_hw_register_fixed_factor(NULL, "usb_clk", "pll2", 0, 1, clk_usb_div);
  500. hw = clk_hw_register_gate(NULL, "ohci-platform",
  501. "usb_clk", 0,
  502. EP93XX_SYSCON_PWRCNT,
  503. EP93XX_SYSCON_PWRCNT_USH_EN,
  504. 0,
  505. &clk_lock);
  506. clk_hw_register_clkdev(hw, NULL, "ohci-platform");
  507. /*
  508. * EP93xx SSP clock rate was doubled in version E2. For more information
  509. * see:
  510. * http://www.cirrus.com/en/pubs/appNote/AN273REV4.pdf
  511. */
  512. clk_spi_div = 1;
  513. if (ep93xx_chip_revision() < EP93XX_CHIP_REV_E2)
  514. clk_spi_div = 2;
  515. hw = clk_hw_register_fixed_factor(NULL, "ep93xx-spi.0", "xtali", 0, 1, clk_spi_div);
  516. clk_hw_register_clkdev(hw, NULL, "ep93xx-spi.0");
  517. /* pwm clock */
  518. hw = clk_hw_register_fixed_factor(NULL, "pwm_clk", "xtali", 0, 1, 1);
  519. clk_hw_register_clkdev(hw, "pwm_clk", NULL);
  520. pr_info("PLL1 running at %ld MHz, PLL2 at %ld MHz\n",
  521. clk_pll1_rate / 1000000, clk_pll2_rate / 1000000);
  522. pr_info("FCLK %ld MHz, HCLK %ld MHz, PCLK %ld MHz\n",
  523. clk_f_rate / 1000000, clk_h_rate / 1000000,
  524. clk_p_rate / 1000000);
  525. ep93xx_uart_clock_init();
  526. /* touchscreen/adc clock */
  527. hw = clk_hw_register_div("ep93xx-adc",
  528. "xtali",
  529. EP93XX_SYSCON_KEYTCHCLKDIV,
  530. EP93XX_SYSCON_KEYTCHCLKDIV_TSEN,
  531. EP93XX_SYSCON_KEYTCHCLKDIV_ADIV,
  532. 1,
  533. adc_divisors,
  534. ARRAY_SIZE(adc_divisors));
  535. clk_hw_register_clkdev(hw, NULL, "ep93xx-adc");
  536. /* keypad clock */
  537. hw = clk_hw_register_div("ep93xx-keypad",
  538. "xtali",
  539. EP93XX_SYSCON_KEYTCHCLKDIV,
  540. EP93XX_SYSCON_KEYTCHCLKDIV_KEN,
  541. EP93XX_SYSCON_KEYTCHCLKDIV_KDIV,
  542. 1,
  543. adc_divisors,
  544. ARRAY_SIZE(adc_divisors));
  545. clk_hw_register_clkdev(hw, NULL, "ep93xx-keypad");
  546. /* On reset PDIV and VDIV is set to zero, while PDIV zero
  547. * means clock disable, VDIV shouldn't be zero.
  548. * So i set both dividers to minimum.
  549. */
  550. /* ENA - Enable CLK divider. */
  551. /* PDIV - 00 - Disable clock */
  552. /* VDIV - at least 2 */
  553. /* Check and enable video clk registers */
  554. value = __raw_readl(EP93XX_SYSCON_VIDCLKDIV);
  555. value |= (1 << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | 2;
  556. ep93xx_syscon_swlocked_write(value, EP93XX_SYSCON_VIDCLKDIV);
  557. /* check and enable i2s clk registers */
  558. value = __raw_readl(EP93XX_SYSCON_I2SCLKDIV);
  559. value |= (1 << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | 2;
  560. ep93xx_syscon_swlocked_write(value, EP93XX_SYSCON_I2SCLKDIV);
  561. /* video clk */
  562. hw = clk_hw_register_ddiv("ep93xx-fb",
  563. EP93XX_SYSCON_VIDCLKDIV,
  564. EP93XX_SYSCON_CLKDIV_ENABLE);
  565. clk_hw_register_clkdev(hw, NULL, "ep93xx-fb");
  566. /* i2s clk */
  567. hw = clk_hw_register_ddiv("mclk",
  568. EP93XX_SYSCON_I2SCLKDIV,
  569. EP93XX_SYSCON_CLKDIV_ENABLE);
  570. clk_hw_register_clkdev(hw, "mclk", "ep93xx-i2s");
  571. /* i2s sclk */
  572. #define EP93XX_I2SCLKDIV_SDIV_SHIFT 16
  573. #define EP93XX_I2SCLKDIV_SDIV_WIDTH 1
  574. hw = clk_hw_register_div("sclk",
  575. "mclk",
  576. EP93XX_SYSCON_I2SCLKDIV,
  577. EP93XX_SYSCON_I2SCLKDIV_SENA,
  578. EP93XX_I2SCLKDIV_SDIV_SHIFT,
  579. EP93XX_I2SCLKDIV_SDIV_WIDTH,
  580. sclk_divisors,
  581. ARRAY_SIZE(sclk_divisors));
  582. clk_hw_register_clkdev(hw, "sclk", "ep93xx-i2s");
  583. /* i2s lrclk */
  584. #define EP93XX_I2SCLKDIV_LRDIV32_SHIFT 17
  585. #define EP93XX_I2SCLKDIV_LRDIV32_WIDTH 3
  586. hw = clk_hw_register_div("lrclk",
  587. "sclk",
  588. EP93XX_SYSCON_I2SCLKDIV,
  589. EP93XX_SYSCON_I2SCLKDIV_SENA,
  590. EP93XX_I2SCLKDIV_LRDIV32_SHIFT,
  591. EP93XX_I2SCLKDIV_LRDIV32_WIDTH,
  592. lrclk_divisors,
  593. ARRAY_SIZE(lrclk_divisors));
  594. clk_hw_register_clkdev(hw, "lrclk", "ep93xx-i2s");
  595. return 0;
  596. }
  597. postcore_initcall(ep93xx_clock_init);