123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Routines for doing kexec-based kdump.
- *
- * Copyright (C) 2005, IBM Corp.
- *
- * Created by: Michael Ellerman
- */
- #undef DEBUG
- #include <linux/crash_dump.h>
- #include <linux/io.h>
- #include <linux/memblock.h>
- #include <linux/of.h>
- #include <asm/code-patching.h>
- #include <asm/kdump.h>
- #include <asm/firmware.h>
- #include <linux/uio.h>
- #include <asm/rtas.h>
- #include <asm/inst.h>
- #ifdef DEBUG
- #include <asm/udbg.h>
- #define DBG(fmt...) udbg_printf(fmt)
- #else
- #define DBG(fmt...)
- #endif
- #ifndef CONFIG_NONSTATIC_KERNEL
- void __init reserve_kdump_trampoline(void)
- {
- memblock_reserve(0, KDUMP_RESERVE_LIMIT);
- }
- static void __init create_trampoline(unsigned long addr)
- {
- u32 *p = (u32 *)addr;
- /* The maximum range of a single instruction branch, is the current
- * instruction's address + (32 MB - 4) bytes. For the trampoline we
- * need to branch to current address + 32 MB. So we insert a nop at
- * the trampoline address, then the next instruction (+ 4 bytes)
- * does a branch to (32 MB - 4). The net effect is that when we
- * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
- * two instructions it doesn't require any registers.
- */
- patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
- patch_branch(p + 1, addr + PHYSICAL_START, 0);
- }
- void __init setup_kdump_trampoline(void)
- {
- unsigned long i;
- DBG(" -> setup_kdump_trampoline()\n");
- for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
- create_trampoline(i);
- }
- #ifdef CONFIG_PPC_PSERIES
- create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
- create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
- #endif /* CONFIG_PPC_PSERIES */
- DBG(" <- setup_kdump_trampoline()\n");
- }
- #endif /* CONFIG_NONSTATIC_KERNEL */
- ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
- size_t csize, unsigned long offset)
- {
- void *vaddr;
- phys_addr_t paddr;
- if (!csize)
- return 0;
- csize = min_t(size_t, csize, PAGE_SIZE);
- paddr = pfn << PAGE_SHIFT;
- if (memblock_is_region_memory(paddr, csize)) {
- vaddr = __va(paddr);
- csize = copy_to_iter(vaddr + offset, csize, iter);
- } else {
- vaddr = ioremap_cache(paddr, PAGE_SIZE);
- csize = copy_to_iter(vaddr + offset, csize, iter);
- iounmap(vaddr);
- }
- return csize;
- }
- #ifdef CONFIG_PPC_RTAS
- /*
- * The crashkernel region will almost always overlap the RTAS region, so
- * we have to be careful when shrinking the crashkernel region.
- */
- void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
- {
- unsigned long addr;
- const __be32 *basep, *sizep;
- unsigned int rtas_start = 0, rtas_end = 0;
- basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
- sizep = of_get_property(rtas.dev, "rtas-size", NULL);
- if (basep && sizep) {
- rtas_start = be32_to_cpup(basep);
- rtas_end = rtas_start + be32_to_cpup(sizep);
- }
- for (addr = begin; addr < end; addr += PAGE_SIZE) {
- /* Does this page overlap with the RTAS region? */
- if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
- continue;
- free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
- }
- }
- #endif
|