math_efp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * arch/powerpc/math-emu/math_efp.c
  4. *
  5. * Copyright (C) 2006-2008, 2010 Freescale Semiconductor, Inc.
  6. *
  7. * Author: Ebony Zhu, <[email protected]>
  8. * Yu Liu, <[email protected]>
  9. *
  10. * Derived from arch/alpha/math-emu/math.c
  11. * arch/powerpc/math-emu/math.c
  12. *
  13. * Description:
  14. * This file is the exception handler to make E500 SPE instructions
  15. * fully comply with IEEE-754 floating point standard.
  16. */
  17. #include <linux/types.h>
  18. #include <linux/prctl.h>
  19. #include <linux/module.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/reg.h>
  22. #define FP_EX_BOOKE_E500_SPE
  23. #include <asm/sfp-machine.h>
  24. #include <math-emu/soft-fp.h>
  25. #include <math-emu/single.h>
  26. #include <math-emu/double.h>
  27. #define EFAPU 0x4
  28. #define VCT 0x4
  29. #define SPFP 0x6
  30. #define DPFP 0x7
  31. #define EFSADD 0x2c0
  32. #define EFSSUB 0x2c1
  33. #define EFSABS 0x2c4
  34. #define EFSNABS 0x2c5
  35. #define EFSNEG 0x2c6
  36. #define EFSMUL 0x2c8
  37. #define EFSDIV 0x2c9
  38. #define EFSCMPGT 0x2cc
  39. #define EFSCMPLT 0x2cd
  40. #define EFSCMPEQ 0x2ce
  41. #define EFSCFD 0x2cf
  42. #define EFSCFSI 0x2d1
  43. #define EFSCTUI 0x2d4
  44. #define EFSCTSI 0x2d5
  45. #define EFSCTUF 0x2d6
  46. #define EFSCTSF 0x2d7
  47. #define EFSCTUIZ 0x2d8
  48. #define EFSCTSIZ 0x2da
  49. #define EVFSADD 0x280
  50. #define EVFSSUB 0x281
  51. #define EVFSABS 0x284
  52. #define EVFSNABS 0x285
  53. #define EVFSNEG 0x286
  54. #define EVFSMUL 0x288
  55. #define EVFSDIV 0x289
  56. #define EVFSCMPGT 0x28c
  57. #define EVFSCMPLT 0x28d
  58. #define EVFSCMPEQ 0x28e
  59. #define EVFSCTUI 0x294
  60. #define EVFSCTSI 0x295
  61. #define EVFSCTUF 0x296
  62. #define EVFSCTSF 0x297
  63. #define EVFSCTUIZ 0x298
  64. #define EVFSCTSIZ 0x29a
  65. #define EFDADD 0x2e0
  66. #define EFDSUB 0x2e1
  67. #define EFDABS 0x2e4
  68. #define EFDNABS 0x2e5
  69. #define EFDNEG 0x2e6
  70. #define EFDMUL 0x2e8
  71. #define EFDDIV 0x2e9
  72. #define EFDCTUIDZ 0x2ea
  73. #define EFDCTSIDZ 0x2eb
  74. #define EFDCMPGT 0x2ec
  75. #define EFDCMPLT 0x2ed
  76. #define EFDCMPEQ 0x2ee
  77. #define EFDCFS 0x2ef
  78. #define EFDCTUI 0x2f4
  79. #define EFDCTSI 0x2f5
  80. #define EFDCTUF 0x2f6
  81. #define EFDCTSF 0x2f7
  82. #define EFDCTUIZ 0x2f8
  83. #define EFDCTSIZ 0x2fa
  84. #define AB 2
  85. #define XA 3
  86. #define XB 4
  87. #define XCR 5
  88. #define NOTYPE 0
  89. #define SIGN_BIT_S (1UL << 31)
  90. #define SIGN_BIT_D (1ULL << 63)
  91. #define FP_EX_MASK (FP_EX_INEXACT | FP_EX_INVALID | FP_EX_DIVZERO | \
  92. FP_EX_UNDERFLOW | FP_EX_OVERFLOW)
  93. static int have_e500_cpu_a005_erratum;
  94. union dw_union {
  95. u64 dp[1];
  96. u32 wp[2];
  97. };
  98. static unsigned long insn_type(unsigned long speinsn)
  99. {
  100. unsigned long ret = NOTYPE;
  101. switch (speinsn & 0x7ff) {
  102. case EFSABS: ret = XA; break;
  103. case EFSADD: ret = AB; break;
  104. case EFSCFD: ret = XB; break;
  105. case EFSCMPEQ: ret = XCR; break;
  106. case EFSCMPGT: ret = XCR; break;
  107. case EFSCMPLT: ret = XCR; break;
  108. case EFSCTSF: ret = XB; break;
  109. case EFSCTSI: ret = XB; break;
  110. case EFSCTSIZ: ret = XB; break;
  111. case EFSCTUF: ret = XB; break;
  112. case EFSCTUI: ret = XB; break;
  113. case EFSCTUIZ: ret = XB; break;
  114. case EFSDIV: ret = AB; break;
  115. case EFSMUL: ret = AB; break;
  116. case EFSNABS: ret = XA; break;
  117. case EFSNEG: ret = XA; break;
  118. case EFSSUB: ret = AB; break;
  119. case EFSCFSI: ret = XB; break;
  120. case EVFSABS: ret = XA; break;
  121. case EVFSADD: ret = AB; break;
  122. case EVFSCMPEQ: ret = XCR; break;
  123. case EVFSCMPGT: ret = XCR; break;
  124. case EVFSCMPLT: ret = XCR; break;
  125. case EVFSCTSF: ret = XB; break;
  126. case EVFSCTSI: ret = XB; break;
  127. case EVFSCTSIZ: ret = XB; break;
  128. case EVFSCTUF: ret = XB; break;
  129. case EVFSCTUI: ret = XB; break;
  130. case EVFSCTUIZ: ret = XB; break;
  131. case EVFSDIV: ret = AB; break;
  132. case EVFSMUL: ret = AB; break;
  133. case EVFSNABS: ret = XA; break;
  134. case EVFSNEG: ret = XA; break;
  135. case EVFSSUB: ret = AB; break;
  136. case EFDABS: ret = XA; break;
  137. case EFDADD: ret = AB; break;
  138. case EFDCFS: ret = XB; break;
  139. case EFDCMPEQ: ret = XCR; break;
  140. case EFDCMPGT: ret = XCR; break;
  141. case EFDCMPLT: ret = XCR; break;
  142. case EFDCTSF: ret = XB; break;
  143. case EFDCTSI: ret = XB; break;
  144. case EFDCTSIDZ: ret = XB; break;
  145. case EFDCTSIZ: ret = XB; break;
  146. case EFDCTUF: ret = XB; break;
  147. case EFDCTUI: ret = XB; break;
  148. case EFDCTUIDZ: ret = XB; break;
  149. case EFDCTUIZ: ret = XB; break;
  150. case EFDDIV: ret = AB; break;
  151. case EFDMUL: ret = AB; break;
  152. case EFDNABS: ret = XA; break;
  153. case EFDNEG: ret = XA; break;
  154. case EFDSUB: ret = AB; break;
  155. }
  156. return ret;
  157. }
  158. int do_spe_mathemu(struct pt_regs *regs)
  159. {
  160. FP_DECL_EX;
  161. int IR, cmp;
  162. unsigned long type, func, fc, fa, fb, src, speinsn;
  163. union dw_union vc, va, vb;
  164. if (get_user(speinsn, (unsigned int __user *) regs->nip))
  165. return -EFAULT;
  166. if ((speinsn >> 26) != EFAPU)
  167. return -EINVAL; /* not an spe instruction */
  168. type = insn_type(speinsn);
  169. if (type == NOTYPE)
  170. goto illegal;
  171. func = speinsn & 0x7ff;
  172. fc = (speinsn >> 21) & 0x1f;
  173. fa = (speinsn >> 16) & 0x1f;
  174. fb = (speinsn >> 11) & 0x1f;
  175. src = (speinsn >> 5) & 0x7;
  176. vc.wp[0] = current->thread.evr[fc];
  177. vc.wp[1] = regs->gpr[fc];
  178. va.wp[0] = current->thread.evr[fa];
  179. va.wp[1] = regs->gpr[fa];
  180. vb.wp[0] = current->thread.evr[fb];
  181. vb.wp[1] = regs->gpr[fb];
  182. __FPU_FPSCR = mfspr(SPRN_SPEFSCR);
  183. pr_debug("speinsn:%08lx spefscr:%08lx\n", speinsn, __FPU_FPSCR);
  184. pr_debug("vc: %08x %08x\n", vc.wp[0], vc.wp[1]);
  185. pr_debug("va: %08x %08x\n", va.wp[0], va.wp[1]);
  186. pr_debug("vb: %08x %08x\n", vb.wp[0], vb.wp[1]);
  187. switch (src) {
  188. case SPFP: {
  189. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  190. switch (type) {
  191. case AB:
  192. case XCR:
  193. FP_UNPACK_SP(SA, va.wp + 1);
  194. fallthrough;
  195. case XB:
  196. FP_UNPACK_SP(SB, vb.wp + 1);
  197. break;
  198. case XA:
  199. FP_UNPACK_SP(SA, va.wp + 1);
  200. break;
  201. }
  202. pr_debug("SA: %d %08x %d (%d)\n", SA_s, SA_f, SA_e, SA_c);
  203. pr_debug("SB: %d %08x %d (%d)\n", SB_s, SB_f, SB_e, SB_c);
  204. switch (func) {
  205. case EFSABS:
  206. vc.wp[1] = va.wp[1] & ~SIGN_BIT_S;
  207. goto update_regs;
  208. case EFSNABS:
  209. vc.wp[1] = va.wp[1] | SIGN_BIT_S;
  210. goto update_regs;
  211. case EFSNEG:
  212. vc.wp[1] = va.wp[1] ^ SIGN_BIT_S;
  213. goto update_regs;
  214. case EFSADD:
  215. FP_ADD_S(SR, SA, SB);
  216. goto pack_s;
  217. case EFSSUB:
  218. FP_SUB_S(SR, SA, SB);
  219. goto pack_s;
  220. case EFSMUL:
  221. FP_MUL_S(SR, SA, SB);
  222. goto pack_s;
  223. case EFSDIV:
  224. FP_DIV_S(SR, SA, SB);
  225. goto pack_s;
  226. case EFSCMPEQ:
  227. cmp = 0;
  228. goto cmp_s;
  229. case EFSCMPGT:
  230. cmp = 1;
  231. goto cmp_s;
  232. case EFSCMPLT:
  233. cmp = -1;
  234. goto cmp_s;
  235. case EFSCTSF:
  236. case EFSCTUF:
  237. if (SB_c == FP_CLS_NAN) {
  238. vc.wp[1] = 0;
  239. FP_SET_EXCEPTION(FP_EX_INVALID);
  240. } else {
  241. SB_e += (func == EFSCTSF ? 31 : 32);
  242. FP_TO_INT_ROUND_S(vc.wp[1], SB, 32,
  243. (func == EFSCTSF) ? 1 : 0);
  244. }
  245. goto update_regs;
  246. case EFSCFD: {
  247. FP_DECL_D(DB);
  248. FP_CLEAR_EXCEPTIONS;
  249. FP_UNPACK_DP(DB, vb.dp);
  250. pr_debug("DB: %d %08x %08x %d (%d)\n",
  251. DB_s, DB_f1, DB_f0, DB_e, DB_c);
  252. FP_CONV(S, D, 1, 2, SR, DB);
  253. goto pack_s;
  254. }
  255. case EFSCTSI:
  256. case EFSCTUI:
  257. if (SB_c == FP_CLS_NAN) {
  258. vc.wp[1] = 0;
  259. FP_SET_EXCEPTION(FP_EX_INVALID);
  260. } else {
  261. FP_TO_INT_ROUND_S(vc.wp[1], SB, 32,
  262. ((func & 0x3) != 0) ? 1 : 0);
  263. }
  264. goto update_regs;
  265. case EFSCTSIZ:
  266. case EFSCTUIZ:
  267. if (SB_c == FP_CLS_NAN) {
  268. vc.wp[1] = 0;
  269. FP_SET_EXCEPTION(FP_EX_INVALID);
  270. } else {
  271. FP_TO_INT_S(vc.wp[1], SB, 32,
  272. ((func & 0x3) != 0) ? 1 : 0);
  273. }
  274. goto update_regs;
  275. default:
  276. goto illegal;
  277. }
  278. break;
  279. pack_s:
  280. pr_debug("SR: %d %08x %d (%d)\n", SR_s, SR_f, SR_e, SR_c);
  281. FP_PACK_SP(vc.wp + 1, SR);
  282. goto update_regs;
  283. cmp_s:
  284. FP_CMP_S(IR, SA, SB, 3);
  285. if (IR == 3 && (FP_ISSIGNAN_S(SA) || FP_ISSIGNAN_S(SB)))
  286. FP_SET_EXCEPTION(FP_EX_INVALID);
  287. if (IR == cmp) {
  288. IR = 0x4;
  289. } else {
  290. IR = 0;
  291. }
  292. goto update_ccr;
  293. }
  294. case DPFP: {
  295. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  296. switch (type) {
  297. case AB:
  298. case XCR:
  299. FP_UNPACK_DP(DA, va.dp);
  300. fallthrough;
  301. case XB:
  302. FP_UNPACK_DP(DB, vb.dp);
  303. break;
  304. case XA:
  305. FP_UNPACK_DP(DA, va.dp);
  306. break;
  307. }
  308. pr_debug("DA: %d %08x %08x %d (%d)\n",
  309. DA_s, DA_f1, DA_f0, DA_e, DA_c);
  310. pr_debug("DB: %d %08x %08x %d (%d)\n",
  311. DB_s, DB_f1, DB_f0, DB_e, DB_c);
  312. switch (func) {
  313. case EFDABS:
  314. vc.dp[0] = va.dp[0] & ~SIGN_BIT_D;
  315. goto update_regs;
  316. case EFDNABS:
  317. vc.dp[0] = va.dp[0] | SIGN_BIT_D;
  318. goto update_regs;
  319. case EFDNEG:
  320. vc.dp[0] = va.dp[0] ^ SIGN_BIT_D;
  321. goto update_regs;
  322. case EFDADD:
  323. FP_ADD_D(DR, DA, DB);
  324. goto pack_d;
  325. case EFDSUB:
  326. FP_SUB_D(DR, DA, DB);
  327. goto pack_d;
  328. case EFDMUL:
  329. FP_MUL_D(DR, DA, DB);
  330. goto pack_d;
  331. case EFDDIV:
  332. FP_DIV_D(DR, DA, DB);
  333. goto pack_d;
  334. case EFDCMPEQ:
  335. cmp = 0;
  336. goto cmp_d;
  337. case EFDCMPGT:
  338. cmp = 1;
  339. goto cmp_d;
  340. case EFDCMPLT:
  341. cmp = -1;
  342. goto cmp_d;
  343. case EFDCTSF:
  344. case EFDCTUF:
  345. if (DB_c == FP_CLS_NAN) {
  346. vc.wp[1] = 0;
  347. FP_SET_EXCEPTION(FP_EX_INVALID);
  348. } else {
  349. DB_e += (func == EFDCTSF ? 31 : 32);
  350. FP_TO_INT_ROUND_D(vc.wp[1], DB, 32,
  351. (func == EFDCTSF) ? 1 : 0);
  352. }
  353. goto update_regs;
  354. case EFDCFS: {
  355. FP_DECL_S(SB);
  356. FP_CLEAR_EXCEPTIONS;
  357. FP_UNPACK_SP(SB, vb.wp + 1);
  358. pr_debug("SB: %d %08x %d (%d)\n",
  359. SB_s, SB_f, SB_e, SB_c);
  360. FP_CONV(D, S, 2, 1, DR, SB);
  361. goto pack_d;
  362. }
  363. case EFDCTUIDZ:
  364. case EFDCTSIDZ:
  365. if (DB_c == FP_CLS_NAN) {
  366. vc.dp[0] = 0;
  367. FP_SET_EXCEPTION(FP_EX_INVALID);
  368. } else {
  369. FP_TO_INT_D(vc.dp[0], DB, 64,
  370. ((func & 0x1) == 0) ? 1 : 0);
  371. }
  372. goto update_regs;
  373. case EFDCTUI:
  374. case EFDCTSI:
  375. if (DB_c == FP_CLS_NAN) {
  376. vc.wp[1] = 0;
  377. FP_SET_EXCEPTION(FP_EX_INVALID);
  378. } else {
  379. FP_TO_INT_ROUND_D(vc.wp[1], DB, 32,
  380. ((func & 0x3) != 0) ? 1 : 0);
  381. }
  382. goto update_regs;
  383. case EFDCTUIZ:
  384. case EFDCTSIZ:
  385. if (DB_c == FP_CLS_NAN) {
  386. vc.wp[1] = 0;
  387. FP_SET_EXCEPTION(FP_EX_INVALID);
  388. } else {
  389. FP_TO_INT_D(vc.wp[1], DB, 32,
  390. ((func & 0x3) != 0) ? 1 : 0);
  391. }
  392. goto update_regs;
  393. default:
  394. goto illegal;
  395. }
  396. break;
  397. pack_d:
  398. pr_debug("DR: %d %08x %08x %d (%d)\n",
  399. DR_s, DR_f1, DR_f0, DR_e, DR_c);
  400. FP_PACK_DP(vc.dp, DR);
  401. goto update_regs;
  402. cmp_d:
  403. FP_CMP_D(IR, DA, DB, 3);
  404. if (IR == 3 && (FP_ISSIGNAN_D(DA) || FP_ISSIGNAN_D(DB)))
  405. FP_SET_EXCEPTION(FP_EX_INVALID);
  406. if (IR == cmp) {
  407. IR = 0x4;
  408. } else {
  409. IR = 0;
  410. }
  411. goto update_ccr;
  412. }
  413. case VCT: {
  414. FP_DECL_S(SA0); FP_DECL_S(SB0); FP_DECL_S(SR0);
  415. FP_DECL_S(SA1); FP_DECL_S(SB1); FP_DECL_S(SR1);
  416. int IR0, IR1;
  417. switch (type) {
  418. case AB:
  419. case XCR:
  420. FP_UNPACK_SP(SA0, va.wp);
  421. FP_UNPACK_SP(SA1, va.wp + 1);
  422. fallthrough;
  423. case XB:
  424. FP_UNPACK_SP(SB0, vb.wp);
  425. FP_UNPACK_SP(SB1, vb.wp + 1);
  426. break;
  427. case XA:
  428. FP_UNPACK_SP(SA0, va.wp);
  429. FP_UNPACK_SP(SA1, va.wp + 1);
  430. break;
  431. }
  432. pr_debug("SA0: %d %08x %d (%d)\n",
  433. SA0_s, SA0_f, SA0_e, SA0_c);
  434. pr_debug("SA1: %d %08x %d (%d)\n",
  435. SA1_s, SA1_f, SA1_e, SA1_c);
  436. pr_debug("SB0: %d %08x %d (%d)\n",
  437. SB0_s, SB0_f, SB0_e, SB0_c);
  438. pr_debug("SB1: %d %08x %d (%d)\n",
  439. SB1_s, SB1_f, SB1_e, SB1_c);
  440. switch (func) {
  441. case EVFSABS:
  442. vc.wp[0] = va.wp[0] & ~SIGN_BIT_S;
  443. vc.wp[1] = va.wp[1] & ~SIGN_BIT_S;
  444. goto update_regs;
  445. case EVFSNABS:
  446. vc.wp[0] = va.wp[0] | SIGN_BIT_S;
  447. vc.wp[1] = va.wp[1] | SIGN_BIT_S;
  448. goto update_regs;
  449. case EVFSNEG:
  450. vc.wp[0] = va.wp[0] ^ SIGN_BIT_S;
  451. vc.wp[1] = va.wp[1] ^ SIGN_BIT_S;
  452. goto update_regs;
  453. case EVFSADD:
  454. FP_ADD_S(SR0, SA0, SB0);
  455. FP_ADD_S(SR1, SA1, SB1);
  456. goto pack_vs;
  457. case EVFSSUB:
  458. FP_SUB_S(SR0, SA0, SB0);
  459. FP_SUB_S(SR1, SA1, SB1);
  460. goto pack_vs;
  461. case EVFSMUL:
  462. FP_MUL_S(SR0, SA0, SB0);
  463. FP_MUL_S(SR1, SA1, SB1);
  464. goto pack_vs;
  465. case EVFSDIV:
  466. FP_DIV_S(SR0, SA0, SB0);
  467. FP_DIV_S(SR1, SA1, SB1);
  468. goto pack_vs;
  469. case EVFSCMPEQ:
  470. cmp = 0;
  471. goto cmp_vs;
  472. case EVFSCMPGT:
  473. cmp = 1;
  474. goto cmp_vs;
  475. case EVFSCMPLT:
  476. cmp = -1;
  477. goto cmp_vs;
  478. case EVFSCTUF:
  479. case EVFSCTSF:
  480. if (SB0_c == FP_CLS_NAN) {
  481. vc.wp[0] = 0;
  482. FP_SET_EXCEPTION(FP_EX_INVALID);
  483. } else {
  484. SB0_e += (func == EVFSCTSF ? 31 : 32);
  485. FP_TO_INT_ROUND_S(vc.wp[0], SB0, 32,
  486. (func == EVFSCTSF) ? 1 : 0);
  487. }
  488. if (SB1_c == FP_CLS_NAN) {
  489. vc.wp[1] = 0;
  490. FP_SET_EXCEPTION(FP_EX_INVALID);
  491. } else {
  492. SB1_e += (func == EVFSCTSF ? 31 : 32);
  493. FP_TO_INT_ROUND_S(vc.wp[1], SB1, 32,
  494. (func == EVFSCTSF) ? 1 : 0);
  495. }
  496. goto update_regs;
  497. case EVFSCTUI:
  498. case EVFSCTSI:
  499. if (SB0_c == FP_CLS_NAN) {
  500. vc.wp[0] = 0;
  501. FP_SET_EXCEPTION(FP_EX_INVALID);
  502. } else {
  503. FP_TO_INT_ROUND_S(vc.wp[0], SB0, 32,
  504. ((func & 0x3) != 0) ? 1 : 0);
  505. }
  506. if (SB1_c == FP_CLS_NAN) {
  507. vc.wp[1] = 0;
  508. FP_SET_EXCEPTION(FP_EX_INVALID);
  509. } else {
  510. FP_TO_INT_ROUND_S(vc.wp[1], SB1, 32,
  511. ((func & 0x3) != 0) ? 1 : 0);
  512. }
  513. goto update_regs;
  514. case EVFSCTUIZ:
  515. case EVFSCTSIZ:
  516. if (SB0_c == FP_CLS_NAN) {
  517. vc.wp[0] = 0;
  518. FP_SET_EXCEPTION(FP_EX_INVALID);
  519. } else {
  520. FP_TO_INT_S(vc.wp[0], SB0, 32,
  521. ((func & 0x3) != 0) ? 1 : 0);
  522. }
  523. if (SB1_c == FP_CLS_NAN) {
  524. vc.wp[1] = 0;
  525. FP_SET_EXCEPTION(FP_EX_INVALID);
  526. } else {
  527. FP_TO_INT_S(vc.wp[1], SB1, 32,
  528. ((func & 0x3) != 0) ? 1 : 0);
  529. }
  530. goto update_regs;
  531. default:
  532. goto illegal;
  533. }
  534. break;
  535. pack_vs:
  536. pr_debug("SR0: %d %08x %d (%d)\n",
  537. SR0_s, SR0_f, SR0_e, SR0_c);
  538. pr_debug("SR1: %d %08x %d (%d)\n",
  539. SR1_s, SR1_f, SR1_e, SR1_c);
  540. FP_PACK_SP(vc.wp, SR0);
  541. FP_PACK_SP(vc.wp + 1, SR1);
  542. goto update_regs;
  543. cmp_vs:
  544. {
  545. int ch, cl;
  546. FP_CMP_S(IR0, SA0, SB0, 3);
  547. FP_CMP_S(IR1, SA1, SB1, 3);
  548. if (IR0 == 3 && (FP_ISSIGNAN_S(SA0) || FP_ISSIGNAN_S(SB0)))
  549. FP_SET_EXCEPTION(FP_EX_INVALID);
  550. if (IR1 == 3 && (FP_ISSIGNAN_S(SA1) || FP_ISSIGNAN_S(SB1)))
  551. FP_SET_EXCEPTION(FP_EX_INVALID);
  552. ch = (IR0 == cmp) ? 1 : 0;
  553. cl = (IR1 == cmp) ? 1 : 0;
  554. IR = (ch << 3) | (cl << 2) | ((ch | cl) << 1) |
  555. ((ch & cl) << 0);
  556. goto update_ccr;
  557. }
  558. }
  559. default:
  560. return -EINVAL;
  561. }
  562. update_ccr:
  563. regs->ccr &= ~(15 << ((7 - ((speinsn >> 23) & 0x7)) << 2));
  564. regs->ccr |= (IR << ((7 - ((speinsn >> 23) & 0x7)) << 2));
  565. update_regs:
  566. /*
  567. * If the "invalid" exception sticky bit was set by the
  568. * processor for non-finite input, but was not set before the
  569. * instruction being emulated, clear it. Likewise for the
  570. * "underflow" bit, which may have been set by the processor
  571. * for exact underflow, not just inexact underflow when the
  572. * flag should be set for IEEE 754 semantics. Other sticky
  573. * exceptions will only be set by the processor when they are
  574. * correct according to IEEE 754 semantics, and we must not
  575. * clear sticky bits that were already set before the emulated
  576. * instruction as they represent the user-visible sticky
  577. * exception status. "inexact" traps to kernel are not
  578. * required for IEEE semantics and are not enabled by default,
  579. * so the "inexact" sticky bit may have been set by a previous
  580. * instruction without the kernel being aware of it.
  581. */
  582. __FPU_FPSCR
  583. &= ~(FP_EX_INVALID | FP_EX_UNDERFLOW) | current->thread.spefscr_last;
  584. __FPU_FPSCR |= (FP_CUR_EXCEPTIONS & FP_EX_MASK);
  585. mtspr(SPRN_SPEFSCR, __FPU_FPSCR);
  586. current->thread.spefscr_last = __FPU_FPSCR;
  587. current->thread.evr[fc] = vc.wp[0];
  588. regs->gpr[fc] = vc.wp[1];
  589. pr_debug("ccr = %08lx\n", regs->ccr);
  590. pr_debug("cur exceptions = %08x spefscr = %08lx\n",
  591. FP_CUR_EXCEPTIONS, __FPU_FPSCR);
  592. pr_debug("vc: %08x %08x\n", vc.wp[0], vc.wp[1]);
  593. pr_debug("va: %08x %08x\n", va.wp[0], va.wp[1]);
  594. pr_debug("vb: %08x %08x\n", vb.wp[0], vb.wp[1]);
  595. if (current->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
  596. if ((FP_CUR_EXCEPTIONS & FP_EX_DIVZERO)
  597. && (current->thread.fpexc_mode & PR_FP_EXC_DIV))
  598. return 1;
  599. if ((FP_CUR_EXCEPTIONS & FP_EX_OVERFLOW)
  600. && (current->thread.fpexc_mode & PR_FP_EXC_OVF))
  601. return 1;
  602. if ((FP_CUR_EXCEPTIONS & FP_EX_UNDERFLOW)
  603. && (current->thread.fpexc_mode & PR_FP_EXC_UND))
  604. return 1;
  605. if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT)
  606. && (current->thread.fpexc_mode & PR_FP_EXC_RES))
  607. return 1;
  608. if ((FP_CUR_EXCEPTIONS & FP_EX_INVALID)
  609. && (current->thread.fpexc_mode & PR_FP_EXC_INV))
  610. return 1;
  611. }
  612. return 0;
  613. illegal:
  614. if (have_e500_cpu_a005_erratum) {
  615. /* according to e500 cpu a005 erratum, reissue efp inst */
  616. regs_add_return_ip(regs, -4);
  617. pr_debug("re-issue efp inst: %08lx\n", speinsn);
  618. return 0;
  619. }
  620. printk(KERN_ERR "\nOoops! IEEE-754 compliance handler encountered un-supported instruction.\ninst code: %08lx\n", speinsn);
  621. return -ENOSYS;
  622. }
  623. int speround_handler(struct pt_regs *regs)
  624. {
  625. union dw_union fgpr;
  626. int s_lo, s_hi;
  627. int lo_inexact, hi_inexact;
  628. int fp_result;
  629. unsigned long speinsn, type, fb, fc, fptype, func;
  630. if (get_user(speinsn, (unsigned int __user *) regs->nip))
  631. return -EFAULT;
  632. if ((speinsn >> 26) != 4)
  633. return -EINVAL; /* not an spe instruction */
  634. func = speinsn & 0x7ff;
  635. type = insn_type(func);
  636. if (type == XCR) return -ENOSYS;
  637. __FPU_FPSCR = mfspr(SPRN_SPEFSCR);
  638. pr_debug("speinsn:%08lx spefscr:%08lx\n", speinsn, __FPU_FPSCR);
  639. fptype = (speinsn >> 5) & 0x7;
  640. /* No need to round if the result is exact */
  641. lo_inexact = __FPU_FPSCR & (SPEFSCR_FG | SPEFSCR_FX);
  642. hi_inexact = __FPU_FPSCR & (SPEFSCR_FGH | SPEFSCR_FXH);
  643. if (!(lo_inexact || (hi_inexact && fptype == VCT)))
  644. return 0;
  645. fc = (speinsn >> 21) & 0x1f;
  646. s_lo = regs->gpr[fc] & SIGN_BIT_S;
  647. s_hi = current->thread.evr[fc] & SIGN_BIT_S;
  648. fgpr.wp[0] = current->thread.evr[fc];
  649. fgpr.wp[1] = regs->gpr[fc];
  650. fb = (speinsn >> 11) & 0x1f;
  651. switch (func) {
  652. case EFSCTUIZ:
  653. case EFSCTSIZ:
  654. case EVFSCTUIZ:
  655. case EVFSCTSIZ:
  656. case EFDCTUIDZ:
  657. case EFDCTSIDZ:
  658. case EFDCTUIZ:
  659. case EFDCTSIZ:
  660. /*
  661. * These instructions always round to zero,
  662. * independent of the rounding mode.
  663. */
  664. return 0;
  665. case EFSCTUI:
  666. case EFSCTUF:
  667. case EVFSCTUI:
  668. case EVFSCTUF:
  669. case EFDCTUI:
  670. case EFDCTUF:
  671. fp_result = 0;
  672. s_lo = 0;
  673. s_hi = 0;
  674. break;
  675. case EFSCTSI:
  676. case EFSCTSF:
  677. fp_result = 0;
  678. /* Recover the sign of a zero result if possible. */
  679. if (fgpr.wp[1] == 0)
  680. s_lo = regs->gpr[fb] & SIGN_BIT_S;
  681. break;
  682. case EVFSCTSI:
  683. case EVFSCTSF:
  684. fp_result = 0;
  685. /* Recover the sign of a zero result if possible. */
  686. if (fgpr.wp[1] == 0)
  687. s_lo = regs->gpr[fb] & SIGN_BIT_S;
  688. if (fgpr.wp[0] == 0)
  689. s_hi = current->thread.evr[fb] & SIGN_BIT_S;
  690. break;
  691. case EFDCTSI:
  692. case EFDCTSF:
  693. fp_result = 0;
  694. s_hi = s_lo;
  695. /* Recover the sign of a zero result if possible. */
  696. if (fgpr.wp[1] == 0)
  697. s_hi = current->thread.evr[fb] & SIGN_BIT_S;
  698. break;
  699. default:
  700. fp_result = 1;
  701. break;
  702. }
  703. pr_debug("round fgpr: %08x %08x\n", fgpr.wp[0], fgpr.wp[1]);
  704. switch (fptype) {
  705. /* Since SPE instructions on E500 core can handle round to nearest
  706. * and round toward zero with IEEE-754 complied, we just need
  707. * to handle round toward +Inf and round toward -Inf by software.
  708. */
  709. case SPFP:
  710. if ((FP_ROUNDMODE) == FP_RND_PINF) {
  711. if (!s_lo) fgpr.wp[1]++; /* Z > 0, choose Z1 */
  712. } else { /* round to -Inf */
  713. if (s_lo) {
  714. if (fp_result)
  715. fgpr.wp[1]++; /* Z < 0, choose Z2 */
  716. else
  717. fgpr.wp[1]--; /* Z < 0, choose Z2 */
  718. }
  719. }
  720. break;
  721. case DPFP:
  722. if (FP_ROUNDMODE == FP_RND_PINF) {
  723. if (!s_hi) {
  724. if (fp_result)
  725. fgpr.dp[0]++; /* Z > 0, choose Z1 */
  726. else
  727. fgpr.wp[1]++; /* Z > 0, choose Z1 */
  728. }
  729. } else { /* round to -Inf */
  730. if (s_hi) {
  731. if (fp_result)
  732. fgpr.dp[0]++; /* Z < 0, choose Z2 */
  733. else
  734. fgpr.wp[1]--; /* Z < 0, choose Z2 */
  735. }
  736. }
  737. break;
  738. case VCT:
  739. if (FP_ROUNDMODE == FP_RND_PINF) {
  740. if (lo_inexact && !s_lo)
  741. fgpr.wp[1]++; /* Z_low > 0, choose Z1 */
  742. if (hi_inexact && !s_hi)
  743. fgpr.wp[0]++; /* Z_high word > 0, choose Z1 */
  744. } else { /* round to -Inf */
  745. if (lo_inexact && s_lo) {
  746. if (fp_result)
  747. fgpr.wp[1]++; /* Z_low < 0, choose Z2 */
  748. else
  749. fgpr.wp[1]--; /* Z_low < 0, choose Z2 */
  750. }
  751. if (hi_inexact && s_hi) {
  752. if (fp_result)
  753. fgpr.wp[0]++; /* Z_high < 0, choose Z2 */
  754. else
  755. fgpr.wp[0]--; /* Z_high < 0, choose Z2 */
  756. }
  757. }
  758. break;
  759. default:
  760. return -EINVAL;
  761. }
  762. current->thread.evr[fc] = fgpr.wp[0];
  763. regs->gpr[fc] = fgpr.wp[1];
  764. pr_debug(" to fgpr: %08x %08x\n", fgpr.wp[0], fgpr.wp[1]);
  765. if (current->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  766. return (current->thread.fpexc_mode & PR_FP_EXC_RES) ? 1 : 0;
  767. return 0;
  768. }
  769. static int __init spe_mathemu_init(void)
  770. {
  771. u32 pvr, maj, min;
  772. pvr = mfspr(SPRN_PVR);
  773. if ((PVR_VER(pvr) == PVR_VER_E500V1) ||
  774. (PVR_VER(pvr) == PVR_VER_E500V2)) {
  775. maj = PVR_MAJ(pvr);
  776. min = PVR_MIN(pvr);
  777. /*
  778. * E500 revision below 1.1, 2.3, 3.1, 4.1, 5.1
  779. * need cpu a005 errata workaround
  780. */
  781. switch (maj) {
  782. case 1:
  783. if (min < 1)
  784. have_e500_cpu_a005_erratum = 1;
  785. break;
  786. case 2:
  787. if (min < 3)
  788. have_e500_cpu_a005_erratum = 1;
  789. break;
  790. case 3:
  791. case 4:
  792. case 5:
  793. if (min < 1)
  794. have_e500_cpu_a005_erratum = 1;
  795. break;
  796. default:
  797. break;
  798. }
  799. }
  800. return 0;
  801. }
  802. module_init(spe_mathemu_init);