fsl_rcpm.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * RCPM(Run Control/Power Management) support
  4. *
  5. * Copyright 2012-2015 Freescale Semiconductor Inc.
  6. *
  7. * Author: Chenhui Zhao <[email protected]>
  8. */
  9. #define pr_fmt(fmt) "%s: " fmt, __func__
  10. #include <linux/types.h>
  11. #include <linux/errno.h>
  12. #include <linux/of_address.h>
  13. #include <linux/export.h>
  14. #include <asm/io.h>
  15. #include <linux/fsl/guts.h>
  16. #include <asm/cputhreads.h>
  17. #include <asm/fsl_pm.h>
  18. #include <asm/smp.h>
  19. static struct ccsr_rcpm_v1 __iomem *rcpm_v1_regs;
  20. static struct ccsr_rcpm_v2 __iomem *rcpm_v2_regs;
  21. static unsigned int fsl_supported_pm_modes;
  22. static void rcpm_v1_irq_mask(int cpu)
  23. {
  24. int hw_cpu = get_hard_smp_processor_id(cpu);
  25. unsigned int mask = 1 << hw_cpu;
  26. setbits32(&rcpm_v1_regs->cpmimr, mask);
  27. setbits32(&rcpm_v1_regs->cpmcimr, mask);
  28. setbits32(&rcpm_v1_regs->cpmmcmr, mask);
  29. setbits32(&rcpm_v1_regs->cpmnmimr, mask);
  30. }
  31. static void rcpm_v2_irq_mask(int cpu)
  32. {
  33. int hw_cpu = get_hard_smp_processor_id(cpu);
  34. unsigned int mask = 1 << hw_cpu;
  35. setbits32(&rcpm_v2_regs->tpmimr0, mask);
  36. setbits32(&rcpm_v2_regs->tpmcimr0, mask);
  37. setbits32(&rcpm_v2_regs->tpmmcmr0, mask);
  38. setbits32(&rcpm_v2_regs->tpmnmimr0, mask);
  39. }
  40. static void rcpm_v1_irq_unmask(int cpu)
  41. {
  42. int hw_cpu = get_hard_smp_processor_id(cpu);
  43. unsigned int mask = 1 << hw_cpu;
  44. clrbits32(&rcpm_v1_regs->cpmimr, mask);
  45. clrbits32(&rcpm_v1_regs->cpmcimr, mask);
  46. clrbits32(&rcpm_v1_regs->cpmmcmr, mask);
  47. clrbits32(&rcpm_v1_regs->cpmnmimr, mask);
  48. }
  49. static void rcpm_v2_irq_unmask(int cpu)
  50. {
  51. int hw_cpu = get_hard_smp_processor_id(cpu);
  52. unsigned int mask = 1 << hw_cpu;
  53. clrbits32(&rcpm_v2_regs->tpmimr0, mask);
  54. clrbits32(&rcpm_v2_regs->tpmcimr0, mask);
  55. clrbits32(&rcpm_v2_regs->tpmmcmr0, mask);
  56. clrbits32(&rcpm_v2_regs->tpmnmimr0, mask);
  57. }
  58. static void rcpm_v1_set_ip_power(bool enable, u32 mask)
  59. {
  60. if (enable)
  61. setbits32(&rcpm_v1_regs->ippdexpcr, mask);
  62. else
  63. clrbits32(&rcpm_v1_regs->ippdexpcr, mask);
  64. }
  65. static void rcpm_v2_set_ip_power(bool enable, u32 mask)
  66. {
  67. if (enable)
  68. setbits32(&rcpm_v2_regs->ippdexpcr[0], mask);
  69. else
  70. clrbits32(&rcpm_v2_regs->ippdexpcr[0], mask);
  71. }
  72. static void rcpm_v1_cpu_enter_state(int cpu, int state)
  73. {
  74. int hw_cpu = get_hard_smp_processor_id(cpu);
  75. unsigned int mask = 1 << hw_cpu;
  76. switch (state) {
  77. case E500_PM_PH10:
  78. setbits32(&rcpm_v1_regs->cdozcr, mask);
  79. break;
  80. case E500_PM_PH15:
  81. setbits32(&rcpm_v1_regs->cnapcr, mask);
  82. break;
  83. default:
  84. pr_warn("Unknown cpu PM state (%d)\n", state);
  85. break;
  86. }
  87. }
  88. static void rcpm_v2_cpu_enter_state(int cpu, int state)
  89. {
  90. int hw_cpu = get_hard_smp_processor_id(cpu);
  91. u32 mask = 1 << cpu_core_index_of_thread(cpu);
  92. switch (state) {
  93. case E500_PM_PH10:
  94. /* one bit corresponds to one thread for PH10 of 6500 */
  95. setbits32(&rcpm_v2_regs->tph10setr0, 1 << hw_cpu);
  96. break;
  97. case E500_PM_PH15:
  98. setbits32(&rcpm_v2_regs->pcph15setr, mask);
  99. break;
  100. case E500_PM_PH20:
  101. setbits32(&rcpm_v2_regs->pcph20setr, mask);
  102. break;
  103. case E500_PM_PH30:
  104. setbits32(&rcpm_v2_regs->pcph30setr, mask);
  105. break;
  106. default:
  107. pr_warn("Unknown cpu PM state (%d)\n", state);
  108. }
  109. }
  110. static void rcpm_v1_cpu_die(int cpu)
  111. {
  112. rcpm_v1_cpu_enter_state(cpu, E500_PM_PH15);
  113. }
  114. #ifdef CONFIG_PPC64
  115. static void qoriq_disable_thread(int cpu)
  116. {
  117. int thread = cpu_thread_in_core(cpu);
  118. book3e_stop_thread(thread);
  119. }
  120. #endif
  121. static void rcpm_v2_cpu_die(int cpu)
  122. {
  123. #ifdef CONFIG_PPC64
  124. int primary;
  125. if (threads_per_core == 2) {
  126. primary = cpu_first_thread_sibling(cpu);
  127. if (cpu_is_offline(primary) && cpu_is_offline(primary + 1)) {
  128. /* if both threads are offline, put the cpu in PH20 */
  129. rcpm_v2_cpu_enter_state(cpu, E500_PM_PH20);
  130. } else {
  131. /* if only one thread is offline, disable the thread */
  132. qoriq_disable_thread(cpu);
  133. }
  134. }
  135. #endif
  136. if (threads_per_core == 1)
  137. rcpm_v2_cpu_enter_state(cpu, E500_PM_PH20);
  138. }
  139. static void rcpm_v1_cpu_exit_state(int cpu, int state)
  140. {
  141. int hw_cpu = get_hard_smp_processor_id(cpu);
  142. unsigned int mask = 1 << hw_cpu;
  143. switch (state) {
  144. case E500_PM_PH10:
  145. clrbits32(&rcpm_v1_regs->cdozcr, mask);
  146. break;
  147. case E500_PM_PH15:
  148. clrbits32(&rcpm_v1_regs->cnapcr, mask);
  149. break;
  150. default:
  151. pr_warn("Unknown cpu PM state (%d)\n", state);
  152. break;
  153. }
  154. }
  155. static void rcpm_v1_cpu_up_prepare(int cpu)
  156. {
  157. rcpm_v1_cpu_exit_state(cpu, E500_PM_PH15);
  158. rcpm_v1_irq_unmask(cpu);
  159. }
  160. static void rcpm_v2_cpu_exit_state(int cpu, int state)
  161. {
  162. int hw_cpu = get_hard_smp_processor_id(cpu);
  163. u32 mask = 1 << cpu_core_index_of_thread(cpu);
  164. switch (state) {
  165. case E500_PM_PH10:
  166. setbits32(&rcpm_v2_regs->tph10clrr0, 1 << hw_cpu);
  167. break;
  168. case E500_PM_PH15:
  169. setbits32(&rcpm_v2_regs->pcph15clrr, mask);
  170. break;
  171. case E500_PM_PH20:
  172. setbits32(&rcpm_v2_regs->pcph20clrr, mask);
  173. break;
  174. case E500_PM_PH30:
  175. setbits32(&rcpm_v2_regs->pcph30clrr, mask);
  176. break;
  177. default:
  178. pr_warn("Unknown cpu PM state (%d)\n", state);
  179. }
  180. }
  181. static void rcpm_v2_cpu_up_prepare(int cpu)
  182. {
  183. rcpm_v2_cpu_exit_state(cpu, E500_PM_PH20);
  184. rcpm_v2_irq_unmask(cpu);
  185. }
  186. static int rcpm_v1_plat_enter_state(int state)
  187. {
  188. u32 *pmcsr_reg = &rcpm_v1_regs->powmgtcsr;
  189. int ret = 0;
  190. int result;
  191. switch (state) {
  192. case PLAT_PM_SLEEP:
  193. setbits32(pmcsr_reg, RCPM_POWMGTCSR_SLP);
  194. /* Upon resume, wait for RCPM_POWMGTCSR_SLP bit to be clear. */
  195. result = spin_event_timeout(
  196. !(in_be32(pmcsr_reg) & RCPM_POWMGTCSR_SLP), 10000, 10);
  197. if (!result) {
  198. pr_err("timeout waiting for SLP bit to be cleared\n");
  199. ret = -ETIMEDOUT;
  200. }
  201. break;
  202. default:
  203. pr_warn("Unknown platform PM state (%d)", state);
  204. ret = -EINVAL;
  205. }
  206. return ret;
  207. }
  208. static int rcpm_v2_plat_enter_state(int state)
  209. {
  210. u32 *pmcsr_reg = &rcpm_v2_regs->powmgtcsr;
  211. int ret = 0;
  212. int result;
  213. switch (state) {
  214. case PLAT_PM_LPM20:
  215. /* clear previous LPM20 status */
  216. setbits32(pmcsr_reg, RCPM_POWMGTCSR_P_LPM20_ST);
  217. /* enter LPM20 status */
  218. setbits32(pmcsr_reg, RCPM_POWMGTCSR_LPM20_RQ);
  219. /* At this point, the device is in LPM20 status. */
  220. /* resume ... */
  221. result = spin_event_timeout(
  222. !(in_be32(pmcsr_reg) & RCPM_POWMGTCSR_LPM20_ST), 10000, 10);
  223. if (!result) {
  224. pr_err("timeout waiting for LPM20 bit to be cleared\n");
  225. ret = -ETIMEDOUT;
  226. }
  227. break;
  228. default:
  229. pr_warn("Unknown platform PM state (%d)\n", state);
  230. ret = -EINVAL;
  231. }
  232. return ret;
  233. }
  234. static int rcpm_v1_plat_enter_sleep(void)
  235. {
  236. return rcpm_v1_plat_enter_state(PLAT_PM_SLEEP);
  237. }
  238. static int rcpm_v2_plat_enter_sleep(void)
  239. {
  240. return rcpm_v2_plat_enter_state(PLAT_PM_LPM20);
  241. }
  242. static void rcpm_common_freeze_time_base(u32 *tben_reg, int freeze)
  243. {
  244. static u32 mask;
  245. if (freeze) {
  246. mask = in_be32(tben_reg);
  247. clrbits32(tben_reg, mask);
  248. } else {
  249. setbits32(tben_reg, mask);
  250. }
  251. /* read back to push the previous write */
  252. in_be32(tben_reg);
  253. }
  254. static void rcpm_v1_freeze_time_base(bool freeze)
  255. {
  256. rcpm_common_freeze_time_base(&rcpm_v1_regs->ctbenr, freeze);
  257. }
  258. static void rcpm_v2_freeze_time_base(bool freeze)
  259. {
  260. rcpm_common_freeze_time_base(&rcpm_v2_regs->pctbenr, freeze);
  261. }
  262. static unsigned int rcpm_get_pm_modes(void)
  263. {
  264. return fsl_supported_pm_modes;
  265. }
  266. static const struct fsl_pm_ops qoriq_rcpm_v1_ops = {
  267. .irq_mask = rcpm_v1_irq_mask,
  268. .irq_unmask = rcpm_v1_irq_unmask,
  269. .cpu_enter_state = rcpm_v1_cpu_enter_state,
  270. .cpu_exit_state = rcpm_v1_cpu_exit_state,
  271. .cpu_up_prepare = rcpm_v1_cpu_up_prepare,
  272. .cpu_die = rcpm_v1_cpu_die,
  273. .plat_enter_sleep = rcpm_v1_plat_enter_sleep,
  274. .set_ip_power = rcpm_v1_set_ip_power,
  275. .freeze_time_base = rcpm_v1_freeze_time_base,
  276. .get_pm_modes = rcpm_get_pm_modes,
  277. };
  278. static const struct fsl_pm_ops qoriq_rcpm_v2_ops = {
  279. .irq_mask = rcpm_v2_irq_mask,
  280. .irq_unmask = rcpm_v2_irq_unmask,
  281. .cpu_enter_state = rcpm_v2_cpu_enter_state,
  282. .cpu_exit_state = rcpm_v2_cpu_exit_state,
  283. .cpu_up_prepare = rcpm_v2_cpu_up_prepare,
  284. .cpu_die = rcpm_v2_cpu_die,
  285. .plat_enter_sleep = rcpm_v2_plat_enter_sleep,
  286. .set_ip_power = rcpm_v2_set_ip_power,
  287. .freeze_time_base = rcpm_v2_freeze_time_base,
  288. .get_pm_modes = rcpm_get_pm_modes,
  289. };
  290. static const struct of_device_id rcpm_matches[] = {
  291. {
  292. .compatible = "fsl,qoriq-rcpm-1.0",
  293. .data = &qoriq_rcpm_v1_ops,
  294. },
  295. {
  296. .compatible = "fsl,qoriq-rcpm-2.0",
  297. .data = &qoriq_rcpm_v2_ops,
  298. },
  299. {
  300. .compatible = "fsl,qoriq-rcpm-2.1",
  301. .data = &qoriq_rcpm_v2_ops,
  302. },
  303. {},
  304. };
  305. int __init fsl_rcpm_init(void)
  306. {
  307. struct device_node *np;
  308. const struct of_device_id *match;
  309. void __iomem *base;
  310. np = of_find_matching_node_and_match(NULL, rcpm_matches, &match);
  311. if (!np)
  312. return 0;
  313. base = of_iomap(np, 0);
  314. of_node_put(np);
  315. if (!base) {
  316. pr_err("of_iomap() error.\n");
  317. return -ENOMEM;
  318. }
  319. rcpm_v1_regs = base;
  320. rcpm_v2_regs = base;
  321. /* support sleep by default */
  322. fsl_supported_pm_modes = FSL_PM_SLEEP;
  323. qoriq_pm_ops = match->data;
  324. return 0;
  325. }