ev6-csum_ipv6_magic.S 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /*
  3. * arch/alpha/lib/ev6-csum_ipv6_magic.S
  4. * 21264 version contributed by Rick Gorton <[email protected]>
  5. *
  6. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  7. * struct in6_addr *daddr,
  8. * __u32 len,
  9. * unsigned short proto,
  10. * unsigned int csum);
  11. *
  12. * Much of the information about 21264 scheduling/coding comes from:
  13. * Compiler Writer's Guide for the Alpha 21264
  14. * abbreviated as 'CWG' in other comments here
  15. * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
  16. * Scheduling notation:
  17. * E - either cluster
  18. * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
  19. * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
  20. * Try not to change the actual algorithm if possible for consistency.
  21. * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
  22. *
  23. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  24. * struct in6_addr *daddr,
  25. * __u32 len,
  26. * unsigned short proto,
  27. * unsigned int csum);
  28. *
  29. * Swap <proto> (takes form 0xaabb)
  30. * Then shift it left by 48, so result is:
  31. * 0xbbaa0000 00000000
  32. * Then turn it back into a sign extended 32-bit item
  33. * 0xbbaa0000
  34. *
  35. * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
  36. * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
  37. * Assume input takes form 0xAABBCCDD
  38. *
  39. * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
  40. * add 4 ushorts, resulting in ushort/carry
  41. * add carry bits + ushort --> ushort
  42. * add carry bits + ushort --> ushort (in case the carry results in an overflow)
  43. * Truncate to a ushort. (took 13 instructions)
  44. * From doing some testing, using the approach in checksum.c:from64to16()
  45. * results in the same outcome:
  46. * split into 2 uints, add those, generating a ulong
  47. * add the 3 low ushorts together, generating a uint
  48. * a final add of the 2 lower ushorts
  49. * truncating the result.
  50. *
  51. * Misalignment handling added by Ivan Kokshaysky <[email protected]>
  52. * The cost is 16 instructions (~8 cycles), including two extra loads which
  53. * may cause additional delay in rare cases (load-load replay traps).
  54. */
  55. #include <asm/export.h>
  56. .globl csum_ipv6_magic
  57. .align 4
  58. .ent csum_ipv6_magic
  59. .frame $30,0,$26,0
  60. csum_ipv6_magic:
  61. .prologue 0
  62. ldq_u $0,0($16) # L : Latency: 3
  63. inslh $18,7,$4 # U : 0000000000AABBCC
  64. ldq_u $1,8($16) # L : Latency: 3
  65. sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00
  66. and $16,7,$6 # E : src misalignment
  67. ldq_u $5,15($16) # L : Latency: 3
  68. zapnot $20,15,$20 # U : zero extend incoming csum
  69. ldq_u $2,0($17) # L : U L U L : Latency: 3
  70. extql $0,$6,$0 # U :
  71. extqh $1,$6,$22 # U :
  72. ldq_u $3,8($17) # L : Latency: 3
  73. sll $19,24,$19 # U : U U L U : 0x000000aa bb000000
  74. cmoveq $6,$31,$22 # E : src aligned?
  75. ldq_u $23,15($17) # L : Latency: 3
  76. inswl $18,3,$18 # U : 000000CCDD000000
  77. addl $19,$7,$19 # E : U L U L : <sign bits>bbaabb00
  78. or $0,$22,$0 # E : 1st src word complete
  79. extql $1,$6,$1 # U :
  80. or $18,$4,$18 # E : 000000CCDDAABBCC
  81. extqh $5,$6,$5 # U : L U L U
  82. and $17,7,$6 # E : dst misalignment
  83. extql $2,$6,$2 # U :
  84. or $1,$5,$1 # E : 2nd src word complete
  85. extqh $3,$6,$22 # U : L U L U :
  86. cmoveq $6,$31,$22 # E : dst aligned?
  87. extql $3,$6,$3 # U :
  88. addq $20,$0,$20 # E : begin summing the words
  89. extqh $23,$6,$23 # U : L U L U :
  90. srl $18,16,$4 # U : 0000000000CCDDAA
  91. or $2,$22,$2 # E : 1st dst word complete
  92. zap $19,0x3,$19 # U : <sign bits>bbaa0000
  93. or $3,$23,$3 # E : U L U L : 2nd dst word complete
  94. cmpult $20,$0,$0 # E :
  95. addq $20,$1,$20 # E :
  96. zapnot $18,0xa,$18 # U : 00000000DD00BB00
  97. zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA
  98. or $18,$4,$18 # E : 00000000DDCCBBAA
  99. nop # E :
  100. cmpult $20,$1,$1 # E :
  101. addq $20,$2,$20 # E : U L U L
  102. cmpult $20,$2,$2 # E :
  103. addq $20,$3,$20 # E :
  104. cmpult $20,$3,$3 # E : (1 cycle stall on $20)
  105. addq $20,$18,$20 # E : U L U L (1 cycle stall on $20)
  106. cmpult $20,$18,$18 # E :
  107. addq $20,$19,$20 # E : (1 cycle stall on $20)
  108. addq $0,$1,$0 # E : merge the carries back into the csum
  109. addq $2,$3,$2 # E :
  110. cmpult $20,$19,$19 # E :
  111. addq $18,$19,$18 # E : (1 cycle stall on $19)
  112. addq $0,$2,$0 # E :
  113. addq $20,$18,$20 # E : U L U L :
  114. /* (1 cycle stall on $18, 2 cycles on $20) */
  115. addq $0,$20,$0 # E :
  116. zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0)
  117. nop # E :
  118. srl $0,32,$0 # U : U L U L : (1 cycle stall on $0)
  119. addq $1,$0,$1 # E : Finished generating ulong
  120. extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1)
  121. zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1)
  122. extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1)
  123. addq $0,$2,$0 # E
  124. addq $0,$1,$3 # E : Finished generating uint
  125. /* (1 cycle stall on $0) */
  126. extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3)
  127. nop # E : L U L U
  128. addq $1,$3,$0 # E : Final carry
  129. not $0,$4 # E : complement (1 cycle stall on $0)
  130. zapnot $4,3,$0 # U : clear upper garbage bits
  131. /* (1 cycle stall on $4) */
  132. ret # L0 : L U L U
  133. .end csum_ipv6_magic
  134. EXPORT_SYMBOL(csum_ipv6_magic)