Kconfig 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798
  1. # SPDX-License-Identifier: GPL-2.0
  2. config XTENSA
  3. def_bool y
  4. select ARCH_32BIT_OFF_T
  5. select ARCH_HAS_BINFMT_FLAT if !MMU
  6. select ARCH_HAS_CURRENT_STACK_POINTER
  7. select ARCH_HAS_DEBUG_VM_PGTABLE
  8. select ARCH_HAS_DMA_PREP_COHERENT if MMU
  9. select ARCH_HAS_GCOV_PROFILE_ALL
  10. select ARCH_HAS_KCOV
  11. select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
  12. select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
  13. select ARCH_HAS_DMA_SET_UNCACHED if MMU
  14. select ARCH_HAS_STRNCPY_FROM_USER if !KASAN
  15. select ARCH_HAS_STRNLEN_USER
  16. select ARCH_USE_MEMTEST
  17. select ARCH_USE_QUEUED_RWLOCKS
  18. select ARCH_USE_QUEUED_SPINLOCKS
  19. select ARCH_WANT_FRAME_POINTERS
  20. select ARCH_WANT_IPC_PARSE_VERSION
  21. select BUILDTIME_TABLE_SORT
  22. select CLONE_BACKWARDS
  23. select COMMON_CLK
  24. select DMA_NONCOHERENT_MMAP if MMU
  25. select GENERIC_ATOMIC64
  26. select GENERIC_IRQ_SHOW
  27. select GENERIC_LIB_CMPDI2
  28. select GENERIC_LIB_MULDI3
  29. select GENERIC_LIB_UCMPDI2
  30. select GENERIC_PCI_IOMAP
  31. select GENERIC_SCHED_CLOCK
  32. select HAVE_ARCH_AUDITSYSCALL
  33. select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
  34. select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
  35. select HAVE_ARCH_KCSAN
  36. select HAVE_ARCH_SECCOMP_FILTER
  37. select HAVE_ARCH_TRACEHOOK
  38. select HAVE_CONTEXT_TRACKING_USER
  39. select HAVE_DEBUG_KMEMLEAK
  40. select HAVE_DMA_CONTIGUOUS
  41. select HAVE_EXIT_THREAD
  42. select HAVE_FUNCTION_TRACER
  43. select HAVE_GCC_PLUGINS if GCC_VERSION >= 120000
  44. select HAVE_HW_BREAKPOINT if PERF_EVENTS
  45. select HAVE_IRQ_TIME_ACCOUNTING
  46. select HAVE_PCI
  47. select HAVE_PERF_EVENTS
  48. select HAVE_STACKPROTECTOR
  49. select HAVE_SYSCALL_TRACEPOINTS
  50. select HAVE_VIRT_CPU_ACCOUNTING_GEN
  51. select IRQ_DOMAIN
  52. select LOCK_MM_AND_FIND_VMA
  53. select MODULES_USE_ELF_RELA
  54. select PERF_USE_VMALLOC
  55. select TRACE_IRQFLAGS_SUPPORT
  56. help
  57. Xtensa processors are 32-bit RISC machines designed by Tensilica
  58. primarily for embedded systems. These processors are both
  59. configurable and extensible. The Linux port to the Xtensa
  60. architecture supports all processor configurations and extensions,
  61. with reasonable minimum requirements. The Xtensa Linux project has
  62. a home page at <http://www.linux-xtensa.org/>.
  63. config GENERIC_HWEIGHT
  64. def_bool y
  65. config ARCH_HAS_ILOG2_U32
  66. def_bool n
  67. config ARCH_HAS_ILOG2_U64
  68. def_bool n
  69. config NO_IOPORT_MAP
  70. def_bool n
  71. config HZ
  72. int
  73. default 100
  74. config LOCKDEP_SUPPORT
  75. def_bool y
  76. config STACKTRACE_SUPPORT
  77. def_bool y
  78. config MMU
  79. def_bool n
  80. select PFAULT
  81. config HAVE_XTENSA_GPIO32
  82. def_bool n
  83. config KASAN_SHADOW_OFFSET
  84. hex
  85. default 0x6e400000
  86. config CPU_BIG_ENDIAN
  87. def_bool $(success,test "$(shell,echo __XTENSA_EB__ | $(CC) -E -P -)" = 1)
  88. config CPU_LITTLE_ENDIAN
  89. def_bool !CPU_BIG_ENDIAN
  90. config CC_HAVE_CALL0_ABI
  91. def_bool $(success,test "$(shell,echo __XTENSA_CALL0_ABI__ | $(CC) -mabi=call0 -E -P - 2>/dev/null)" = 1)
  92. menu "Processor type and features"
  93. choice
  94. prompt "Xtensa Processor Configuration"
  95. default XTENSA_VARIANT_FSF
  96. config XTENSA_VARIANT_FSF
  97. bool "fsf - default (not generic) configuration"
  98. select MMU
  99. config XTENSA_VARIANT_DC232B
  100. bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
  101. select MMU
  102. select HAVE_XTENSA_GPIO32
  103. help
  104. This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
  105. config XTENSA_VARIANT_DC233C
  106. bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
  107. select MMU
  108. select HAVE_XTENSA_GPIO32
  109. help
  110. This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
  111. config XTENSA_VARIANT_CUSTOM
  112. bool "Custom Xtensa processor configuration"
  113. select HAVE_XTENSA_GPIO32
  114. help
  115. Select this variant to use a custom Xtensa processor configuration.
  116. You will be prompted for a processor variant CORENAME.
  117. endchoice
  118. config XTENSA_VARIANT_CUSTOM_NAME
  119. string "Xtensa Processor Custom Core Variant Name"
  120. depends on XTENSA_VARIANT_CUSTOM
  121. help
  122. Provide the name of a custom Xtensa processor variant.
  123. This CORENAME selects arch/xtensa/variant/CORENAME.
  124. Don't forget you have to select MMU if you have one.
  125. config XTENSA_VARIANT_NAME
  126. string
  127. default "dc232b" if XTENSA_VARIANT_DC232B
  128. default "dc233c" if XTENSA_VARIANT_DC233C
  129. default "fsf" if XTENSA_VARIANT_FSF
  130. default XTENSA_VARIANT_CUSTOM_NAME if XTENSA_VARIANT_CUSTOM
  131. config XTENSA_VARIANT_MMU
  132. bool "Core variant has a Full MMU (TLB, Pages, Protection, etc)"
  133. depends on XTENSA_VARIANT_CUSTOM
  134. default y
  135. select MMU
  136. help
  137. Build a Conventional Kernel with full MMU support,
  138. ie: it supports a TLB with auto-loading, page protection.
  139. config XTENSA_VARIANT_HAVE_PERF_EVENTS
  140. bool "Core variant has Performance Monitor Module"
  141. depends on XTENSA_VARIANT_CUSTOM
  142. default n
  143. help
  144. Enable if core variant has Performance Monitor Module with
  145. External Registers Interface.
  146. If unsure, say N.
  147. config XTENSA_FAKE_NMI
  148. bool "Treat PMM IRQ as NMI"
  149. depends on XTENSA_VARIANT_HAVE_PERF_EVENTS
  150. default n
  151. help
  152. If PMM IRQ is the only IRQ at EXCM level it is safe to
  153. treat it as NMI, which improves accuracy of profiling.
  154. If there are other interrupts at or above PMM IRQ priority level
  155. but not above the EXCM level, PMM IRQ still may be treated as NMI,
  156. but only if these IRQs are not used. There will be a build warning
  157. saying that this is not safe, and a bugcheck if one of these IRQs
  158. actually fire.
  159. If unsure, say N.
  160. config PFAULT
  161. bool "Handle protection faults" if EXPERT && !MMU
  162. default y
  163. help
  164. Handle protection faults. MMU configurations must enable it.
  165. noMMU configurations may disable it if used memory map never
  166. generates protection faults or faults are always fatal.
  167. If unsure, say Y.
  168. config XTENSA_UNALIGNED_USER
  169. bool "Unaligned memory access in user space"
  170. help
  171. The Xtensa architecture currently does not handle unaligned
  172. memory accesses in hardware but through an exception handler.
  173. Per default, unaligned memory accesses are disabled in user space.
  174. Say Y here to enable unaligned memory access in user space.
  175. config HAVE_SMP
  176. bool "System Supports SMP (MX)"
  177. depends on XTENSA_VARIANT_CUSTOM
  178. select XTENSA_MX
  179. help
  180. This option is used to indicate that the system-on-a-chip (SOC)
  181. supports Multiprocessing. Multiprocessor support implemented above
  182. the CPU core definition and currently needs to be selected manually.
  183. Multiprocessor support is implemented with external cache and
  184. interrupt controllers.
  185. The MX interrupt distributer adds Interprocessor Interrupts
  186. and causes the IRQ numbers to be increased by 4 for devices
  187. like the open cores ethernet driver and the serial interface.
  188. You still have to select "Enable SMP" to enable SMP on this SOC.
  189. config SMP
  190. bool "Enable Symmetric multi-processing support"
  191. depends on HAVE_SMP
  192. select GENERIC_SMP_IDLE_THREAD
  193. help
  194. Enabled SMP Software; allows more than one CPU/CORE
  195. to be activated during startup.
  196. config NR_CPUS
  197. depends on SMP
  198. int "Maximum number of CPUs (2-32)"
  199. range 2 32
  200. default "4"
  201. config HOTPLUG_CPU
  202. bool "Enable CPU hotplug support"
  203. depends on SMP
  204. help
  205. Say Y here to allow turning CPUs off and on. CPUs can be
  206. controlled through /sys/devices/system/cpu.
  207. Say N if you want to disable CPU hotplug.
  208. config SECONDARY_RESET_VECTOR
  209. bool "Secondary cores use alternative reset vector"
  210. default y
  211. depends on HAVE_SMP
  212. help
  213. Secondary cores may be configured to use alternative reset vector,
  214. or all cores may use primary reset vector.
  215. Say Y here to supply handler for the alternative reset location.
  216. config FAST_SYSCALL_XTENSA
  217. bool "Enable fast atomic syscalls"
  218. default n
  219. help
  220. fast_syscall_xtensa is a syscall that can make atomic operations
  221. on UP kernel when processor has no s32c1i support.
  222. This syscall is deprecated. It may have issues when called with
  223. invalid arguments. It is provided only for backwards compatibility.
  224. Only enable it if your userspace software requires it.
  225. If unsure, say N.
  226. config FAST_SYSCALL_SPILL_REGISTERS
  227. bool "Enable spill registers syscall"
  228. default n
  229. help
  230. fast_syscall_spill_registers is a syscall that spills all active
  231. register windows of a calling userspace task onto its stack.
  232. This syscall is deprecated. It may have issues when called with
  233. invalid arguments. It is provided only for backwards compatibility.
  234. Only enable it if your userspace software requires it.
  235. If unsure, say N.
  236. choice
  237. prompt "Kernel ABI"
  238. default KERNEL_ABI_DEFAULT
  239. help
  240. Select ABI for the kernel code. This ABI is independent of the
  241. supported userspace ABI and any combination of the
  242. kernel/userspace ABI is possible and should work.
  243. In case both kernel and userspace support only call0 ABI
  244. all register windows support code will be omitted from the
  245. build.
  246. If unsure, choose the default ABI.
  247. config KERNEL_ABI_DEFAULT
  248. bool "Default ABI"
  249. help
  250. Select this option to compile kernel code with the default ABI
  251. selected for the toolchain.
  252. Normally cores with windowed registers option use windowed ABI and
  253. cores without it use call0 ABI.
  254. config KERNEL_ABI_CALL0
  255. bool "Call0 ABI" if CC_HAVE_CALL0_ABI
  256. help
  257. Select this option to compile kernel code with call0 ABI even with
  258. toolchain that defaults to windowed ABI.
  259. When this option is not selected the default toolchain ABI will
  260. be used for the kernel code.
  261. endchoice
  262. config USER_ABI_CALL0
  263. bool
  264. choice
  265. prompt "Userspace ABI"
  266. default USER_ABI_DEFAULT
  267. help
  268. Select supported userspace ABI.
  269. If unsure, choose the default ABI.
  270. config USER_ABI_DEFAULT
  271. bool "Default ABI only"
  272. help
  273. Assume default userspace ABI. For XEA2 cores it is windowed ABI.
  274. call0 ABI binaries may be run on such kernel, but signal delivery
  275. will not work correctly for them.
  276. config USER_ABI_CALL0_ONLY
  277. bool "Call0 ABI only"
  278. select USER_ABI_CALL0
  279. help
  280. Select this option to support only call0 ABI in userspace.
  281. Windowed ABI binaries will crash with a segfault caused by
  282. an illegal instruction exception on the first 'entry' opcode.
  283. Choose this option if you're planning to run only user code
  284. built with call0 ABI.
  285. config USER_ABI_CALL0_PROBE
  286. bool "Support both windowed and call0 ABI by probing"
  287. select USER_ABI_CALL0
  288. help
  289. Select this option to support both windowed and call0 userspace
  290. ABIs. When enabled all processes are started with PS.WOE disabled
  291. and a fast user exception handler for an illegal instruction is
  292. used to turn on PS.WOE bit on the first 'entry' opcode executed by
  293. the userspace.
  294. This option should be enabled for the kernel that must support
  295. both call0 and windowed ABIs in userspace at the same time.
  296. Note that Xtensa ISA does not guarantee that entry opcode will
  297. raise an illegal instruction exception on cores with XEA2 when
  298. PS.WOE is disabled, check whether the target core supports it.
  299. endchoice
  300. endmenu
  301. config XTENSA_CALIBRATE_CCOUNT
  302. def_bool n
  303. help
  304. On some platforms (XT2000, for example), the CPU clock rate can
  305. vary. The frequency can be determined, however, by measuring
  306. against a well known, fixed frequency, such as an UART oscillator.
  307. config SERIAL_CONSOLE
  308. def_bool n
  309. config PLATFORM_HAVE_XIP
  310. def_bool n
  311. menu "Platform options"
  312. choice
  313. prompt "Xtensa System Type"
  314. default XTENSA_PLATFORM_ISS
  315. config XTENSA_PLATFORM_ISS
  316. bool "ISS"
  317. select XTENSA_CALIBRATE_CCOUNT
  318. select SERIAL_CONSOLE
  319. help
  320. ISS is an acronym for Tensilica's Instruction Set Simulator.
  321. config XTENSA_PLATFORM_XT2000
  322. bool "XT2000"
  323. help
  324. XT2000 is the name of Tensilica's feature-rich emulation platform.
  325. This hardware is capable of running a full Linux distribution.
  326. config XTENSA_PLATFORM_XTFPGA
  327. bool "XTFPGA"
  328. select ETHOC if ETHERNET
  329. select PLATFORM_WANT_DEFAULT_MEM if !MMU
  330. select SERIAL_CONSOLE
  331. select XTENSA_CALIBRATE_CCOUNT
  332. select PLATFORM_HAVE_XIP
  333. help
  334. XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
  335. This hardware is capable of running a full Linux distribution.
  336. endchoice
  337. config PLATFORM_NR_IRQS
  338. int
  339. default 3 if XTENSA_PLATFORM_XT2000
  340. default 0
  341. config XTENSA_CPU_CLOCK
  342. int "CPU clock rate [MHz]"
  343. depends on !XTENSA_CALIBRATE_CCOUNT
  344. default 16
  345. config GENERIC_CALIBRATE_DELAY
  346. bool "Auto calibration of the BogoMIPS value"
  347. help
  348. The BogoMIPS value can easily be derived from the CPU frequency.
  349. config CMDLINE_BOOL
  350. bool "Default bootloader kernel arguments"
  351. config CMDLINE
  352. string "Initial kernel command string"
  353. depends on CMDLINE_BOOL
  354. default "console=ttyS0,38400 root=/dev/ram"
  355. help
  356. On some architectures (EBSA110 and CATS), there is currently no way
  357. for the boot loader to pass arguments to the kernel. For these
  358. architectures, you should supply some command-line options at build
  359. time by entering them here. As a minimum, you should specify the
  360. memory size and the root device (e.g., mem=64M root=/dev/nfs).
  361. config USE_OF
  362. bool "Flattened Device Tree support"
  363. select OF
  364. select OF_EARLY_FLATTREE
  365. help
  366. Include support for flattened device tree machine descriptions.
  367. config BUILTIN_DTB_SOURCE
  368. string "DTB to build into the kernel image"
  369. depends on OF
  370. config PARSE_BOOTPARAM
  371. bool "Parse bootparam block"
  372. default y
  373. help
  374. Parse parameters passed to the kernel from the bootloader. It may
  375. be disabled if the kernel is known to run without the bootloader.
  376. If unsure, say Y.
  377. choice
  378. prompt "Semihosting interface"
  379. default XTENSA_SIMCALL_ISS
  380. depends on XTENSA_PLATFORM_ISS
  381. help
  382. Choose semihosting interface that will be used for serial port,
  383. block device and networking.
  384. config XTENSA_SIMCALL_ISS
  385. bool "simcall"
  386. help
  387. Use simcall instruction. simcall is only available on simulators,
  388. it does nothing on hardware.
  389. config XTENSA_SIMCALL_GDBIO
  390. bool "GDBIO"
  391. help
  392. Use break instruction. It is available on real hardware when GDB
  393. is attached to it via JTAG.
  394. endchoice
  395. config BLK_DEV_SIMDISK
  396. tristate "Host file-based simulated block device support"
  397. default n
  398. depends on XTENSA_PLATFORM_ISS && BLOCK
  399. help
  400. Create block devices that map to files in the host file system.
  401. Device binding to host file may be changed at runtime via proc
  402. interface provided the device is not in use.
  403. config BLK_DEV_SIMDISK_COUNT
  404. int "Number of host file-based simulated block devices"
  405. range 1 10
  406. depends on BLK_DEV_SIMDISK
  407. default 2
  408. help
  409. This is the default minimal number of created block devices.
  410. Kernel/module parameter 'simdisk_count' may be used to change this
  411. value at runtime. More file names (but no more than 10) may be
  412. specified as parameters, simdisk_count grows accordingly.
  413. config SIMDISK0_FILENAME
  414. string "Host filename for the first simulated device"
  415. depends on BLK_DEV_SIMDISK = y
  416. default ""
  417. help
  418. Attach a first simdisk to a host file. Conventionally, this file
  419. contains a root file system.
  420. config SIMDISK1_FILENAME
  421. string "Host filename for the second simulated device"
  422. depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
  423. default ""
  424. help
  425. Another simulated disk in a host file for a buildroot-independent
  426. storage.
  427. config XTFPGA_LCD
  428. bool "Enable XTFPGA LCD driver"
  429. depends on XTENSA_PLATFORM_XTFPGA
  430. default n
  431. help
  432. There's a 2x16 LCD on most of XTFPGA boards, kernel may output
  433. progress messages there during bootup/shutdown. It may be useful
  434. during board bringup.
  435. If unsure, say N.
  436. config XTFPGA_LCD_BASE_ADDR
  437. hex "XTFPGA LCD base address"
  438. depends on XTFPGA_LCD
  439. default "0x0d0c0000"
  440. help
  441. Base address of the LCD controller inside KIO region.
  442. Different boards from XTFPGA family have LCD controller at different
  443. addresses. Please consult prototyping user guide for your board for
  444. the correct address. Wrong address here may lead to hardware lockup.
  445. config XTFPGA_LCD_8BIT_ACCESS
  446. bool "Use 8-bit access to XTFPGA LCD"
  447. depends on XTFPGA_LCD
  448. default n
  449. help
  450. LCD may be connected with 4- or 8-bit interface, 8-bit access may
  451. only be used with 8-bit interface. Please consult prototyping user
  452. guide for your board for the correct interface width.
  453. comment "Kernel memory layout"
  454. config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
  455. bool "Initialize Xtensa MMU inside the Linux kernel code"
  456. depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
  457. default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
  458. help
  459. Earlier version initialized the MMU in the exception vector
  460. before jumping to _startup in head.S and had an advantage that
  461. it was possible to place a software breakpoint at 'reset' and
  462. then enter your normal kernel breakpoints once the MMU was mapped
  463. to the kernel mappings (0XC0000000).
  464. This unfortunately won't work for U-Boot and likely also won't
  465. work for using KEXEC to have a hot kernel ready for doing a
  466. KDUMP.
  467. So now the MMU is initialized in head.S but it's necessary to
  468. use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
  469. xt-gdb can't place a Software Breakpoint in the 0XD region prior
  470. to mapping the MMU and after mapping even if the area of low memory
  471. was mapped gdb wouldn't remove the breakpoint on hitting it as the
  472. PC wouldn't match. Since Hardware Breakpoints are recommended for
  473. Linux configurations it seems reasonable to just assume they exist
  474. and leave this older mechanism for unfortunate souls that choose
  475. not to follow Tensilica's recommendation.
  476. Selecting this will cause U-Boot to set the KERNEL Load and Entry
  477. address at 0x00003000 instead of the mapped std of 0xD0003000.
  478. If in doubt, say Y.
  479. config XIP_KERNEL
  480. bool "Kernel Execute-In-Place from ROM"
  481. depends on PLATFORM_HAVE_XIP
  482. help
  483. Execute-In-Place allows the kernel to run from non-volatile storage
  484. directly addressable by the CPU, such as NOR flash. This saves RAM
  485. space since the text section of the kernel is not loaded from flash
  486. to RAM. Read-write sections, such as the data section and stack,
  487. are still copied to RAM. The XIP kernel is not compressed since
  488. it has to run directly from flash, so it will take more space to
  489. store it. The flash address used to link the kernel object files,
  490. and for storing it, is configuration dependent. Therefore, if you
  491. say Y here, you must know the proper physical address where to
  492. store the kernel image depending on your own flash memory usage.
  493. Also note that the make target becomes "make xipImage" rather than
  494. "make Image" or "make uImage". The final kernel binary to put in
  495. ROM memory will be arch/xtensa/boot/xipImage.
  496. If unsure, say N.
  497. config MEMMAP_CACHEATTR
  498. hex "Cache attributes for the memory address space"
  499. depends on !MMU
  500. default 0x22222222
  501. help
  502. These cache attributes are set up for noMMU systems. Each hex digit
  503. specifies cache attributes for the corresponding 512MB memory
  504. region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
  505. bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
  506. Cache attribute values are specific for the MMU type.
  507. For region protection MMUs:
  508. 1: WT cached,
  509. 2: cache bypass,
  510. 4: WB cached,
  511. f: illegal.
  512. For full MMU:
  513. bit 0: executable,
  514. bit 1: writable,
  515. bits 2..3:
  516. 0: cache bypass,
  517. 1: WB cache,
  518. 2: WT cache,
  519. 3: special (c and e are illegal, f is reserved).
  520. For MPU:
  521. 0: illegal,
  522. 1: WB cache,
  523. 2: WB, no-write-allocate cache,
  524. 3: WT cache,
  525. 4: cache bypass.
  526. config KSEG_PADDR
  527. hex "Physical address of the KSEG mapping"
  528. depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
  529. default 0x00000000
  530. help
  531. This is the physical address where KSEG is mapped. Please refer to
  532. the chosen KSEG layout help for the required address alignment.
  533. Unpacked kernel image (including vectors) must be located completely
  534. within KSEG.
  535. Physical memory below this address is not available to linux.
  536. If unsure, leave the default value here.
  537. config KERNEL_VIRTUAL_ADDRESS
  538. hex "Kernel virtual address"
  539. depends on MMU && XIP_KERNEL
  540. default 0xd0003000
  541. help
  542. This is the virtual address where the XIP kernel is mapped.
  543. XIP kernel may be mapped into KSEG or KIO region, virtual address
  544. provided here must match kernel load address provided in
  545. KERNEL_LOAD_ADDRESS.
  546. config KERNEL_LOAD_ADDRESS
  547. hex "Kernel load address"
  548. default 0x60003000 if !MMU
  549. default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
  550. default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
  551. help
  552. This is the address where the kernel is loaded.
  553. It is virtual address for MMUv2 configurations and physical address
  554. for all other configurations.
  555. If unsure, leave the default value here.
  556. choice
  557. prompt "Relocatable vectors location"
  558. default XTENSA_VECTORS_IN_TEXT
  559. help
  560. Choose whether relocatable vectors are merged into the kernel .text
  561. or placed separately at runtime. This option does not affect
  562. configurations without VECBASE register where vectors are always
  563. placed at their hardware-defined locations.
  564. config XTENSA_VECTORS_IN_TEXT
  565. bool "Merge relocatable vectors into kernel text"
  566. depends on !MTD_XIP
  567. help
  568. This option puts relocatable vectors into the kernel .text section
  569. with proper alignment.
  570. This is a safe choice for most configurations.
  571. config XTENSA_VECTORS_SEPARATE
  572. bool "Put relocatable vectors at fixed address"
  573. help
  574. This option puts relocatable vectors at specific virtual address.
  575. Vectors are merged with the .init data in the kernel image and
  576. are copied into their designated location during kernel startup.
  577. Use it to put vectors into IRAM or out of FLASH on kernels with
  578. XIP-aware MTD support.
  579. endchoice
  580. config VECTORS_ADDR
  581. hex "Kernel vectors virtual address"
  582. default 0x00000000
  583. depends on XTENSA_VECTORS_SEPARATE
  584. help
  585. This is the virtual address of the (relocatable) vectors base.
  586. It must be within KSEG if MMU is used.
  587. config XIP_DATA_ADDR
  588. hex "XIP kernel data virtual address"
  589. depends on XIP_KERNEL
  590. default 0x00000000
  591. help
  592. This is the virtual address where XIP kernel data is copied.
  593. It must be within KSEG if MMU is used.
  594. config PLATFORM_WANT_DEFAULT_MEM
  595. def_bool n
  596. config DEFAULT_MEM_START
  597. hex
  598. prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
  599. default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
  600. default 0x00000000
  601. help
  602. This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
  603. in noMMU configurations.
  604. If unsure, leave the default value here.
  605. choice
  606. prompt "KSEG layout"
  607. depends on MMU
  608. default XTENSA_KSEG_MMU_V2
  609. config XTENSA_KSEG_MMU_V2
  610. bool "MMUv2: 128MB cached + 128MB uncached"
  611. help
  612. MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
  613. at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
  614. without cache.
  615. KSEG_PADDR must be aligned to 128MB.
  616. config XTENSA_KSEG_256M
  617. bool "256MB cached + 256MB uncached"
  618. depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
  619. help
  620. TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
  621. with cache and to 0xc0000000 without cache.
  622. KSEG_PADDR must be aligned to 256MB.
  623. config XTENSA_KSEG_512M
  624. bool "512MB cached + 512MB uncached"
  625. depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
  626. help
  627. TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
  628. with cache and to 0xc0000000 without cache.
  629. KSEG_PADDR must be aligned to 256MB.
  630. endchoice
  631. config HIGHMEM
  632. bool "High Memory Support"
  633. depends on MMU
  634. select KMAP_LOCAL
  635. help
  636. Linux can use the full amount of RAM in the system by
  637. default. However, the default MMUv2 setup only maps the
  638. lowermost 128 MB of memory linearly to the areas starting
  639. at 0xd0000000 (cached) and 0xd8000000 (uncached).
  640. When there are more than 128 MB memory in the system not
  641. all of it can be "permanently mapped" by the kernel.
  642. The physical memory that's not permanently mapped is called
  643. "high memory".
  644. If you are compiling a kernel which will never run on a
  645. machine with more than 128 MB total physical RAM, answer
  646. N here.
  647. If unsure, say Y.
  648. config ARCH_FORCE_MAX_ORDER
  649. int "Maximum zone order"
  650. default "11"
  651. help
  652. The kernel memory allocator divides physically contiguous memory
  653. blocks into "zones", where each zone is a power of two number of
  654. pages. This option selects the largest power of two that the kernel
  655. keeps in the memory allocator. If you need to allocate very large
  656. blocks of physically contiguous memory, then you may need to
  657. increase this value.
  658. This config option is actually maximum order plus one. For example,
  659. a value of 11 means that the largest free memory block is 2^10 pages.
  660. endmenu
  661. menu "Power management options"
  662. config ARCH_HIBERNATION_POSSIBLE
  663. def_bool y
  664. source "kernel/power/Kconfig"
  665. endmenu