123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- /*
- * MMU context allocation for 64-bit kernels.
- *
- * Copyright (C) 2004 Anton Blanchard, IBM Corp. <[email protected]>
- */
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/errno.h>
- #include <linux/string.h>
- #include <linux/types.h>
- #include <linux/mm.h>
- #include <linux/pkeys.h>
- #include <linux/spinlock.h>
- #include <linux/idr.h>
- #include <linux/export.h>
- #include <linux/gfp.h>
- #include <linux/slab.h>
- #include <linux/cpu.h>
- #include <asm/mmu_context.h>
- #include <asm/pgalloc.h>
- #include "internal.h"
- static DEFINE_IDA(mmu_context_ida);
- static int alloc_context_id(int min_id, int max_id)
- {
- return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
- }
- #ifdef CONFIG_PPC_64S_HASH_MMU
- void __init hash__reserve_context_id(int id)
- {
- int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
- WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
- }
- int hash__alloc_context_id(void)
- {
- unsigned long max;
- if (mmu_has_feature(MMU_FTR_68_BIT_VA))
- max = MAX_USER_CONTEXT;
- else
- max = MAX_USER_CONTEXT_65BIT_VA;
- return alloc_context_id(MIN_USER_CONTEXT, max);
- }
- EXPORT_SYMBOL_GPL(hash__alloc_context_id);
- #endif
- #ifdef CONFIG_PPC_64S_HASH_MMU
- static int realloc_context_ids(mm_context_t *ctx)
- {
- int i, id;
- /*
- * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
- * there wasn't one allocated previously (which happens in the exec
- * case where ctx is newly allocated).
- *
- * We have to be a bit careful here. We must keep the existing ids in
- * the array, so that we can test if they're non-zero to decide if we
- * need to allocate a new one. However in case of error we must free the
- * ids we've allocated but *not* any of the existing ones (or risk a
- * UAF). That's why we decrement i at the start of the error handling
- * loop, to skip the id that we just tested but couldn't reallocate.
- */
- for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
- if (i == 0 || ctx->extended_id[i]) {
- id = hash__alloc_context_id();
- if (id < 0)
- goto error;
- ctx->extended_id[i] = id;
- }
- }
- /* The caller expects us to return id */
- return ctx->id;
- error:
- for (i--; i >= 0; i--) {
- if (ctx->extended_id[i])
- ida_free(&mmu_context_ida, ctx->extended_id[i]);
- }
- return id;
- }
- static int hash__init_new_context(struct mm_struct *mm)
- {
- int index;
- mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
- GFP_KERNEL);
- if (!mm->context.hash_context)
- return -ENOMEM;
- /*
- * The old code would re-promote on fork, we don't do that when using
- * slices as it could cause problem promoting slices that have been
- * forced down to 4K.
- *
- * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
- * explicitly against context.id == 0. This ensures that we properly
- * initialize context slice details for newly allocated mm's (which will
- * have id == 0) and don't alter context slice inherited via fork (which
- * will have id != 0).
- *
- * We should not be calling init_new_context() on init_mm. Hence a
- * check against 0 is OK.
- */
- if (mm->context.id == 0) {
- memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
- slice_init_new_context_exec(mm);
- } else {
- /* This is fork. Copy hash_context details from current->mm */
- memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
- #ifdef CONFIG_PPC_SUBPAGE_PROT
- /* inherit subpage prot details if we have one. */
- if (current->mm->context.hash_context->spt) {
- mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
- GFP_KERNEL);
- if (!mm->context.hash_context->spt) {
- kfree(mm->context.hash_context);
- return -ENOMEM;
- }
- }
- #endif
- }
- index = realloc_context_ids(&mm->context);
- if (index < 0) {
- #ifdef CONFIG_PPC_SUBPAGE_PROT
- kfree(mm->context.hash_context->spt);
- #endif
- kfree(mm->context.hash_context);
- return index;
- }
- pkey_mm_init(mm);
- return index;
- }
- void hash__setup_new_exec(void)
- {
- slice_setup_new_exec();
- slb_setup_new_exec();
- }
- #else
- static inline int hash__init_new_context(struct mm_struct *mm)
- {
- BUILD_BUG();
- return 0;
- }
- #endif
- static int radix__init_new_context(struct mm_struct *mm)
- {
- unsigned long rts_field;
- int index, max_id;
- max_id = (1 << mmu_pid_bits) - 1;
- index = alloc_context_id(mmu_base_pid, max_id);
- if (index < 0)
- return index;
- /*
- * set the process table entry,
- */
- rts_field = radix__get_tree_size();
- process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
- /*
- * Order the above store with subsequent update of the PID
- * register (at which point HW can start loading/caching
- * the entry) and the corresponding load by the MMU from
- * the L2 cache.
- */
- asm volatile("ptesync;isync" : : : "memory");
- #ifdef CONFIG_PPC_64S_HASH_MMU
- mm->context.hash_context = NULL;
- #endif
- return index;
- }
- int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
- {
- int index;
- if (radix_enabled())
- index = radix__init_new_context(mm);
- else
- index = hash__init_new_context(mm);
- if (index < 0)
- return index;
- mm->context.id = index;
- mm->context.pte_frag = NULL;
- mm->context.pmd_frag = NULL;
- #ifdef CONFIG_SPAPR_TCE_IOMMU
- mm_iommu_init(mm);
- #endif
- atomic_set(&mm->context.active_cpus, 0);
- atomic_set(&mm->context.copros, 0);
- return 0;
- }
- void __destroy_context(int context_id)
- {
- ida_free(&mmu_context_ida, context_id);
- }
- EXPORT_SYMBOL_GPL(__destroy_context);
- static void destroy_contexts(mm_context_t *ctx)
- {
- if (radix_enabled()) {
- ida_free(&mmu_context_ida, ctx->id);
- } else {
- #ifdef CONFIG_PPC_64S_HASH_MMU
- int index, context_id;
- for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
- context_id = ctx->extended_id[index];
- if (context_id)
- ida_free(&mmu_context_ida, context_id);
- }
- kfree(ctx->hash_context);
- #else
- BUILD_BUG(); // radix_enabled() should be constant true
- #endif
- }
- }
- static void pmd_frag_destroy(void *pmd_frag)
- {
- int count;
- struct page *page;
- page = virt_to_page(pmd_frag);
- /* drop all the pending references */
- count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
- /* We allow PTE_FRAG_NR fragments from a PTE page */
- if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
- pgtable_pmd_page_dtor(page);
- __free_page(page);
- }
- }
- static void destroy_pagetable_cache(struct mm_struct *mm)
- {
- void *frag;
- frag = mm->context.pte_frag;
- if (frag)
- pte_frag_destroy(frag);
- frag = mm->context.pmd_frag;
- if (frag)
- pmd_frag_destroy(frag);
- return;
- }
- void destroy_context(struct mm_struct *mm)
- {
- #ifdef CONFIG_SPAPR_TCE_IOMMU
- WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
- #endif
- /*
- * For tasks which were successfully initialized we end up calling
- * arch_exit_mmap() which clears the process table entry. And
- * arch_exit_mmap() is called before the required fullmm TLB flush
- * which does a RIC=2 flush. Hence for an initialized task, we do clear
- * any cached process table entries.
- *
- * The condition below handles the error case during task init. We have
- * set the process table entry early and if we fail a task
- * initialization, we need to ensure the process table entry is zeroed.
- * We need not worry about process table entry caches because the task
- * never ran with the PID value.
- */
- if (radix_enabled())
- process_tb[mm->context.id].prtb0 = 0;
- else
- subpage_prot_free(mm);
- destroy_contexts(&mm->context);
- mm->context.id = MMU_NO_CONTEXT;
- }
- void arch_exit_mmap(struct mm_struct *mm)
- {
- destroy_pagetable_cache(mm);
- if (radix_enabled()) {
- /*
- * Radix doesn't have a valid bit in the process table
- * entries. However we know that at least P9 implementation
- * will avoid caching an entry with an invalid RTS field,
- * and 0 is invalid. So this will do.
- *
- * This runs before the "fullmm" tlb flush in exit_mmap,
- * which does a RIC=2 tlbie to clear the process table
- * entry. See the "fullmm" comments in tlb-radix.c.
- *
- * No barrier required here after the store because
- * this process will do the invalidate, which starts with
- * ptesync.
- */
- process_tb[mm->context.id].prtb0 = 0;
- }
- }
- #ifdef CONFIG_PPC_RADIX_MMU
- void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
- {
- mtspr(SPRN_PID, next->context.id);
- isync();
- }
- #endif
- /**
- * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
- *
- * This clears the CPU from mm_cpumask for all processes, and then flushes the
- * local TLB to ensure TLB coherency in case the CPU is onlined again.
- *
- * KVM guest translations are not necessarily flushed here. If KVM started
- * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
- */
- #ifdef CONFIG_HOTPLUG_CPU
- void cleanup_cpu_mmu_context(void)
- {
- int cpu = smp_processor_id();
- clear_tasks_mm_cpumask(cpu);
- tlbiel_all();
- }
- #endif
|