crash_dump.c 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Routines for doing kexec-based kdump.
  4. *
  5. * Copyright (C) 2005, IBM Corp.
  6. *
  7. * Created by: Michael Ellerman
  8. */
  9. #undef DEBUG
  10. #include <linux/crash_dump.h>
  11. #include <linux/io.h>
  12. #include <linux/memblock.h>
  13. #include <linux/of.h>
  14. #include <asm/code-patching.h>
  15. #include <asm/kdump.h>
  16. #include <asm/firmware.h>
  17. #include <linux/uio.h>
  18. #include <asm/rtas.h>
  19. #include <asm/inst.h>
  20. #ifdef DEBUG
  21. #include <asm/udbg.h>
  22. #define DBG(fmt...) udbg_printf(fmt)
  23. #else
  24. #define DBG(fmt...)
  25. #endif
  26. #ifndef CONFIG_NONSTATIC_KERNEL
  27. void __init reserve_kdump_trampoline(void)
  28. {
  29. memblock_reserve(0, KDUMP_RESERVE_LIMIT);
  30. }
  31. static void __init create_trampoline(unsigned long addr)
  32. {
  33. u32 *p = (u32 *)addr;
  34. /* The maximum range of a single instruction branch, is the current
  35. * instruction's address + (32 MB - 4) bytes. For the trampoline we
  36. * need to branch to current address + 32 MB. So we insert a nop at
  37. * the trampoline address, then the next instruction (+ 4 bytes)
  38. * does a branch to (32 MB - 4). The net effect is that when we
  39. * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
  40. * two instructions it doesn't require any registers.
  41. */
  42. patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
  43. patch_branch(p + 1, addr + PHYSICAL_START, 0);
  44. }
  45. void __init setup_kdump_trampoline(void)
  46. {
  47. unsigned long i;
  48. DBG(" -> setup_kdump_trampoline()\n");
  49. for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
  50. create_trampoline(i);
  51. }
  52. #ifdef CONFIG_PPC_PSERIES
  53. create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
  54. create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
  55. #endif /* CONFIG_PPC_PSERIES */
  56. DBG(" <- setup_kdump_trampoline()\n");
  57. }
  58. #endif /* CONFIG_NONSTATIC_KERNEL */
  59. ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
  60. size_t csize, unsigned long offset)
  61. {
  62. void *vaddr;
  63. phys_addr_t paddr;
  64. if (!csize)
  65. return 0;
  66. csize = min_t(size_t, csize, PAGE_SIZE);
  67. paddr = pfn << PAGE_SHIFT;
  68. if (memblock_is_region_memory(paddr, csize)) {
  69. vaddr = __va(paddr);
  70. csize = copy_to_iter(vaddr + offset, csize, iter);
  71. } else {
  72. vaddr = ioremap_cache(paddr, PAGE_SIZE);
  73. csize = copy_to_iter(vaddr + offset, csize, iter);
  74. iounmap(vaddr);
  75. }
  76. return csize;
  77. }
  78. #ifdef CONFIG_PPC_RTAS
  79. /*
  80. * The crashkernel region will almost always overlap the RTAS region, so
  81. * we have to be careful when shrinking the crashkernel region.
  82. */
  83. void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
  84. {
  85. unsigned long addr;
  86. const __be32 *basep, *sizep;
  87. unsigned int rtas_start = 0, rtas_end = 0;
  88. basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
  89. sizep = of_get_property(rtas.dev, "rtas-size", NULL);
  90. if (basep && sizep) {
  91. rtas_start = be32_to_cpup(basep);
  92. rtas_end = rtas_start + be32_to_cpup(sizep);
  93. }
  94. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  95. /* Does this page overlap with the RTAS region? */
  96. if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
  97. continue;
  98. free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
  99. }
  100. }
  101. #endif