123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Watchdog support on powerpc systems.
- *
- * Copyright 2017, IBM Corporation.
- *
- * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
- */
- #define pr_fmt(fmt) "watchdog: " fmt
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/init.h>
- #include <linux/percpu.h>
- #include <linux/cpu.h>
- #include <linux/nmi.h>
- #include <linux/module.h>
- #include <linux/export.h>
- #include <linux/kprobes.h>
- #include <linux/hardirq.h>
- #include <linux/reboot.h>
- #include <linux/slab.h>
- #include <linux/kdebug.h>
- #include <linux/sched/debug.h>
- #include <linux/delay.h>
- #include <linux/processor.h>
- #include <linux/smp.h>
- #include <asm/interrupt.h>
- #include <asm/paca.h>
- #include <asm/nmi.h>
- /*
- * The powerpc watchdog ensures that each CPU is able to service timers.
- * The watchdog sets up a simple timer on each CPU to run once per timer
- * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
- * the heartbeat.
- *
- * Then there are two systems to check that the heartbeat is still running.
- * The local soft-NMI, and the SMP checker.
- *
- * The soft-NMI checker can detect lockups on the local CPU. When interrupts
- * are disabled with local_irq_disable(), platforms that use soft-masking
- * can leave hardware interrupts enabled and handle them with a masked
- * interrupt handler. The masked handler can send the timer interrupt to the
- * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
- * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
- *
- * The soft-NMI checker will compare the heartbeat timestamp for this CPU
- * with the current time, and take action if the difference exceeds the
- * watchdog threshold.
- *
- * The limitation of the soft-NMI watchdog is that it does not work when
- * interrupts are hard disabled or otherwise not being serviced. This is
- * solved by also having a SMP watchdog where all CPUs check all other
- * CPUs heartbeat.
- *
- * The SMP checker can detect lockups on other CPUs. A global "pending"
- * cpumask is kept, containing all CPUs which enable the watchdog. Each
- * CPU clears their pending bit in their heartbeat timer. When the bitmask
- * becomes empty, the last CPU to clear its pending bit updates a global
- * timestamp and refills the pending bitmask.
- *
- * In the heartbeat timer, if any CPU notices that the global timestamp has
- * not been updated for a period exceeding the watchdog threshold, then it
- * means the CPU(s) with their bit still set in the pending mask have had
- * their heartbeat stop, and action is taken.
- *
- * Some platforms implement true NMI IPIs, which can be used by the SMP
- * watchdog to detect an unresponsive CPU and pull it out of its stuck
- * state with the NMI IPI, to get crash/debug data from it. This way the
- * SMP watchdog can detect hardware interrupts off lockups.
- */
- static cpumask_t wd_cpus_enabled __read_mostly;
- static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
- static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
- static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
- static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
- static DEFINE_PER_CPU(u64, wd_timer_tb);
- /* SMP checker bits */
- static unsigned long __wd_smp_lock;
- static unsigned long __wd_reporting;
- static unsigned long __wd_nmi_output;
- static cpumask_t wd_smp_cpus_pending;
- static cpumask_t wd_smp_cpus_stuck;
- static u64 wd_smp_last_reset_tb;
- #ifdef CONFIG_PPC_PSERIES
- static u64 wd_timeout_pct;
- #endif
- /*
- * Try to take the exclusive watchdog action / NMI IPI / printing lock.
- * wd_smp_lock must be held. If this fails, we should return and wait
- * for the watchdog to kick in again (or another CPU to trigger it).
- *
- * Importantly, if hardlockup_panic is set, wd_try_report failure should
- * not delay the panic, because whichever other CPU is reporting will
- * call panic.
- */
- static bool wd_try_report(void)
- {
- if (__wd_reporting)
- return false;
- __wd_reporting = 1;
- return true;
- }
- /* End printing after successful wd_try_report. wd_smp_lock not required. */
- static void wd_end_reporting(void)
- {
- smp_mb(); /* End printing "critical section" */
- WARN_ON_ONCE(__wd_reporting == 0);
- WRITE_ONCE(__wd_reporting, 0);
- }
- static inline void wd_smp_lock(unsigned long *flags)
- {
- /*
- * Avoid locking layers if possible.
- * This may be called from low level interrupt handlers at some
- * point in future.
- */
- raw_local_irq_save(*flags);
- hard_irq_disable(); /* Make it soft-NMI safe */
- while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
- raw_local_irq_restore(*flags);
- spin_until_cond(!test_bit(0, &__wd_smp_lock));
- raw_local_irq_save(*flags);
- hard_irq_disable();
- }
- }
- static inline void wd_smp_unlock(unsigned long *flags)
- {
- clear_bit_unlock(0, &__wd_smp_lock);
- raw_local_irq_restore(*flags);
- }
- static void wd_lockup_ipi(struct pt_regs *regs)
- {
- int cpu = raw_smp_processor_id();
- u64 tb = get_tb();
- pr_emerg("CPU %d Hard LOCKUP\n", cpu);
- pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
- cpu, tb, per_cpu(wd_timer_tb, cpu),
- tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
- print_modules();
- print_irqtrace_events(current);
- if (regs)
- show_regs(regs);
- else
- dump_stack();
- /*
- * __wd_nmi_output must be set after we printk from NMI context.
- *
- * printk from NMI context defers printing to the console to irq_work.
- * If that NMI was taken in some code that is hard-locked, then irqs
- * are disabled so irq_work will never fire. That can result in the
- * hard lockup messages being delayed (indefinitely, until something
- * else kicks the console drivers).
- *
- * Setting __wd_nmi_output will cause another CPU to notice and kick
- * the console drivers for us.
- *
- * xchg is not needed here (it could be a smp_mb and store), but xchg
- * gives the memory ordering and atomicity required.
- */
- xchg(&__wd_nmi_output, 1);
- /* Do not panic from here because that can recurse into NMI IPI layer */
- }
- static bool set_cpu_stuck(int cpu)
- {
- cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
- cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
- /*
- * See wd_smp_clear_cpu_pending()
- */
- smp_mb();
- if (cpumask_empty(&wd_smp_cpus_pending)) {
- wd_smp_last_reset_tb = get_tb();
- cpumask_andnot(&wd_smp_cpus_pending,
- &wd_cpus_enabled,
- &wd_smp_cpus_stuck);
- return true;
- }
- return false;
- }
- static void watchdog_smp_panic(int cpu)
- {
- static cpumask_t wd_smp_cpus_ipi; // protected by reporting
- unsigned long flags;
- u64 tb, last_reset;
- int c;
- wd_smp_lock(&flags);
- /* Double check some things under lock */
- tb = get_tb();
- last_reset = wd_smp_last_reset_tb;
- if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb)
- goto out;
- if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
- goto out;
- if (!wd_try_report())
- goto out;
- for_each_online_cpu(c) {
- if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
- continue;
- if (c == cpu)
- continue; // should not happen
- __cpumask_set_cpu(c, &wd_smp_cpus_ipi);
- if (set_cpu_stuck(c))
- break;
- }
- if (cpumask_empty(&wd_smp_cpus_ipi)) {
- wd_end_reporting();
- goto out;
- }
- wd_smp_unlock(&flags);
- pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
- cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
- pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
- cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000);
- if (!sysctl_hardlockup_all_cpu_backtrace) {
- /*
- * Try to trigger the stuck CPUs, unless we are going to
- * get a backtrace on all of them anyway.
- */
- for_each_cpu(c, &wd_smp_cpus_ipi) {
- smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
- __cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
- }
- } else {
- trigger_allbutself_cpu_backtrace();
- cpumask_clear(&wd_smp_cpus_ipi);
- }
- if (hardlockup_panic)
- nmi_panic(NULL, "Hard LOCKUP");
- wd_end_reporting();
- return;
- out:
- wd_smp_unlock(&flags);
- }
- static void wd_smp_clear_cpu_pending(int cpu)
- {
- if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
- if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
- struct pt_regs *regs = get_irq_regs();
- unsigned long flags;
- pr_emerg("CPU %d became unstuck TB:%lld\n",
- cpu, get_tb());
- print_irqtrace_events(current);
- if (regs)
- show_regs(regs);
- else
- dump_stack();
- wd_smp_lock(&flags);
- cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
- wd_smp_unlock(&flags);
- } else {
- /*
- * The last CPU to clear pending should have reset the
- * watchdog so we generally should not find it empty
- * here if our CPU was clear. However it could happen
- * due to a rare race with another CPU taking the
- * last CPU out of the mask concurrently.
- *
- * We can't add a warning for it. But just in case
- * there is a problem with the watchdog that is causing
- * the mask to not be reset, try to kick it along here.
- */
- if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
- goto none_pending;
- }
- return;
- }
- /*
- * All other updates to wd_smp_cpus_pending are performed under
- * wd_smp_lock. All of them are atomic except the case where the
- * mask becomes empty and is reset. This will not happen here because
- * cpu was tested to be in the bitmap (above), and a CPU only clears
- * its own bit. _Except_ in the case where another CPU has detected a
- * hard lockup on our CPU and takes us out of the pending mask. So in
- * normal operation there will be no race here, no problem.
- *
- * In the lockup case, this atomic clear-bit vs a store that refills
- * other bits in the accessed word wll not be a problem. The bit clear
- * is atomic so it will not cause the store to get lost, and the store
- * will never set this bit so it will not overwrite the bit clear. The
- * only way for a stuck CPU to return to the pending bitmap is to
- * become unstuck itself.
- */
- cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
- /*
- * Order the store to clear pending with the load(s) to check all
- * words in the pending mask to check they are all empty. This orders
- * with the same barrier on another CPU. This prevents two CPUs
- * clearing the last 2 pending bits, but neither seeing the other's
- * store when checking if the mask is empty, and missing an empty
- * mask, which ends with a false positive.
- */
- smp_mb();
- if (cpumask_empty(&wd_smp_cpus_pending)) {
- unsigned long flags;
- none_pending:
- /*
- * Double check under lock because more than one CPU could see
- * a clear mask with the lockless check after clearing their
- * pending bits.
- */
- wd_smp_lock(&flags);
- if (cpumask_empty(&wd_smp_cpus_pending)) {
- wd_smp_last_reset_tb = get_tb();
- cpumask_andnot(&wd_smp_cpus_pending,
- &wd_cpus_enabled,
- &wd_smp_cpus_stuck);
- }
- wd_smp_unlock(&flags);
- }
- }
- static void watchdog_timer_interrupt(int cpu)
- {
- u64 tb = get_tb();
- per_cpu(wd_timer_tb, cpu) = tb;
- wd_smp_clear_cpu_pending(cpu);
- if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
- watchdog_smp_panic(cpu);
- if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) {
- /*
- * Something has called printk from NMI context. It might be
- * stuck, so this triggers a flush that will get that
- * printk output to the console.
- *
- * See wd_lockup_ipi.
- */
- printk_trigger_flush();
- }
- }
- DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
- {
- unsigned long flags;
- int cpu = raw_smp_processor_id();
- u64 tb;
- /* should only arrive from kernel, with irqs disabled */
- WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
- if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
- return 0;
- __this_cpu_inc(irq_stat.soft_nmi_irqs);
- tb = get_tb();
- if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
- /*
- * Taking wd_smp_lock here means it is a soft-NMI lock, which
- * means we can't take any regular or irqsafe spin locks while
- * holding this lock. This is why timers can't printk while
- * holding the lock.
- */
- wd_smp_lock(&flags);
- if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
- wd_smp_unlock(&flags);
- return 0;
- }
- if (!wd_try_report()) {
- wd_smp_unlock(&flags);
- /* Couldn't report, try again in 100ms */
- mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
- return 0;
- }
- set_cpu_stuck(cpu);
- wd_smp_unlock(&flags);
- pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
- cpu, (void *)regs->nip);
- pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
- cpu, tb, per_cpu(wd_timer_tb, cpu),
- tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
- print_modules();
- print_irqtrace_events(current);
- show_regs(regs);
- xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi
- if (sysctl_hardlockup_all_cpu_backtrace)
- trigger_allbutself_cpu_backtrace();
- if (hardlockup_panic)
- nmi_panic(regs, "Hard LOCKUP");
- wd_end_reporting();
- }
- /*
- * We are okay to change DEC in soft_nmi_interrupt because the masked
- * handler has marked a DEC as pending, so the timer interrupt will be
- * replayed as soon as local irqs are enabled again.
- */
- if (wd_panic_timeout_tb < 0x7fffffff)
- mtspr(SPRN_DEC, wd_panic_timeout_tb);
- return 0;
- }
- static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
- {
- int cpu = smp_processor_id();
- if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
- return HRTIMER_NORESTART;
- if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
- return HRTIMER_NORESTART;
- watchdog_timer_interrupt(cpu);
- hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
- return HRTIMER_RESTART;
- }
- void arch_touch_nmi_watchdog(void)
- {
- unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
- int cpu = smp_processor_id();
- u64 tb;
- if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
- return;
- tb = get_tb();
- if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
- per_cpu(wd_timer_tb, cpu) = tb;
- wd_smp_clear_cpu_pending(cpu);
- }
- }
- EXPORT_SYMBOL(arch_touch_nmi_watchdog);
- static void start_watchdog(void *arg)
- {
- struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
- int cpu = smp_processor_id();
- unsigned long flags;
- if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
- WARN_ON(1);
- return;
- }
- if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
- return;
- if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
- return;
- wd_smp_lock(&flags);
- cpumask_set_cpu(cpu, &wd_cpus_enabled);
- if (cpumask_weight(&wd_cpus_enabled) == 1) {
- cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
- wd_smp_last_reset_tb = get_tb();
- }
- wd_smp_unlock(&flags);
- *this_cpu_ptr(&wd_timer_tb) = get_tb();
- hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- hrtimer->function = watchdog_timer_fn;
- hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
- HRTIMER_MODE_REL_PINNED);
- }
- static int start_watchdog_on_cpu(unsigned int cpu)
- {
- return smp_call_function_single(cpu, start_watchdog, NULL, true);
- }
- static void stop_watchdog(void *arg)
- {
- struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
- int cpu = smp_processor_id();
- unsigned long flags;
- if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
- return; /* Can happen in CPU unplug case */
- hrtimer_cancel(hrtimer);
- wd_smp_lock(&flags);
- cpumask_clear_cpu(cpu, &wd_cpus_enabled);
- wd_smp_unlock(&flags);
- wd_smp_clear_cpu_pending(cpu);
- }
- static int stop_watchdog_on_cpu(unsigned int cpu)
- {
- return smp_call_function_single(cpu, stop_watchdog, NULL, true);
- }
- static void watchdog_calc_timeouts(void)
- {
- u64 threshold = watchdog_thresh;
- #ifdef CONFIG_PPC_PSERIES
- threshold += (READ_ONCE(wd_timeout_pct) * threshold) / 100;
- #endif
- wd_panic_timeout_tb = threshold * ppc_tb_freq;
- /* Have the SMP detector trigger a bit later */
- wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
- /* 2/5 is the factor that the perf based detector uses */
- wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
- }
- void watchdog_nmi_stop(void)
- {
- int cpu;
- for_each_cpu(cpu, &wd_cpus_enabled)
- stop_watchdog_on_cpu(cpu);
- }
- void watchdog_nmi_start(void)
- {
- int cpu;
- watchdog_calc_timeouts();
- for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
- start_watchdog_on_cpu(cpu);
- }
- /*
- * Invoked from core watchdog init.
- */
- int __init watchdog_nmi_probe(void)
- {
- int err;
- err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
- "powerpc/watchdog:online",
- start_watchdog_on_cpu,
- stop_watchdog_on_cpu);
- if (err < 0) {
- pr_warn("could not be initialized");
- return err;
- }
- return 0;
- }
- #ifdef CONFIG_PPC_PSERIES
- void watchdog_nmi_set_timeout_pct(u64 pct)
- {
- pr_info("Set the NMI watchdog timeout factor to %llu%%\n", pct);
- WRITE_ONCE(wd_timeout_pct, pct);
- lockup_detector_reconfigure();
- }
- #endif
|