aes-neonbs-glue.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Bit sliced AES using NEON instructions
  4. *
  5. * Copyright (C) 2017 Linaro Ltd <[email protected]>
  6. */
  7. #include <asm/neon.h>
  8. #include <asm/simd.h>
  9. #include <crypto/aes.h>
  10. #include <crypto/ctr.h>
  11. #include <crypto/internal/cipher.h>
  12. #include <crypto/internal/simd.h>
  13. #include <crypto/internal/skcipher.h>
  14. #include <crypto/scatterwalk.h>
  15. #include <crypto/xts.h>
  16. #include <linux/module.h>
  17. MODULE_AUTHOR("Ard Biesheuvel <[email protected]>");
  18. MODULE_LICENSE("GPL v2");
  19. MODULE_ALIAS_CRYPTO("ecb(aes)");
  20. MODULE_ALIAS_CRYPTO("cbc(aes)-all");
  21. MODULE_ALIAS_CRYPTO("ctr(aes)");
  22. MODULE_ALIAS_CRYPTO("xts(aes)");
  23. MODULE_IMPORT_NS(CRYPTO_INTERNAL);
  24. asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
  25. asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  26. int rounds, int blocks);
  27. asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  28. int rounds, int blocks);
  29. asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  30. int rounds, int blocks, u8 iv[]);
  31. asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  32. int rounds, int blocks, u8 ctr[]);
  33. asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
  34. int rounds, int blocks, u8 iv[], int);
  35. asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
  36. int rounds, int blocks, u8 iv[], int);
  37. struct aesbs_ctx {
  38. int rounds;
  39. u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
  40. };
  41. struct aesbs_cbc_ctx {
  42. struct aesbs_ctx key;
  43. struct crypto_skcipher *enc_tfm;
  44. };
  45. struct aesbs_xts_ctx {
  46. struct aesbs_ctx key;
  47. struct crypto_cipher *cts_tfm;
  48. struct crypto_cipher *tweak_tfm;
  49. };
  50. struct aesbs_ctr_ctx {
  51. struct aesbs_ctx key; /* must be first member */
  52. struct crypto_aes_ctx fallback;
  53. };
  54. static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  55. unsigned int key_len)
  56. {
  57. struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
  58. struct crypto_aes_ctx rk;
  59. int err;
  60. err = aes_expandkey(&rk, in_key, key_len);
  61. if (err)
  62. return err;
  63. ctx->rounds = 6 + key_len / 4;
  64. kernel_neon_begin();
  65. aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
  66. kernel_neon_end();
  67. return 0;
  68. }
  69. static int __ecb_crypt(struct skcipher_request *req,
  70. void (*fn)(u8 out[], u8 const in[], u8 const rk[],
  71. int rounds, int blocks))
  72. {
  73. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  74. struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
  75. struct skcipher_walk walk;
  76. int err;
  77. err = skcipher_walk_virt(&walk, req, false);
  78. while (walk.nbytes >= AES_BLOCK_SIZE) {
  79. unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
  80. if (walk.nbytes < walk.total)
  81. blocks = round_down(blocks,
  82. walk.stride / AES_BLOCK_SIZE);
  83. kernel_neon_begin();
  84. fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
  85. ctx->rounds, blocks);
  86. kernel_neon_end();
  87. err = skcipher_walk_done(&walk,
  88. walk.nbytes - blocks * AES_BLOCK_SIZE);
  89. }
  90. return err;
  91. }
  92. static int ecb_encrypt(struct skcipher_request *req)
  93. {
  94. return __ecb_crypt(req, aesbs_ecb_encrypt);
  95. }
  96. static int ecb_decrypt(struct skcipher_request *req)
  97. {
  98. return __ecb_crypt(req, aesbs_ecb_decrypt);
  99. }
  100. static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  101. unsigned int key_len)
  102. {
  103. struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
  104. struct crypto_aes_ctx rk;
  105. int err;
  106. err = aes_expandkey(&rk, in_key, key_len);
  107. if (err)
  108. return err;
  109. ctx->key.rounds = 6 + key_len / 4;
  110. kernel_neon_begin();
  111. aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
  112. kernel_neon_end();
  113. memzero_explicit(&rk, sizeof(rk));
  114. return crypto_skcipher_setkey(ctx->enc_tfm, in_key, key_len);
  115. }
  116. static int cbc_encrypt(struct skcipher_request *req)
  117. {
  118. struct skcipher_request *subreq = skcipher_request_ctx(req);
  119. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  120. struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
  121. skcipher_request_set_tfm(subreq, ctx->enc_tfm);
  122. skcipher_request_set_callback(subreq,
  123. skcipher_request_flags(req),
  124. NULL, NULL);
  125. skcipher_request_set_crypt(subreq, req->src, req->dst,
  126. req->cryptlen, req->iv);
  127. return crypto_skcipher_encrypt(subreq);
  128. }
  129. static int cbc_decrypt(struct skcipher_request *req)
  130. {
  131. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  132. struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
  133. struct skcipher_walk walk;
  134. int err;
  135. err = skcipher_walk_virt(&walk, req, false);
  136. while (walk.nbytes >= AES_BLOCK_SIZE) {
  137. unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
  138. if (walk.nbytes < walk.total)
  139. blocks = round_down(blocks,
  140. walk.stride / AES_BLOCK_SIZE);
  141. kernel_neon_begin();
  142. aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  143. ctx->key.rk, ctx->key.rounds, blocks,
  144. walk.iv);
  145. kernel_neon_end();
  146. err = skcipher_walk_done(&walk,
  147. walk.nbytes - blocks * AES_BLOCK_SIZE);
  148. }
  149. return err;
  150. }
  151. static int cbc_init(struct crypto_skcipher *tfm)
  152. {
  153. struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
  154. unsigned int reqsize;
  155. ctx->enc_tfm = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC |
  156. CRYPTO_ALG_NEED_FALLBACK);
  157. if (IS_ERR(ctx->enc_tfm))
  158. return PTR_ERR(ctx->enc_tfm);
  159. reqsize = sizeof(struct skcipher_request);
  160. reqsize += crypto_skcipher_reqsize(ctx->enc_tfm);
  161. crypto_skcipher_set_reqsize(tfm, reqsize);
  162. return 0;
  163. }
  164. static void cbc_exit(struct crypto_skcipher *tfm)
  165. {
  166. struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
  167. crypto_free_skcipher(ctx->enc_tfm);
  168. }
  169. static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
  170. unsigned int key_len)
  171. {
  172. struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
  173. int err;
  174. err = aes_expandkey(&ctx->fallback, in_key, key_len);
  175. if (err)
  176. return err;
  177. ctx->key.rounds = 6 + key_len / 4;
  178. kernel_neon_begin();
  179. aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
  180. kernel_neon_end();
  181. return 0;
  182. }
  183. static int ctr_encrypt(struct skcipher_request *req)
  184. {
  185. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  186. struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
  187. struct skcipher_walk walk;
  188. u8 buf[AES_BLOCK_SIZE];
  189. int err;
  190. err = skcipher_walk_virt(&walk, req, false);
  191. while (walk.nbytes > 0) {
  192. const u8 *src = walk.src.virt.addr;
  193. u8 *dst = walk.dst.virt.addr;
  194. int bytes = walk.nbytes;
  195. if (unlikely(bytes < AES_BLOCK_SIZE))
  196. src = dst = memcpy(buf + sizeof(buf) - bytes,
  197. src, bytes);
  198. else if (walk.nbytes < walk.total)
  199. bytes &= ~(8 * AES_BLOCK_SIZE - 1);
  200. kernel_neon_begin();
  201. aesbs_ctr_encrypt(dst, src, ctx->rk, ctx->rounds, bytes, walk.iv);
  202. kernel_neon_end();
  203. if (unlikely(bytes < AES_BLOCK_SIZE))
  204. memcpy(walk.dst.virt.addr,
  205. buf + sizeof(buf) - bytes, bytes);
  206. err = skcipher_walk_done(&walk, walk.nbytes - bytes);
  207. }
  208. return err;
  209. }
  210. static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
  211. {
  212. struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
  213. unsigned long flags;
  214. /*
  215. * Temporarily disable interrupts to avoid races where
  216. * cachelines are evicted when the CPU is interrupted
  217. * to do something else.
  218. */
  219. local_irq_save(flags);
  220. aes_encrypt(&ctx->fallback, dst, src);
  221. local_irq_restore(flags);
  222. }
  223. static int ctr_encrypt_sync(struct skcipher_request *req)
  224. {
  225. if (!crypto_simd_usable())
  226. return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
  227. return ctr_encrypt(req);
  228. }
  229. static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  230. unsigned int key_len)
  231. {
  232. struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  233. int err;
  234. err = xts_verify_key(tfm, in_key, key_len);
  235. if (err)
  236. return err;
  237. key_len /= 2;
  238. err = crypto_cipher_setkey(ctx->cts_tfm, in_key, key_len);
  239. if (err)
  240. return err;
  241. err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
  242. if (err)
  243. return err;
  244. return aesbs_setkey(tfm, in_key, key_len);
  245. }
  246. static int xts_init(struct crypto_skcipher *tfm)
  247. {
  248. struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  249. ctx->cts_tfm = crypto_alloc_cipher("aes", 0, 0);
  250. if (IS_ERR(ctx->cts_tfm))
  251. return PTR_ERR(ctx->cts_tfm);
  252. ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
  253. if (IS_ERR(ctx->tweak_tfm))
  254. crypto_free_cipher(ctx->cts_tfm);
  255. return PTR_ERR_OR_ZERO(ctx->tweak_tfm);
  256. }
  257. static void xts_exit(struct crypto_skcipher *tfm)
  258. {
  259. struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  260. crypto_free_cipher(ctx->tweak_tfm);
  261. crypto_free_cipher(ctx->cts_tfm);
  262. }
  263. static int __xts_crypt(struct skcipher_request *req, bool encrypt,
  264. void (*fn)(u8 out[], u8 const in[], u8 const rk[],
  265. int rounds, int blocks, u8 iv[], int))
  266. {
  267. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  268. struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  269. int tail = req->cryptlen % AES_BLOCK_SIZE;
  270. struct skcipher_request subreq;
  271. u8 buf[2 * AES_BLOCK_SIZE];
  272. struct skcipher_walk walk;
  273. int err;
  274. if (req->cryptlen < AES_BLOCK_SIZE)
  275. return -EINVAL;
  276. if (unlikely(tail)) {
  277. skcipher_request_set_tfm(&subreq, tfm);
  278. skcipher_request_set_callback(&subreq,
  279. skcipher_request_flags(req),
  280. NULL, NULL);
  281. skcipher_request_set_crypt(&subreq, req->src, req->dst,
  282. req->cryptlen - tail, req->iv);
  283. req = &subreq;
  284. }
  285. err = skcipher_walk_virt(&walk, req, true);
  286. if (err)
  287. return err;
  288. crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
  289. while (walk.nbytes >= AES_BLOCK_SIZE) {
  290. unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
  291. int reorder_last_tweak = !encrypt && tail > 0;
  292. if (walk.nbytes < walk.total) {
  293. blocks = round_down(blocks,
  294. walk.stride / AES_BLOCK_SIZE);
  295. reorder_last_tweak = 0;
  296. }
  297. kernel_neon_begin();
  298. fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
  299. ctx->key.rounds, blocks, walk.iv, reorder_last_tweak);
  300. kernel_neon_end();
  301. err = skcipher_walk_done(&walk,
  302. walk.nbytes - blocks * AES_BLOCK_SIZE);
  303. }
  304. if (err || likely(!tail))
  305. return err;
  306. /* handle ciphertext stealing */
  307. scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
  308. AES_BLOCK_SIZE, 0);
  309. memcpy(buf + AES_BLOCK_SIZE, buf, tail);
  310. scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0);
  311. crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
  312. if (encrypt)
  313. crypto_cipher_encrypt_one(ctx->cts_tfm, buf, buf);
  314. else
  315. crypto_cipher_decrypt_one(ctx->cts_tfm, buf, buf);
  316. crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
  317. scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
  318. AES_BLOCK_SIZE + tail, 1);
  319. return 0;
  320. }
  321. static int xts_encrypt(struct skcipher_request *req)
  322. {
  323. return __xts_crypt(req, true, aesbs_xts_encrypt);
  324. }
  325. static int xts_decrypt(struct skcipher_request *req)
  326. {
  327. return __xts_crypt(req, false, aesbs_xts_decrypt);
  328. }
  329. static struct skcipher_alg aes_algs[] = { {
  330. .base.cra_name = "__ecb(aes)",
  331. .base.cra_driver_name = "__ecb-aes-neonbs",
  332. .base.cra_priority = 250,
  333. .base.cra_blocksize = AES_BLOCK_SIZE,
  334. .base.cra_ctxsize = sizeof(struct aesbs_ctx),
  335. .base.cra_module = THIS_MODULE,
  336. .base.cra_flags = CRYPTO_ALG_INTERNAL,
  337. .min_keysize = AES_MIN_KEY_SIZE,
  338. .max_keysize = AES_MAX_KEY_SIZE,
  339. .walksize = 8 * AES_BLOCK_SIZE,
  340. .setkey = aesbs_setkey,
  341. .encrypt = ecb_encrypt,
  342. .decrypt = ecb_decrypt,
  343. }, {
  344. .base.cra_name = "__cbc(aes)",
  345. .base.cra_driver_name = "__cbc-aes-neonbs",
  346. .base.cra_priority = 250,
  347. .base.cra_blocksize = AES_BLOCK_SIZE,
  348. .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
  349. .base.cra_module = THIS_MODULE,
  350. .base.cra_flags = CRYPTO_ALG_INTERNAL |
  351. CRYPTO_ALG_NEED_FALLBACK,
  352. .min_keysize = AES_MIN_KEY_SIZE,
  353. .max_keysize = AES_MAX_KEY_SIZE,
  354. .walksize = 8 * AES_BLOCK_SIZE,
  355. .ivsize = AES_BLOCK_SIZE,
  356. .setkey = aesbs_cbc_setkey,
  357. .encrypt = cbc_encrypt,
  358. .decrypt = cbc_decrypt,
  359. .init = cbc_init,
  360. .exit = cbc_exit,
  361. }, {
  362. .base.cra_name = "__ctr(aes)",
  363. .base.cra_driver_name = "__ctr-aes-neonbs",
  364. .base.cra_priority = 250,
  365. .base.cra_blocksize = 1,
  366. .base.cra_ctxsize = sizeof(struct aesbs_ctx),
  367. .base.cra_module = THIS_MODULE,
  368. .base.cra_flags = CRYPTO_ALG_INTERNAL,
  369. .min_keysize = AES_MIN_KEY_SIZE,
  370. .max_keysize = AES_MAX_KEY_SIZE,
  371. .chunksize = AES_BLOCK_SIZE,
  372. .walksize = 8 * AES_BLOCK_SIZE,
  373. .ivsize = AES_BLOCK_SIZE,
  374. .setkey = aesbs_setkey,
  375. .encrypt = ctr_encrypt,
  376. .decrypt = ctr_encrypt,
  377. }, {
  378. .base.cra_name = "ctr(aes)",
  379. .base.cra_driver_name = "ctr-aes-neonbs-sync",
  380. .base.cra_priority = 250 - 1,
  381. .base.cra_blocksize = 1,
  382. .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
  383. .base.cra_module = THIS_MODULE,
  384. .min_keysize = AES_MIN_KEY_SIZE,
  385. .max_keysize = AES_MAX_KEY_SIZE,
  386. .chunksize = AES_BLOCK_SIZE,
  387. .walksize = 8 * AES_BLOCK_SIZE,
  388. .ivsize = AES_BLOCK_SIZE,
  389. .setkey = aesbs_ctr_setkey_sync,
  390. .encrypt = ctr_encrypt_sync,
  391. .decrypt = ctr_encrypt_sync,
  392. }, {
  393. .base.cra_name = "__xts(aes)",
  394. .base.cra_driver_name = "__xts-aes-neonbs",
  395. .base.cra_priority = 250,
  396. .base.cra_blocksize = AES_BLOCK_SIZE,
  397. .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
  398. .base.cra_module = THIS_MODULE,
  399. .base.cra_flags = CRYPTO_ALG_INTERNAL,
  400. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  401. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  402. .walksize = 8 * AES_BLOCK_SIZE,
  403. .ivsize = AES_BLOCK_SIZE,
  404. .setkey = aesbs_xts_setkey,
  405. .encrypt = xts_encrypt,
  406. .decrypt = xts_decrypt,
  407. .init = xts_init,
  408. .exit = xts_exit,
  409. } };
  410. static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
  411. static void aes_exit(void)
  412. {
  413. int i;
  414. for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
  415. if (aes_simd_algs[i])
  416. simd_skcipher_free(aes_simd_algs[i]);
  417. crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  418. }
  419. static int __init aes_init(void)
  420. {
  421. struct simd_skcipher_alg *simd;
  422. const char *basename;
  423. const char *algname;
  424. const char *drvname;
  425. int err;
  426. int i;
  427. if (!(elf_hwcap & HWCAP_NEON))
  428. return -ENODEV;
  429. err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  430. if (err)
  431. return err;
  432. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  433. if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
  434. continue;
  435. algname = aes_algs[i].base.cra_name + 2;
  436. drvname = aes_algs[i].base.cra_driver_name + 2;
  437. basename = aes_algs[i].base.cra_driver_name;
  438. simd = simd_skcipher_create_compat(algname, drvname, basename);
  439. err = PTR_ERR(simd);
  440. if (IS_ERR(simd))
  441. goto unregister_simds;
  442. aes_simd_algs[i] = simd;
  443. }
  444. return 0;
  445. unregister_simds:
  446. aes_exit();
  447. return err;
  448. }
  449. late_initcall(aes_init);
  450. module_exit(aes_exit);