fault.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PowerPC version
  4. * Copyright (C) 1995-1996 Gary Thomas ([email protected])
  5. *
  6. * Derived from "arch/i386/mm/fault.c"
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. *
  9. * Modified by Cort Dougan and Paul Mackerras.
  10. *
  11. * Modified for PPC64 by Dave Engebretsen ([email protected])
  12. */
  13. #include <linux/signal.h>
  14. #include <linux/sched.h>
  15. #include <linux/sched/task_stack.h>
  16. #include <linux/kernel.h>
  17. #include <linux/errno.h>
  18. #include <linux/string.h>
  19. #include <linux/types.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/mman.h>
  23. #include <linux/mm.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/highmem.h>
  26. #include <linux/extable.h>
  27. #include <linux/kprobes.h>
  28. #include <linux/kdebug.h>
  29. #include <linux/perf_event.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/context_tracking.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/kfence.h>
  35. #include <linux/pkeys.h>
  36. #include <asm/firmware.h>
  37. #include <asm/interrupt.h>
  38. #include <asm/page.h>
  39. #include <asm/mmu.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/siginfo.h>
  42. #include <asm/debug.h>
  43. #include <asm/kup.h>
  44. #include <asm/inst.h>
  45. /*
  46. * do_page_fault error handling helpers
  47. */
  48. static int
  49. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
  50. {
  51. /*
  52. * If we are in kernel mode, bail out with a SEGV, this will
  53. * be caught by the assembly which will restore the non-volatile
  54. * registers before calling bad_page_fault()
  55. */
  56. if (!user_mode(regs))
  57. return SIGSEGV;
  58. _exception(SIGSEGV, regs, si_code, address);
  59. return 0;
  60. }
  61. static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  62. {
  63. return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
  64. }
  65. static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
  66. {
  67. struct mm_struct *mm = current->mm;
  68. /*
  69. * Something tried to access memory that isn't in our memory map..
  70. * Fix it, but check if it's kernel or user first..
  71. */
  72. mmap_read_unlock(mm);
  73. return __bad_area_nosemaphore(regs, address, si_code);
  74. }
  75. static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
  76. struct vm_area_struct *vma)
  77. {
  78. struct mm_struct *mm = current->mm;
  79. int pkey;
  80. /*
  81. * We don't try to fetch the pkey from page table because reading
  82. * page table without locking doesn't guarantee stable pte value.
  83. * Hence the pkey value that we return to userspace can be different
  84. * from the pkey that actually caused access error.
  85. *
  86. * It does *not* guarantee that the VMA we find here
  87. * was the one that we faulted on.
  88. *
  89. * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
  90. * 2. T1 : set AMR to deny access to pkey=4, touches, page
  91. * 3. T1 : faults...
  92. * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
  93. * 5. T1 : enters fault handler, takes mmap_lock, etc...
  94. * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
  95. * faulted on a pte with its pkey=4.
  96. */
  97. pkey = vma_pkey(vma);
  98. mmap_read_unlock(mm);
  99. /*
  100. * If we are in kernel mode, bail out with a SEGV, this will
  101. * be caught by the assembly which will restore the non-volatile
  102. * registers before calling bad_page_fault()
  103. */
  104. if (!user_mode(regs))
  105. return SIGSEGV;
  106. _exception_pkey(regs, address, pkey);
  107. return 0;
  108. }
  109. static noinline int bad_access(struct pt_regs *regs, unsigned long address)
  110. {
  111. return __bad_area(regs, address, SEGV_ACCERR);
  112. }
  113. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  114. vm_fault_t fault)
  115. {
  116. if (!user_mode(regs))
  117. return SIGBUS;
  118. current->thread.trap_nr = BUS_ADRERR;
  119. #ifdef CONFIG_MEMORY_FAILURE
  120. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  121. unsigned int lsb = 0; /* shutup gcc */
  122. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  123. current->comm, current->pid, address);
  124. if (fault & VM_FAULT_HWPOISON_LARGE)
  125. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  126. if (fault & VM_FAULT_HWPOISON)
  127. lsb = PAGE_SHIFT;
  128. force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
  129. return 0;
  130. }
  131. #endif
  132. force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
  133. return 0;
  134. }
  135. static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
  136. vm_fault_t fault)
  137. {
  138. /*
  139. * Kernel page fault interrupted by SIGKILL. We have no reason to
  140. * continue processing.
  141. */
  142. if (fatal_signal_pending(current) && !user_mode(regs))
  143. return SIGKILL;
  144. /* Out of memory */
  145. if (fault & VM_FAULT_OOM) {
  146. /*
  147. * We ran out of memory, or some other thing happened to us that
  148. * made us unable to handle the page fault gracefully.
  149. */
  150. if (!user_mode(regs))
  151. return SIGSEGV;
  152. pagefault_out_of_memory();
  153. } else {
  154. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  155. VM_FAULT_HWPOISON_LARGE))
  156. return do_sigbus(regs, addr, fault);
  157. else if (fault & VM_FAULT_SIGSEGV)
  158. return bad_area_nosemaphore(regs, addr);
  159. else
  160. BUG();
  161. }
  162. return 0;
  163. }
  164. /* Is this a bad kernel fault ? */
  165. static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
  166. unsigned long address, bool is_write)
  167. {
  168. int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
  169. if (is_exec) {
  170. pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
  171. address >= TASK_SIZE ? "exec-protected" : "user",
  172. address,
  173. from_kuid(&init_user_ns, current_uid()));
  174. // Kernel exec fault is always bad
  175. return true;
  176. }
  177. // Kernel fault on kernel address is bad
  178. if (address >= TASK_SIZE)
  179. return true;
  180. // Read/write fault blocked by KUAP is bad, it can never succeed.
  181. if (bad_kuap_fault(regs, address, is_write)) {
  182. pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
  183. is_write ? "write" : "read", address,
  184. from_kuid(&init_user_ns, current_uid()));
  185. // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
  186. if (!search_exception_tables(regs->nip))
  187. return true;
  188. // Read/write fault in a valid region (the exception table search passed
  189. // above), but blocked by KUAP is bad, it can never succeed.
  190. return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
  191. }
  192. // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
  193. return false;
  194. }
  195. static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
  196. struct vm_area_struct *vma)
  197. {
  198. /*
  199. * Make sure to check the VMA so that we do not perform
  200. * faults just to hit a pkey fault as soon as we fill in a
  201. * page. Only called for current mm, hence foreign == 0
  202. */
  203. if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
  204. return true;
  205. return false;
  206. }
  207. static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
  208. {
  209. /*
  210. * Allow execution from readable areas if the MMU does not
  211. * provide separate controls over reading and executing.
  212. *
  213. * Note: That code used to not be enabled for 4xx/BookE.
  214. * It is now as I/D cache coherency for these is done at
  215. * set_pte_at() time and I see no reason why the test
  216. * below wouldn't be valid on those processors. This -may-
  217. * break programs compiled with a really old ABI though.
  218. */
  219. if (is_exec) {
  220. return !(vma->vm_flags & VM_EXEC) &&
  221. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  222. !(vma->vm_flags & (VM_READ | VM_WRITE)));
  223. }
  224. if (is_write) {
  225. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  226. return true;
  227. return false;
  228. }
  229. /*
  230. * VM_READ, VM_WRITE and VM_EXEC all imply read permissions, as
  231. * defined in protection_map[]. Read faults can only be caused by
  232. * a PROT_NONE mapping, or with a PROT_EXEC-only mapping on Radix.
  233. */
  234. if (unlikely(!vma_is_accessible(vma)))
  235. return true;
  236. if (unlikely(radix_enabled() && ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)))
  237. return true;
  238. /*
  239. * We should ideally do the vma pkey access check here. But in the
  240. * fault path, handle_mm_fault() also does the same check. To avoid
  241. * these multiple checks, we skip it here and handle access error due
  242. * to pkeys later.
  243. */
  244. return false;
  245. }
  246. #ifdef CONFIG_PPC_SMLPAR
  247. static inline void cmo_account_page_fault(void)
  248. {
  249. if (firmware_has_feature(FW_FEATURE_CMO)) {
  250. u32 page_ins;
  251. preempt_disable();
  252. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  253. page_ins += 1 << PAGE_FACTOR;
  254. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  255. preempt_enable();
  256. }
  257. }
  258. #else
  259. static inline void cmo_account_page_fault(void) { }
  260. #endif /* CONFIG_PPC_SMLPAR */
  261. static void sanity_check_fault(bool is_write, bool is_user,
  262. unsigned long error_code, unsigned long address)
  263. {
  264. /*
  265. * Userspace trying to access kernel address, we get PROTFAULT for that.
  266. */
  267. if (is_user && address >= TASK_SIZE) {
  268. if ((long)address == -1)
  269. return;
  270. pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
  271. current->comm, current->pid, address,
  272. from_kuid(&init_user_ns, current_uid()));
  273. return;
  274. }
  275. if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
  276. return;
  277. /*
  278. * For hash translation mode, we should never get a
  279. * PROTFAULT. Any update to pte to reduce access will result in us
  280. * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
  281. * fault instead of DSISR_PROTFAULT.
  282. *
  283. * A pte update to relax the access will not result in a hash page table
  284. * entry invalidate and hence can result in DSISR_PROTFAULT.
  285. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
  286. * the special !is_write in the below conditional.
  287. *
  288. * For platforms that doesn't supports coherent icache and do support
  289. * per page noexec bit, we do setup things such that we do the
  290. * sync between D/I cache via fault. But that is handled via low level
  291. * hash fault code (hash_page_do_lazy_icache()) and we should not reach
  292. * here in such case.
  293. *
  294. * For wrong access that can result in PROTFAULT, the above vma->vm_flags
  295. * check should handle those and hence we should fall to the bad_area
  296. * handling correctly.
  297. *
  298. * For embedded with per page exec support that doesn't support coherent
  299. * icache we do get PROTFAULT and we handle that D/I cache sync in
  300. * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
  301. * is conditional for server MMU.
  302. *
  303. * For radix, we can get prot fault for autonuma case, because radix
  304. * page table will have them marked noaccess for user.
  305. */
  306. if (radix_enabled() || is_write)
  307. return;
  308. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  309. }
  310. /*
  311. * Define the correct "is_write" bit in error_code based
  312. * on the processor family
  313. */
  314. #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  315. #define page_fault_is_write(__err) ((__err) & ESR_DST)
  316. #else
  317. #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
  318. #endif
  319. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  320. #define page_fault_is_bad(__err) (0)
  321. #elif defined(CONFIG_PPC_8xx)
  322. #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
  323. #elif defined(CONFIG_PPC64)
  324. static int page_fault_is_bad(unsigned long err)
  325. {
  326. unsigned long flag = DSISR_BAD_FAULT_64S;
  327. /*
  328. * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
  329. * If byte 0, bit 3 of pi-attribute-specifier-type in
  330. * ibm,pi-features property is defined, ignore the DSI error
  331. * which is caused by the paste instruction on the
  332. * suspended NX window.
  333. */
  334. if (mmu_has_feature(MMU_FTR_NX_DSI))
  335. flag &= ~DSISR_BAD_COPYPASTE;
  336. return err & flag;
  337. }
  338. #else
  339. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
  340. #endif
  341. /*
  342. * For 600- and 800-family processors, the error_code parameter is DSISR
  343. * for a data fault, SRR1 for an instruction fault.
  344. * For 400-family processors the error_code parameter is ESR for a data fault,
  345. * 0 for an instruction fault.
  346. * For 64-bit processors, the error_code parameter is DSISR for a data access
  347. * fault, SRR1 & 0x08000000 for an instruction access fault.
  348. *
  349. * The return value is 0 if the fault was handled, or the signal
  350. * number if this is a kernel fault that can't be handled here.
  351. */
  352. static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
  353. unsigned long error_code)
  354. {
  355. struct vm_area_struct * vma;
  356. struct mm_struct *mm = current->mm;
  357. unsigned int flags = FAULT_FLAG_DEFAULT;
  358. int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
  359. int is_user = user_mode(regs);
  360. int is_write = page_fault_is_write(error_code);
  361. vm_fault_t fault, major = 0;
  362. bool kprobe_fault = kprobe_page_fault(regs, 11);
  363. if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
  364. return 0;
  365. if (unlikely(page_fault_is_bad(error_code))) {
  366. if (is_user) {
  367. _exception(SIGBUS, regs, BUS_OBJERR, address);
  368. return 0;
  369. }
  370. return SIGBUS;
  371. }
  372. /* Additional sanity check(s) */
  373. sanity_check_fault(is_write, is_user, error_code, address);
  374. /*
  375. * The kernel should never take an execute fault nor should it
  376. * take a page fault to a kernel address or a page fault to a user
  377. * address outside of dedicated places
  378. */
  379. if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
  380. if (kfence_handle_page_fault(address, is_write, regs))
  381. return 0;
  382. return SIGSEGV;
  383. }
  384. /*
  385. * If we're in an interrupt, have no user context or are running
  386. * in a region with pagefaults disabled then we must not take the fault
  387. */
  388. if (unlikely(faulthandler_disabled() || !mm)) {
  389. if (is_user)
  390. printk_ratelimited(KERN_ERR "Page fault in user mode"
  391. " with faulthandler_disabled()=%d"
  392. " mm=%p\n",
  393. faulthandler_disabled(), mm);
  394. return bad_area_nosemaphore(regs, address);
  395. }
  396. interrupt_cond_local_irq_enable(regs);
  397. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  398. /*
  399. * We want to do this outside mmap_lock, because reading code around nip
  400. * can result in fault, which will cause a deadlock when called with
  401. * mmap_lock held
  402. */
  403. if (is_user)
  404. flags |= FAULT_FLAG_USER;
  405. if (is_write)
  406. flags |= FAULT_FLAG_WRITE;
  407. if (is_exec)
  408. flags |= FAULT_FLAG_INSTRUCTION;
  409. if (!(flags & FAULT_FLAG_USER))
  410. goto lock_mmap;
  411. vma = lock_vma_under_rcu(mm, address);
  412. if (!vma)
  413. goto lock_mmap;
  414. if (unlikely(access_pkey_error(is_write, is_exec,
  415. (error_code & DSISR_KEYFAULT), vma))) {
  416. vma_end_read(vma);
  417. goto lock_mmap;
  418. }
  419. if (unlikely(access_error(is_write, is_exec, vma))) {
  420. vma_end_read(vma);
  421. goto lock_mmap;
  422. }
  423. fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
  424. if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
  425. vma_end_read(vma);
  426. if (!(fault & VM_FAULT_RETRY)) {
  427. count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
  428. goto done;
  429. }
  430. count_vm_vma_lock_event(VMA_LOCK_RETRY);
  431. if (fault & VM_FAULT_MAJOR)
  432. flags |= FAULT_FLAG_TRIED;
  433. if (fault_signal_pending(fault, regs))
  434. return user_mode(regs) ? 0 : SIGBUS;
  435. lock_mmap:
  436. /* When running in the kernel we expect faults to occur only to
  437. * addresses in user space. All other faults represent errors in the
  438. * kernel and should generate an OOPS. Unfortunately, in the case of an
  439. * erroneous fault occurring in a code path which already holds mmap_lock
  440. * we will deadlock attempting to validate the fault against the
  441. * address space. Luckily the kernel only validly references user
  442. * space from well defined areas of code, which are listed in the
  443. * exceptions table. lock_mm_and_find_vma() handles that logic.
  444. */
  445. retry:
  446. vma = lock_mm_and_find_vma(mm, address, regs);
  447. if (unlikely(!vma))
  448. return bad_area_nosemaphore(regs, address);
  449. if (unlikely(access_pkey_error(is_write, is_exec,
  450. (error_code & DSISR_KEYFAULT), vma)))
  451. return bad_access_pkey(regs, address, vma);
  452. if (unlikely(access_error(is_write, is_exec, vma)))
  453. return bad_access(regs, address);
  454. /*
  455. * If for any reason at all we couldn't handle the fault,
  456. * make sure we exit gracefully rather than endlessly redo
  457. * the fault.
  458. */
  459. fault = handle_mm_fault(vma, address, flags, regs);
  460. major |= fault & VM_FAULT_MAJOR;
  461. if (fault_signal_pending(fault, regs))
  462. return user_mode(regs) ? 0 : SIGBUS;
  463. /* The fault is fully completed (including releasing mmap lock) */
  464. if (fault & VM_FAULT_COMPLETED)
  465. goto out;
  466. /*
  467. * Handle the retry right now, the mmap_lock has been released in that
  468. * case.
  469. */
  470. if (unlikely(fault & VM_FAULT_RETRY)) {
  471. flags |= FAULT_FLAG_TRIED;
  472. goto retry;
  473. }
  474. mmap_read_unlock(current->mm);
  475. done:
  476. if (unlikely(fault & VM_FAULT_ERROR))
  477. return mm_fault_error(regs, address, fault);
  478. out:
  479. /*
  480. * Major/minor page fault accounting.
  481. */
  482. if (major)
  483. cmo_account_page_fault();
  484. return 0;
  485. }
  486. NOKPROBE_SYMBOL(___do_page_fault);
  487. static __always_inline void __do_page_fault(struct pt_regs *regs)
  488. {
  489. long err;
  490. err = ___do_page_fault(regs, regs->dar, regs->dsisr);
  491. if (unlikely(err))
  492. bad_page_fault(regs, err);
  493. }
  494. DEFINE_INTERRUPT_HANDLER(do_page_fault)
  495. {
  496. __do_page_fault(regs);
  497. }
  498. #ifdef CONFIG_PPC_BOOK3S_64
  499. /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
  500. void hash__do_page_fault(struct pt_regs *regs)
  501. {
  502. __do_page_fault(regs);
  503. }
  504. NOKPROBE_SYMBOL(hash__do_page_fault);
  505. #endif
  506. /*
  507. * bad_page_fault is called when we have a bad access from the kernel.
  508. * It is called from the DSI and ISI handlers in head.S and from some
  509. * of the procedures in traps.c.
  510. */
  511. static void __bad_page_fault(struct pt_regs *regs, int sig)
  512. {
  513. int is_write = page_fault_is_write(regs->dsisr);
  514. const char *msg;
  515. /* kernel has accessed a bad area */
  516. if (regs->dar < PAGE_SIZE)
  517. msg = "Kernel NULL pointer dereference";
  518. else
  519. msg = "Unable to handle kernel data access";
  520. switch (TRAP(regs)) {
  521. case INTERRUPT_DATA_STORAGE:
  522. case INTERRUPT_H_DATA_STORAGE:
  523. pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
  524. is_write ? "write" : "read", regs->dar);
  525. break;
  526. case INTERRUPT_DATA_SEGMENT:
  527. pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
  528. break;
  529. case INTERRUPT_INST_STORAGE:
  530. case INTERRUPT_INST_SEGMENT:
  531. pr_alert("BUG: Unable to handle kernel instruction fetch%s",
  532. regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
  533. break;
  534. case INTERRUPT_ALIGNMENT:
  535. pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
  536. regs->dar);
  537. break;
  538. default:
  539. pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
  540. regs->dar);
  541. break;
  542. }
  543. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  544. regs->nip);
  545. if (task_stack_end_corrupted(current))
  546. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  547. die("Kernel access of bad area", regs, sig);
  548. }
  549. void bad_page_fault(struct pt_regs *regs, int sig)
  550. {
  551. const struct exception_table_entry *entry;
  552. /* Are we prepared to handle this fault? */
  553. entry = search_exception_tables(instruction_pointer(regs));
  554. if (entry)
  555. instruction_pointer_set(regs, extable_fixup(entry));
  556. else
  557. __bad_page_fault(regs, sig);
  558. }
  559. #ifdef CONFIG_PPC_BOOK3S_64
  560. DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
  561. {
  562. bad_page_fault(regs, SIGSEGV);
  563. }
  564. /*
  565. * In radix, segment interrupts indicate the EA is not addressable by the
  566. * page table geometry, so they are always sent here.
  567. *
  568. * In hash, this is called if do_slb_fault returns error. Typically it is
  569. * because the EA was outside the region allowed by software.
  570. */
  571. DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
  572. {
  573. int err = regs->result;
  574. if (err == -EFAULT) {
  575. if (user_mode(regs))
  576. _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
  577. else
  578. bad_page_fault(regs, SIGSEGV);
  579. } else if (err == -EINVAL) {
  580. unrecoverable_exception(regs);
  581. } else {
  582. BUG();
  583. }
  584. }
  585. #endif