pgtable-3level.h 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. /* SPDX-License-Identifier: GPL-2.0-only */
  2. /*
  3. * arch/arm/include/asm/pgtable-3level.h
  4. *
  5. * Copyright (C) 2011 ARM Ltd.
  6. * Author: Catalin Marinas <[email protected]>
  7. */
  8. #ifndef _ASM_PGTABLE_3LEVEL_H
  9. #define _ASM_PGTABLE_3LEVEL_H
  10. /*
  11. * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
  12. * 8 bytes each, occupying a 4K page. The first level table covers a range of
  13. * 512GB, each entry representing 1GB. Since we are limited to 4GB input
  14. * address range, only 4 entries in the PGD are used.
  15. *
  16. * There are enough spare bits in a page table entry for the kernel specific
  17. * state.
  18. */
  19. #define PTRS_PER_PTE 512
  20. #define PTRS_PER_PMD 512
  21. #define PTRS_PER_PGD 4
  22. #define PTE_HWTABLE_PTRS (0)
  23. #define PTE_HWTABLE_OFF (0)
  24. #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
  25. #define MAX_POSSIBLE_PHYSMEM_BITS 40
  26. /*
  27. * PGDIR_SHIFT determines the size a top-level page table entry can map.
  28. */
  29. #define PGDIR_SHIFT 30
  30. /*
  31. * PMD_SHIFT determines the size a middle-level page table entry can map.
  32. */
  33. #define PMD_SHIFT 21
  34. #define PMD_SIZE (1UL << PMD_SHIFT)
  35. #define PMD_MASK (~((1 << PMD_SHIFT) - 1))
  36. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  37. #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
  38. /*
  39. * section address mask and size definitions.
  40. */
  41. #define SECTION_SHIFT 21
  42. #define SECTION_SIZE (1UL << SECTION_SHIFT)
  43. #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
  44. #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
  45. /*
  46. * Hugetlb definitions.
  47. */
  48. #define HPAGE_SHIFT PMD_SHIFT
  49. #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
  50. #define HPAGE_MASK (~(HPAGE_SIZE - 1))
  51. #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
  52. /*
  53. * "Linux" PTE definitions for LPAE.
  54. *
  55. * These bits overlap with the hardware bits but the naming is preserved for
  56. * consistency with the classic page table format.
  57. */
  58. #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
  59. #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
  60. #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
  61. #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
  62. #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
  63. #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
  64. #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
  65. #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
  66. #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
  67. #define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
  68. #define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
  69. #define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
  70. #define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
  71. #define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
  72. /*
  73. * To be used in assembly code with the upper page attributes.
  74. */
  75. #define L_PTE_XN_HIGH (1 << (54 - 32))
  76. #define L_PTE_DIRTY_HIGH (1 << (55 - 32))
  77. /*
  78. * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
  79. */
  80. #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
  81. #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
  82. #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
  83. #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
  84. #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
  85. #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
  86. #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
  87. #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
  88. #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
  89. #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
  90. /*
  91. * Software PGD flags.
  92. */
  93. #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
  94. #ifndef __ASSEMBLY__
  95. #define pud_none(pud) (!pud_val(pud))
  96. #define pud_bad(pud) (!(pud_val(pud) & 2))
  97. #define pud_present(pud) (pud_val(pud))
  98. #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
  99. PMD_TYPE_TABLE)
  100. #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
  101. PMD_TYPE_SECT)
  102. #define pmd_large(pmd) pmd_sect(pmd)
  103. #define pmd_leaf(pmd) pmd_sect(pmd)
  104. #define pud_clear(pudp) \
  105. do { \
  106. *pudp = __pud(0); \
  107. clean_pmd_entry(pudp); \
  108. } while (0)
  109. #define set_pud(pudp, pud) \
  110. do { \
  111. *pudp = pud; \
  112. flush_pmd_entry(pudp); \
  113. } while (0)
  114. static inline pmd_t *pud_pgtable(pud_t pud)
  115. {
  116. return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
  117. }
  118. #define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
  119. #define copy_pmd(pmdpd,pmdps) \
  120. do { \
  121. *pmdpd = *pmdps; \
  122. flush_pmd_entry(pmdpd); \
  123. } while (0)
  124. #define pmd_clear(pmdp) \
  125. do { \
  126. *pmdp = __pmd(0); \
  127. clean_pmd_entry(pmdp); \
  128. } while (0)
  129. /*
  130. * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
  131. * that are written to a page table but not for ptes created with mk_pte.
  132. *
  133. * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
  134. * hugetlb_cow, where it is compared with an entry in a page table.
  135. * This comparison test fails erroneously leading ultimately to a memory leak.
  136. *
  137. * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
  138. * present before running the comparison.
  139. */
  140. #define __HAVE_ARCH_PTE_SAME
  141. #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
  142. : pte_val(pte_a)) \
  143. == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
  144. : pte_val(pte_b)))
  145. #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
  146. #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
  147. #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
  148. #define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
  149. : !!(pmd_val(pmd) & (val)))
  150. #define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
  151. #define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
  152. #define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
  153. #define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
  154. static inline pte_t pte_mkspecial(pte_t pte)
  155. {
  156. pte_val(pte) |= L_PTE_SPECIAL;
  157. return pte;
  158. }
  159. #define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
  160. #define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
  161. #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
  162. #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
  163. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  164. #define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
  165. #endif
  166. #define PMD_BIT_FUNC(fn,op) \
  167. static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
  168. PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
  169. PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
  170. PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
  171. PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
  172. PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
  173. PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
  174. #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
  175. #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
  176. #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
  177. #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
  178. /* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
  179. #define pmdp_establish generic_pmdp_establish
  180. /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
  181. static inline pmd_t pmd_mkinvalid(pmd_t pmd)
  182. {
  183. return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
  184. }
  185. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  186. {
  187. const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
  188. L_PMD_SECT_VALID | L_PMD_SECT_NONE;
  189. pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
  190. return pmd;
  191. }
  192. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  193. pmd_t *pmdp, pmd_t pmd)
  194. {
  195. BUG_ON(addr >= TASK_SIZE);
  196. /* create a faulting entry if PROT_NONE protected */
  197. if (pmd_val(pmd) & L_PMD_SECT_NONE)
  198. pmd_val(pmd) &= ~L_PMD_SECT_VALID;
  199. if (pmd_write(pmd) && pmd_dirty(pmd))
  200. pmd_val(pmd) &= ~PMD_SECT_AP2;
  201. else
  202. pmd_val(pmd) |= PMD_SECT_AP2;
  203. *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
  204. flush_pmd_entry(pmdp);
  205. }
  206. #endif /* __ASSEMBLY__ */
  207. #endif /* _ASM_PGTABLE_3LEVEL_H */