book3s_hv_builtin.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
  4. */
  5. #include <linux/cpu.h>
  6. #include <linux/kvm_host.h>
  7. #include <linux/preempt.h>
  8. #include <linux/export.h>
  9. #include <linux/sched.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/init.h>
  12. #include <linux/memblock.h>
  13. #include <linux/sizes.h>
  14. #include <linux/cma.h>
  15. #include <linux/bitops.h>
  16. #include <asm/cputable.h>
  17. #include <asm/interrupt.h>
  18. #include <asm/kvm_ppc.h>
  19. #include <asm/kvm_book3s.h>
  20. #include <asm/machdep.h>
  21. #include <asm/xics.h>
  22. #include <asm/xive.h>
  23. #include <asm/dbell.h>
  24. #include <asm/cputhreads.h>
  25. #include <asm/io.h>
  26. #include <asm/opal.h>
  27. #include <asm/smp.h>
  28. #define KVM_CMA_CHUNK_ORDER 18
  29. #include "book3s_xics.h"
  30. #include "book3s_xive.h"
  31. /*
  32. * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
  33. * should be power of 2.
  34. */
  35. #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
  36. /*
  37. * By default we reserve 5% of memory for hash pagetable allocation.
  38. */
  39. static unsigned long kvm_cma_resv_ratio = 5;
  40. static struct cma *kvm_cma;
  41. static int __init early_parse_kvm_cma_resv(char *p)
  42. {
  43. pr_debug("%s(%s)\n", __func__, p);
  44. if (!p)
  45. return -EINVAL;
  46. return kstrtoul(p, 0, &kvm_cma_resv_ratio);
  47. }
  48. early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
  49. struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
  50. {
  51. VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
  52. return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
  53. false);
  54. }
  55. EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
  56. void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
  57. {
  58. cma_release(kvm_cma, page, nr_pages);
  59. }
  60. EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
  61. /**
  62. * kvm_cma_reserve() - reserve area for kvm hash pagetable
  63. *
  64. * This function reserves memory from early allocator. It should be
  65. * called by arch specific code once the memblock allocator
  66. * has been activated and all other subsystems have already allocated/reserved
  67. * memory.
  68. */
  69. void __init kvm_cma_reserve(void)
  70. {
  71. unsigned long align_size;
  72. phys_addr_t selected_size;
  73. /*
  74. * We need CMA reservation only when we are in HV mode
  75. */
  76. if (!cpu_has_feature(CPU_FTR_HVMODE))
  77. return;
  78. selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
  79. if (selected_size) {
  80. pr_info("%s: reserving %ld MiB for global area\n", __func__,
  81. (unsigned long)selected_size / SZ_1M);
  82. align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
  83. cma_declare_contiguous(0, selected_size, 0, align_size,
  84. KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
  85. &kvm_cma);
  86. }
  87. }
  88. /*
  89. * Real-mode H_CONFER implementation.
  90. * We check if we are the only vcpu out of this virtual core
  91. * still running in the guest and not ceded. If so, we pop up
  92. * to the virtual-mode implementation; if not, just return to
  93. * the guest.
  94. */
  95. long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
  96. unsigned int yield_count)
  97. {
  98. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  99. int ptid = local_paca->kvm_hstate.ptid;
  100. int threads_running;
  101. int threads_ceded;
  102. int threads_conferring;
  103. u64 stop = get_tb() + 10 * tb_ticks_per_usec;
  104. int rv = H_SUCCESS; /* => don't yield */
  105. set_bit(ptid, &vc->conferring_threads);
  106. while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
  107. threads_running = VCORE_ENTRY_MAP(vc);
  108. threads_ceded = vc->napping_threads;
  109. threads_conferring = vc->conferring_threads;
  110. if ((threads_ceded | threads_conferring) == threads_running) {
  111. rv = H_TOO_HARD; /* => do yield */
  112. break;
  113. }
  114. }
  115. clear_bit(ptid, &vc->conferring_threads);
  116. return rv;
  117. }
  118. /*
  119. * When running HV mode KVM we need to block certain operations while KVM VMs
  120. * exist in the system. We use a counter of VMs to track this.
  121. *
  122. * One of the operations we need to block is onlining of secondaries, so we
  123. * protect hv_vm_count with cpus_read_lock/unlock().
  124. */
  125. static atomic_t hv_vm_count;
  126. void kvm_hv_vm_activated(void)
  127. {
  128. cpus_read_lock();
  129. atomic_inc(&hv_vm_count);
  130. cpus_read_unlock();
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
  133. void kvm_hv_vm_deactivated(void)
  134. {
  135. cpus_read_lock();
  136. atomic_dec(&hv_vm_count);
  137. cpus_read_unlock();
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
  140. bool kvm_hv_mode_active(void)
  141. {
  142. return atomic_read(&hv_vm_count) != 0;
  143. }
  144. extern int hcall_real_table[], hcall_real_table_end[];
  145. int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
  146. {
  147. cmd /= 4;
  148. if (cmd < hcall_real_table_end - hcall_real_table &&
  149. hcall_real_table[cmd])
  150. return 1;
  151. return 0;
  152. }
  153. EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
  154. int kvmppc_hwrng_present(void)
  155. {
  156. return ppc_md.get_random_seed != NULL;
  157. }
  158. EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
  159. long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
  160. {
  161. if (ppc_md.get_random_seed &&
  162. ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
  163. return H_SUCCESS;
  164. return H_HARDWARE;
  165. }
  166. /*
  167. * Send an interrupt or message to another CPU.
  168. * The caller needs to include any barrier needed to order writes
  169. * to memory vs. the IPI/message.
  170. */
  171. void kvmhv_rm_send_ipi(int cpu)
  172. {
  173. void __iomem *xics_phys;
  174. unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
  175. /* On POWER9 we can use msgsnd for any destination cpu. */
  176. if (cpu_has_feature(CPU_FTR_ARCH_300)) {
  177. msg |= get_hard_smp_processor_id(cpu);
  178. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  179. return;
  180. }
  181. /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
  182. if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
  183. cpu_first_thread_sibling(cpu) ==
  184. cpu_first_thread_sibling(raw_smp_processor_id())) {
  185. msg |= cpu_thread_in_core(cpu);
  186. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  187. return;
  188. }
  189. /* We should never reach this */
  190. if (WARN_ON_ONCE(xics_on_xive()))
  191. return;
  192. /* Else poke the target with an IPI */
  193. xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
  194. if (xics_phys)
  195. __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
  196. else
  197. opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
  198. }
  199. /*
  200. * The following functions are called from the assembly code
  201. * in book3s_hv_rmhandlers.S.
  202. */
  203. static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
  204. {
  205. int cpu = vc->pcpu;
  206. /* Order setting of exit map vs. msgsnd/IPI */
  207. smp_mb();
  208. for (; active; active >>= 1, ++cpu)
  209. if (active & 1)
  210. kvmhv_rm_send_ipi(cpu);
  211. }
  212. void kvmhv_commence_exit(int trap)
  213. {
  214. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  215. int ptid = local_paca->kvm_hstate.ptid;
  216. struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
  217. int me, ee, i;
  218. /* Set our bit in the threads-exiting-guest map in the 0xff00
  219. bits of vcore->entry_exit_map */
  220. me = 0x100 << ptid;
  221. do {
  222. ee = vc->entry_exit_map;
  223. } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
  224. /* Are we the first here? */
  225. if ((ee >> 8) != 0)
  226. return;
  227. /*
  228. * Trigger the other threads in this vcore to exit the guest.
  229. * If this is a hypervisor decrementer interrupt then they
  230. * will be already on their way out of the guest.
  231. */
  232. if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
  233. kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
  234. /*
  235. * If we are doing dynamic micro-threading, interrupt the other
  236. * subcores to pull them out of their guests too.
  237. */
  238. if (!sip)
  239. return;
  240. for (i = 0; i < MAX_SUBCORES; ++i) {
  241. vc = sip->vc[i];
  242. if (!vc)
  243. break;
  244. do {
  245. ee = vc->entry_exit_map;
  246. /* Already asked to exit? */
  247. if ((ee >> 8) != 0)
  248. break;
  249. } while (cmpxchg(&vc->entry_exit_map, ee,
  250. ee | VCORE_EXIT_REQ) != ee);
  251. if ((ee >> 8) == 0)
  252. kvmhv_interrupt_vcore(vc, ee);
  253. }
  254. }
  255. struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
  256. EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
  257. #ifdef CONFIG_KVM_XICS
  258. static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
  259. u32 xisr)
  260. {
  261. int i;
  262. /*
  263. * We access the mapped array here without a lock. That
  264. * is safe because we never reduce the number of entries
  265. * in the array and we never change the v_hwirq field of
  266. * an entry once it is set.
  267. *
  268. * We have also carefully ordered the stores in the writer
  269. * and the loads here in the reader, so that if we find a matching
  270. * hwirq here, the associated GSI and irq_desc fields are valid.
  271. */
  272. for (i = 0; i < pimap->n_mapped; i++) {
  273. if (xisr == pimap->mapped[i].r_hwirq) {
  274. /*
  275. * Order subsequent reads in the caller to serialize
  276. * with the writer.
  277. */
  278. smp_rmb();
  279. return &pimap->mapped[i];
  280. }
  281. }
  282. return NULL;
  283. }
  284. /*
  285. * If we have an interrupt that's not an IPI, check if we have a
  286. * passthrough adapter and if so, check if this external interrupt
  287. * is for the adapter.
  288. * We will attempt to deliver the IRQ directly to the target VCPU's
  289. * ICP, the virtual ICP (based on affinity - the xive value in ICS).
  290. *
  291. * If the delivery fails or if this is not for a passthrough adapter,
  292. * return to the host to handle this interrupt. We earlier
  293. * saved a copy of the XIRR in the PACA, it will be picked up by
  294. * the host ICP driver.
  295. */
  296. static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
  297. {
  298. struct kvmppc_passthru_irqmap *pimap;
  299. struct kvmppc_irq_map *irq_map;
  300. struct kvm_vcpu *vcpu;
  301. vcpu = local_paca->kvm_hstate.kvm_vcpu;
  302. if (!vcpu)
  303. return 1;
  304. pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
  305. if (!pimap)
  306. return 1;
  307. irq_map = get_irqmap(pimap, xisr);
  308. if (!irq_map)
  309. return 1;
  310. /* We're handling this interrupt, generic code doesn't need to */
  311. local_paca->kvm_hstate.saved_xirr = 0;
  312. return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
  313. }
  314. #else
  315. static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
  316. {
  317. return 1;
  318. }
  319. #endif
  320. /*
  321. * Determine what sort of external interrupt is pending (if any).
  322. * Returns:
  323. * 0 if no interrupt is pending
  324. * 1 if an interrupt is pending that needs to be handled by the host
  325. * 2 Passthrough that needs completion in the host
  326. * -1 if there was a guest wakeup IPI (which has now been cleared)
  327. * -2 if there is PCI passthrough external interrupt that was handled
  328. */
  329. static long kvmppc_read_one_intr(bool *again);
  330. long kvmppc_read_intr(void)
  331. {
  332. long ret = 0;
  333. long rc;
  334. bool again;
  335. if (xive_enabled())
  336. return 1;
  337. do {
  338. again = false;
  339. rc = kvmppc_read_one_intr(&again);
  340. if (rc && (ret == 0 || rc > ret))
  341. ret = rc;
  342. } while (again);
  343. return ret;
  344. }
  345. static long kvmppc_read_one_intr(bool *again)
  346. {
  347. void __iomem *xics_phys;
  348. u32 h_xirr;
  349. __be32 xirr;
  350. u32 xisr;
  351. u8 host_ipi;
  352. int64_t rc;
  353. if (xive_enabled())
  354. return 1;
  355. /* see if a host IPI is pending */
  356. host_ipi = local_paca->kvm_hstate.host_ipi;
  357. if (host_ipi)
  358. return 1;
  359. /* Now read the interrupt from the ICP */
  360. xics_phys = local_paca->kvm_hstate.xics_phys;
  361. rc = 0;
  362. if (!xics_phys)
  363. rc = opal_int_get_xirr(&xirr, false);
  364. else
  365. xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
  366. if (rc < 0)
  367. return 1;
  368. /*
  369. * Save XIRR for later. Since we get control in reverse endian
  370. * on LE systems, save it byte reversed and fetch it back in
  371. * host endian. Note that xirr is the value read from the
  372. * XIRR register, while h_xirr is the host endian version.
  373. */
  374. h_xirr = be32_to_cpu(xirr);
  375. local_paca->kvm_hstate.saved_xirr = h_xirr;
  376. xisr = h_xirr & 0xffffff;
  377. /*
  378. * Ensure that the store/load complete to guarantee all side
  379. * effects of loading from XIRR has completed
  380. */
  381. smp_mb();
  382. /* if nothing pending in the ICP */
  383. if (!xisr)
  384. return 0;
  385. /* We found something in the ICP...
  386. *
  387. * If it is an IPI, clear the MFRR and EOI it.
  388. */
  389. if (xisr == XICS_IPI) {
  390. rc = 0;
  391. if (xics_phys) {
  392. __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
  393. __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
  394. } else {
  395. opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
  396. rc = opal_int_eoi(h_xirr);
  397. }
  398. /* If rc > 0, there is another interrupt pending */
  399. *again = rc > 0;
  400. /*
  401. * Need to ensure side effects of above stores
  402. * complete before proceeding.
  403. */
  404. smp_mb();
  405. /*
  406. * We need to re-check host IPI now in case it got set in the
  407. * meantime. If it's clear, we bounce the interrupt to the
  408. * guest
  409. */
  410. host_ipi = local_paca->kvm_hstate.host_ipi;
  411. if (unlikely(host_ipi != 0)) {
  412. /* We raced with the host,
  413. * we need to resend that IPI, bummer
  414. */
  415. if (xics_phys)
  416. __raw_rm_writeb(IPI_PRIORITY,
  417. xics_phys + XICS_MFRR);
  418. else
  419. opal_int_set_mfrr(hard_smp_processor_id(),
  420. IPI_PRIORITY);
  421. /* Let side effects complete */
  422. smp_mb();
  423. return 1;
  424. }
  425. /* OK, it's an IPI for us */
  426. local_paca->kvm_hstate.saved_xirr = 0;
  427. return -1;
  428. }
  429. return kvmppc_check_passthru(xisr, xirr, again);
  430. }
  431. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  432. {
  433. vcpu->arch.ceded = 0;
  434. if (vcpu->arch.timer_running) {
  435. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  436. vcpu->arch.timer_running = 0;
  437. }
  438. }
  439. void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  440. {
  441. /* Guest must always run with ME enabled, HV disabled. */
  442. msr = (msr | MSR_ME) & ~MSR_HV;
  443. /*
  444. * Check for illegal transactional state bit combination
  445. * and if we find it, force the TS field to a safe state.
  446. */
  447. if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
  448. msr &= ~MSR_TS_MASK;
  449. vcpu->arch.shregs.msr = msr;
  450. kvmppc_end_cede(vcpu);
  451. }
  452. EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
  453. static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
  454. {
  455. unsigned long msr, pc, new_msr, new_pc;
  456. msr = kvmppc_get_msr(vcpu);
  457. pc = kvmppc_get_pc(vcpu);
  458. new_msr = vcpu->arch.intr_msr;
  459. new_pc = vec;
  460. /* If transactional, change to suspend mode on IRQ delivery */
  461. if (MSR_TM_TRANSACTIONAL(msr))
  462. new_msr |= MSR_TS_S;
  463. else
  464. new_msr |= msr & MSR_TS_MASK;
  465. /*
  466. * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
  467. * applicable. AIL=2 is not supported.
  468. *
  469. * AIL does not apply to SRESET, MCE, or HMI (which is never
  470. * delivered to the guest), and does not apply if IR=0 or DR=0.
  471. */
  472. if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
  473. vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
  474. (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
  475. (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
  476. new_msr |= MSR_IR | MSR_DR;
  477. new_pc += 0xC000000000004000ULL;
  478. }
  479. kvmppc_set_srr0(vcpu, pc);
  480. kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
  481. kvmppc_set_pc(vcpu, new_pc);
  482. vcpu->arch.shregs.msr = new_msr;
  483. }
  484. void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
  485. {
  486. inject_interrupt(vcpu, vec, srr1_flags);
  487. kvmppc_end_cede(vcpu);
  488. }
  489. EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
  490. /*
  491. * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
  492. * Can we inject a Decrementer or a External interrupt?
  493. */
  494. void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
  495. {
  496. int ext;
  497. unsigned long lpcr;
  498. WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
  499. /* Insert EXTERNAL bit into LPCR at the MER bit position */
  500. ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
  501. lpcr = mfspr(SPRN_LPCR);
  502. lpcr |= ext << LPCR_MER_SH;
  503. mtspr(SPRN_LPCR, lpcr);
  504. isync();
  505. if (vcpu->arch.shregs.msr & MSR_EE) {
  506. if (ext) {
  507. inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
  508. } else {
  509. long int dec = mfspr(SPRN_DEC);
  510. if (!(lpcr & LPCR_LD))
  511. dec = (int) dec;
  512. if (dec < 0)
  513. inject_interrupt(vcpu,
  514. BOOK3S_INTERRUPT_DECREMENTER, 0);
  515. }
  516. }
  517. if (vcpu->arch.doorbell_request) {
  518. mtspr(SPRN_DPDES, 1);
  519. vcpu->arch.vcore->dpdes = 1;
  520. smp_wmb();
  521. vcpu->arch.doorbell_request = 0;
  522. }
  523. }
  524. static void flush_guest_tlb(struct kvm *kvm)
  525. {
  526. unsigned long rb, set;
  527. rb = PPC_BIT(52); /* IS = 2 */
  528. for (set = 0; set < kvm->arch.tlb_sets; ++set) {
  529. /* R=0 PRS=0 RIC=0 */
  530. asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
  531. : : "r" (rb), "i" (0), "i" (0), "i" (0),
  532. "r" (0) : "memory");
  533. rb += PPC_BIT(51); /* increment set number */
  534. }
  535. asm volatile("ptesync": : :"memory");
  536. }
  537. void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
  538. {
  539. if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
  540. flush_guest_tlb(kvm);
  541. /* Clear the bit after the TLB flush */
  542. cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
  543. }
  544. }
  545. EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);