12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140 |
- // SPDX-License-Identifier: Apache-2.0 OR MIT
- //! A contiguous growable array type with heap-allocated contents, written
- //! `Vec<T>`.
- //!
- //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
- //! *O*(1) pop (from the end).
- //!
- //! Vectors ensure they never allocate more than `isize::MAX` bytes.
- //!
- //! # Examples
- //!
- //! You can explicitly create a [`Vec`] with [`Vec::new`]:
- //!
- //! ```
- //! let v: Vec<i32> = Vec::new();
- //! ```
- //!
- //! ...or by using the [`vec!`] macro:
- //!
- //! ```
- //! let v: Vec<i32> = vec![];
- //!
- //! let v = vec![1, 2, 3, 4, 5];
- //!
- //! let v = vec![0; 10]; // ten zeroes
- //! ```
- //!
- //! You can [`push`] values onto the end of a vector (which will grow the vector
- //! as needed):
- //!
- //! ```
- //! let mut v = vec![1, 2];
- //!
- //! v.push(3);
- //! ```
- //!
- //! Popping values works in much the same way:
- //!
- //! ```
- //! let mut v = vec![1, 2];
- //!
- //! let two = v.pop();
- //! ```
- //!
- //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
- //!
- //! ```
- //! let mut v = vec![1, 2, 3];
- //! let three = v[2];
- //! v[1] = v[1] + 5;
- //! ```
- //!
- //! [`push`]: Vec::push
- #![stable(feature = "rust1", since = "1.0.0")]
- #[cfg(not(no_global_oom_handling))]
- use core::cmp;
- use core::cmp::Ordering;
- use core::convert::TryFrom;
- use core::fmt;
- use core::hash::{Hash, Hasher};
- use core::intrinsics::{arith_offset, assume};
- use core::iter;
- #[cfg(not(no_global_oom_handling))]
- use core::iter::FromIterator;
- use core::marker::PhantomData;
- use core::mem::{self, ManuallyDrop, MaybeUninit};
- use core::ops::{self, Index, IndexMut, Range, RangeBounds};
- use core::ptr::{self, NonNull};
- use core::slice::{self, SliceIndex};
- use crate::alloc::{Allocator, Global};
- use crate::borrow::{Cow, ToOwned};
- use crate::boxed::Box;
- use crate::collections::TryReserveError;
- use crate::raw_vec::RawVec;
- #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
- pub use self::drain_filter::DrainFilter;
- mod drain_filter;
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_splice", since = "1.21.0")]
- pub use self::splice::Splice;
- #[cfg(not(no_global_oom_handling))]
- mod splice;
- #[stable(feature = "drain", since = "1.6.0")]
- pub use self::drain::Drain;
- mod drain;
- #[cfg(not(no_global_oom_handling))]
- mod cow;
- #[cfg(not(no_global_oom_handling))]
- pub(crate) use self::in_place_collect::AsVecIntoIter;
- #[stable(feature = "rust1", since = "1.0.0")]
- pub use self::into_iter::IntoIter;
- mod into_iter;
- #[cfg(not(no_global_oom_handling))]
- use self::is_zero::IsZero;
- mod is_zero;
- #[cfg(not(no_global_oom_handling))]
- mod in_place_collect;
- mod partial_eq;
- #[cfg(not(no_global_oom_handling))]
- use self::spec_from_elem::SpecFromElem;
- #[cfg(not(no_global_oom_handling))]
- mod spec_from_elem;
- #[cfg(not(no_global_oom_handling))]
- use self::set_len_on_drop::SetLenOnDrop;
- #[cfg(not(no_global_oom_handling))]
- mod set_len_on_drop;
- #[cfg(not(no_global_oom_handling))]
- use self::in_place_drop::InPlaceDrop;
- #[cfg(not(no_global_oom_handling))]
- mod in_place_drop;
- #[cfg(not(no_global_oom_handling))]
- use self::spec_from_iter_nested::SpecFromIterNested;
- #[cfg(not(no_global_oom_handling))]
- mod spec_from_iter_nested;
- #[cfg(not(no_global_oom_handling))]
- use self::spec_from_iter::SpecFromIter;
- #[cfg(not(no_global_oom_handling))]
- mod spec_from_iter;
- #[cfg(not(no_global_oom_handling))]
- use self::spec_extend::SpecExtend;
- #[cfg(not(no_global_oom_handling))]
- mod spec_extend;
- /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = Vec::new();
- /// vec.push(1);
- /// vec.push(2);
- ///
- /// assert_eq!(vec.len(), 2);
- /// assert_eq!(vec[0], 1);
- ///
- /// assert_eq!(vec.pop(), Some(2));
- /// assert_eq!(vec.len(), 1);
- ///
- /// vec[0] = 7;
- /// assert_eq!(vec[0], 7);
- ///
- /// vec.extend([1, 2, 3].iter().copied());
- ///
- /// for x in &vec {
- /// println!("{x}");
- /// }
- /// assert_eq!(vec, [7, 1, 2, 3]);
- /// ```
- ///
- /// The [`vec!`] macro is provided for convenient initialization:
- ///
- /// ```
- /// let mut vec1 = vec![1, 2, 3];
- /// vec1.push(4);
- /// let vec2 = Vec::from([1, 2, 3, 4]);
- /// assert_eq!(vec1, vec2);
- /// ```
- ///
- /// It can also initialize each element of a `Vec<T>` with a given value.
- /// This may be more efficient than performing allocation and initialization
- /// in separate steps, especially when initializing a vector of zeros:
- ///
- /// ```
- /// let vec = vec![0; 5];
- /// assert_eq!(vec, [0, 0, 0, 0, 0]);
- ///
- /// // The following is equivalent, but potentially slower:
- /// let mut vec = Vec::with_capacity(5);
- /// vec.resize(5, 0);
- /// assert_eq!(vec, [0, 0, 0, 0, 0]);
- /// ```
- ///
- /// For more information, see
- /// [Capacity and Reallocation](#capacity-and-reallocation).
- ///
- /// Use a `Vec<T>` as an efficient stack:
- ///
- /// ```
- /// let mut stack = Vec::new();
- ///
- /// stack.push(1);
- /// stack.push(2);
- /// stack.push(3);
- ///
- /// while let Some(top) = stack.pop() {
- /// // Prints 3, 2, 1
- /// println!("{top}");
- /// }
- /// ```
- ///
- /// # Indexing
- ///
- /// The `Vec` type allows to access values by index, because it implements the
- /// [`Index`] trait. An example will be more explicit:
- ///
- /// ```
- /// let v = vec![0, 2, 4, 6];
- /// println!("{}", v[1]); // it will display '2'
- /// ```
- ///
- /// However be careful: if you try to access an index which isn't in the `Vec`,
- /// your software will panic! You cannot do this:
- ///
- /// ```should_panic
- /// let v = vec![0, 2, 4, 6];
- /// println!("{}", v[6]); // it will panic!
- /// ```
- ///
- /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
- /// the `Vec`.
- ///
- /// # Slicing
- ///
- /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
- /// To get a [slice][prim@slice], use [`&`]. Example:
- ///
- /// ```
- /// fn read_slice(slice: &[usize]) {
- /// // ...
- /// }
- ///
- /// let v = vec![0, 1];
- /// read_slice(&v);
- ///
- /// // ... and that's all!
- /// // you can also do it like this:
- /// let u: &[usize] = &v;
- /// // or like this:
- /// let u: &[_] = &v;
- /// ```
- ///
- /// In Rust, it's more common to pass slices as arguments rather than vectors
- /// when you just want to provide read access. The same goes for [`String`] and
- /// [`&str`].
- ///
- /// # Capacity and reallocation
- ///
- /// The capacity of a vector is the amount of space allocated for any future
- /// elements that will be added onto the vector. This is not to be confused with
- /// the *length* of a vector, which specifies the number of actual elements
- /// within the vector. If a vector's length exceeds its capacity, its capacity
- /// will automatically be increased, but its elements will have to be
- /// reallocated.
- ///
- /// For example, a vector with capacity 10 and length 0 would be an empty vector
- /// with space for 10 more elements. Pushing 10 or fewer elements onto the
- /// vector will not change its capacity or cause reallocation to occur. However,
- /// if the vector's length is increased to 11, it will have to reallocate, which
- /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
- /// whenever possible to specify how big the vector is expected to get.
- ///
- /// # Guarantees
- ///
- /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
- /// about its design. This ensures that it's as low-overhead as possible in
- /// the general case, and can be correctly manipulated in primitive ways
- /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
- /// If additional type parameters are added (e.g., to support custom allocators),
- /// overriding their defaults may change the behavior.
- ///
- /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
- /// triplet. No more, no less. The order of these fields is completely
- /// unspecified, and you should use the appropriate methods to modify these.
- /// The pointer will never be null, so this type is null-pointer-optimized.
- ///
- /// However, the pointer might not actually point to allocated memory. In particular,
- /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
- /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
- /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
- /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
- /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
- /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
- /// details are very subtle --- if you intend to allocate memory using a `Vec`
- /// and use it for something else (either to pass to unsafe code, or to build your
- /// own memory-backed collection), be sure to deallocate this memory by using
- /// `from_raw_parts` to recover the `Vec` and then dropping it.
- ///
- /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
- /// (as defined by the allocator Rust is configured to use by default), and its
- /// pointer points to [`len`] initialized, contiguous elements in order (what
- /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
- /// logically uninitialized, contiguous elements.
- ///
- /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
- /// visualized as below. The top part is the `Vec` struct, it contains a
- /// pointer to the head of the allocation in the heap, length and capacity.
- /// The bottom part is the allocation on the heap, a contiguous memory block.
- ///
- /// ```text
- /// ptr len capacity
- /// +--------+--------+--------+
- /// | 0x0123 | 2 | 4 |
- /// +--------+--------+--------+
- /// |
- /// v
- /// Heap +--------+--------+--------+--------+
- /// | 'a' | 'b' | uninit | uninit |
- /// +--------+--------+--------+--------+
- /// ```
- ///
- /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
- /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
- /// layout (including the order of fields).
- ///
- /// `Vec` will never perform a "small optimization" where elements are actually
- /// stored on the stack for two reasons:
- ///
- /// * It would make it more difficult for unsafe code to correctly manipulate
- /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
- /// only moved, and it would be more difficult to determine if a `Vec` had
- /// actually allocated memory.
- ///
- /// * It would penalize the general case, incurring an additional branch
- /// on every access.
- ///
- /// `Vec` will never automatically shrink itself, even if completely empty. This
- /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
- /// and then filling it back up to the same [`len`] should incur no calls to
- /// the allocator. If you wish to free up unused memory, use
- /// [`shrink_to_fit`] or [`shrink_to`].
- ///
- /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
- /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
- /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
- /// accurate, and can be relied on. It can even be used to manually free the memory
- /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
- /// when not necessary.
- ///
- /// `Vec` does not guarantee any particular growth strategy when reallocating
- /// when full, nor when [`reserve`] is called. The current strategy is basic
- /// and it may prove desirable to use a non-constant growth factor. Whatever
- /// strategy is used will of course guarantee *O*(1) amortized [`push`].
- ///
- /// `vec![x; n]`, `vec![a, b, c, d]`, and
- /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
- /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
- /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
- /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
- ///
- /// `Vec` will not specifically overwrite any data that is removed from it,
- /// but also won't specifically preserve it. Its uninitialized memory is
- /// scratch space that it may use however it wants. It will generally just do
- /// whatever is most efficient or otherwise easy to implement. Do not rely on
- /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
- /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
- /// first, that might not actually happen because the optimizer does not consider
- /// this a side-effect that must be preserved. There is one case which we will
- /// not break, however: using `unsafe` code to write to the excess capacity,
- /// and then increasing the length to match, is always valid.
- ///
- /// Currently, `Vec` does not guarantee the order in which elements are dropped.
- /// The order has changed in the past and may change again.
- ///
- /// [`get`]: ../../std/vec/struct.Vec.html#method.get
- /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
- /// [`String`]: crate::string::String
- /// [`&str`]: type@str
- /// [`shrink_to_fit`]: Vec::shrink_to_fit
- /// [`shrink_to`]: Vec::shrink_to
- /// [capacity]: Vec::capacity
- /// [`capacity`]: Vec::capacity
- /// [mem::size_of::\<T>]: core::mem::size_of
- /// [len]: Vec::len
- /// [`len`]: Vec::len
- /// [`push`]: Vec::push
- /// [`insert`]: Vec::insert
- /// [`reserve`]: Vec::reserve
- /// [`MaybeUninit`]: core::mem::MaybeUninit
- /// [owned slice]: Box
- #[stable(feature = "rust1", since = "1.0.0")]
- #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
- #[rustc_insignificant_dtor]
- pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
- buf: RawVec<T, A>,
- len: usize,
- }
- ////////////////////////////////////////////////////////////////////////////////
- // Inherent methods
- ////////////////////////////////////////////////////////////////////////////////
- impl<T> Vec<T> {
- /// Constructs a new, empty `Vec<T>`.
- ///
- /// The vector will not allocate until elements are pushed onto it.
- ///
- /// # Examples
- ///
- /// ```
- /// # #![allow(unused_mut)]
- /// let mut vec: Vec<i32> = Vec::new();
- /// ```
- #[inline]
- #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
- #[stable(feature = "rust1", since = "1.0.0")]
- #[must_use]
- pub const fn new() -> Self {
- Vec { buf: RawVec::NEW, len: 0 }
- }
- /// Constructs a new, empty `Vec<T>` with the specified capacity.
- ///
- /// The vector will be able to hold exactly `capacity` elements without
- /// reallocating. If `capacity` is 0, the vector will not allocate.
- ///
- /// It is important to note that although the returned vector has the
- /// *capacity* specified, the vector will have a zero *length*. For an
- /// explanation of the difference between length and capacity, see
- /// *[Capacity and reallocation]*.
- ///
- /// [Capacity and reallocation]: #capacity-and-reallocation
- ///
- /// # Panics
- ///
- /// Panics if the new capacity exceeds `isize::MAX` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = Vec::with_capacity(10);
- ///
- /// // The vector contains no items, even though it has capacity for more
- /// assert_eq!(vec.len(), 0);
- /// assert_eq!(vec.capacity(), 10);
- ///
- /// // These are all done without reallocating...
- /// for i in 0..10 {
- /// vec.push(i);
- /// }
- /// assert_eq!(vec.len(), 10);
- /// assert_eq!(vec.capacity(), 10);
- ///
- /// // ...but this may make the vector reallocate
- /// vec.push(11);
- /// assert_eq!(vec.len(), 11);
- /// assert!(vec.capacity() >= 11);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- #[must_use]
- pub fn with_capacity(capacity: usize) -> Self {
- Self::with_capacity_in(capacity, Global)
- }
- /// Creates a `Vec<T>` directly from the raw components of another vector.
- ///
- /// # Safety
- ///
- /// This is highly unsafe, due to the number of invariants that aren't
- /// checked:
- ///
- /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
- /// (at least, it's highly likely to be incorrect if it wasn't).
- /// * `T` needs to have the same alignment as what `ptr` was allocated with.
- /// (`T` having a less strict alignment is not sufficient, the alignment really
- /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
- /// allocated and deallocated with the same layout.)
- /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
- /// to be the same size as the pointer was allocated with. (Because similar to
- /// alignment, [`dealloc`] must be called with the same layout `size`.)
- /// * `length` needs to be less than or equal to `capacity`.
- ///
- /// Violating these may cause problems like corrupting the allocator's
- /// internal data structures. For example it is normally **not** safe
- /// to build a `Vec<u8>` from a pointer to a C `char` array with length
- /// `size_t`, doing so is only safe if the array was initially allocated by
- /// a `Vec` or `String`.
- /// It's also not safe to build one from a `Vec<u16>` and its length, because
- /// the allocator cares about the alignment, and these two types have different
- /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
- /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
- /// these issues, it is often preferable to do casting/transmuting using
- /// [`slice::from_raw_parts`] instead.
- ///
- /// The ownership of `ptr` is effectively transferred to the
- /// `Vec<T>` which may then deallocate, reallocate or change the
- /// contents of memory pointed to by the pointer at will. Ensure
- /// that nothing else uses the pointer after calling this
- /// function.
- ///
- /// [`String`]: crate::string::String
- /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
- ///
- /// # Examples
- ///
- /// ```
- /// use std::ptr;
- /// use std::mem;
- ///
- /// let v = vec![1, 2, 3];
- ///
- // FIXME Update this when vec_into_raw_parts is stabilized
- /// // Prevent running `v`'s destructor so we are in complete control
- /// // of the allocation.
- /// let mut v = mem::ManuallyDrop::new(v);
- ///
- /// // Pull out the various important pieces of information about `v`
- /// let p = v.as_mut_ptr();
- /// let len = v.len();
- /// let cap = v.capacity();
- ///
- /// unsafe {
- /// // Overwrite memory with 4, 5, 6
- /// for i in 0..len as isize {
- /// ptr::write(p.offset(i), 4 + i);
- /// }
- ///
- /// // Put everything back together into a Vec
- /// let rebuilt = Vec::from_raw_parts(p, len, cap);
- /// assert_eq!(rebuilt, [4, 5, 6]);
- /// }
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
- unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
- }
- }
- impl<T, A: Allocator> Vec<T, A> {
- /// Constructs a new, empty `Vec<T, A>`.
- ///
- /// The vector will not allocate until elements are pushed onto it.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// # #[allow(unused_mut)]
- /// let mut vec: Vec<i32, _> = Vec::new_in(System);
- /// ```
- #[inline]
- #[unstable(feature = "allocator_api", issue = "32838")]
- pub const fn new_in(alloc: A) -> Self {
- Vec { buf: RawVec::new_in(alloc), len: 0 }
- }
- /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
- /// allocator.
- ///
- /// The vector will be able to hold exactly `capacity` elements without
- /// reallocating. If `capacity` is 0, the vector will not allocate.
- ///
- /// It is important to note that although the returned vector has the
- /// *capacity* specified, the vector will have a zero *length*. For an
- /// explanation of the difference between length and capacity, see
- /// *[Capacity and reallocation]*.
- ///
- /// [Capacity and reallocation]: #capacity-and-reallocation
- ///
- /// # Panics
- ///
- /// Panics if the new capacity exceeds `isize::MAX` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// let mut vec = Vec::with_capacity_in(10, System);
- ///
- /// // The vector contains no items, even though it has capacity for more
- /// assert_eq!(vec.len(), 0);
- /// assert_eq!(vec.capacity(), 10);
- ///
- /// // These are all done without reallocating...
- /// for i in 0..10 {
- /// vec.push(i);
- /// }
- /// assert_eq!(vec.len(), 10);
- /// assert_eq!(vec.capacity(), 10);
- ///
- /// // ...but this may make the vector reallocate
- /// vec.push(11);
- /// assert_eq!(vec.len(), 11);
- /// assert!(vec.capacity() >= 11);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[unstable(feature = "allocator_api", issue = "32838")]
- pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
- Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
- }
- /// Creates a `Vec<T, A>` directly from the raw components of another vector.
- ///
- /// # Safety
- ///
- /// This is highly unsafe, due to the number of invariants that aren't
- /// checked:
- ///
- /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
- /// (at least, it's highly likely to be incorrect if it wasn't).
- /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
- /// (`T` having a less strict alignment is not sufficient, the alignment really
- /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
- /// allocated and deallocated with the same layout.)
- /// * `length` needs to be less than or equal to `capacity`.
- /// * `capacity` needs to be the capacity that the pointer was allocated with.
- ///
- /// Violating these may cause problems like corrupting the allocator's
- /// internal data structures. For example it is **not** safe
- /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
- /// It's also not safe to build one from a `Vec<u16>` and its length, because
- /// the allocator cares about the alignment, and these two types have different
- /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
- /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
- ///
- /// The ownership of `ptr` is effectively transferred to the
- /// `Vec<T>` which may then deallocate, reallocate or change the
- /// contents of memory pointed to by the pointer at will. Ensure
- /// that nothing else uses the pointer after calling this
- /// function.
- ///
- /// [`String`]: crate::string::String
- /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// use std::ptr;
- /// use std::mem;
- ///
- /// let mut v = Vec::with_capacity_in(3, System);
- /// v.push(1);
- /// v.push(2);
- /// v.push(3);
- ///
- // FIXME Update this when vec_into_raw_parts is stabilized
- /// // Prevent running `v`'s destructor so we are in complete control
- /// // of the allocation.
- /// let mut v = mem::ManuallyDrop::new(v);
- ///
- /// // Pull out the various important pieces of information about `v`
- /// let p = v.as_mut_ptr();
- /// let len = v.len();
- /// let cap = v.capacity();
- /// let alloc = v.allocator();
- ///
- /// unsafe {
- /// // Overwrite memory with 4, 5, 6
- /// for i in 0..len as isize {
- /// ptr::write(p.offset(i), 4 + i);
- /// }
- ///
- /// // Put everything back together into a Vec
- /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
- /// assert_eq!(rebuilt, [4, 5, 6]);
- /// }
- /// ```
- #[inline]
- #[unstable(feature = "allocator_api", issue = "32838")]
- pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
- unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
- }
- /// Decomposes a `Vec<T>` into its raw components.
- ///
- /// Returns the raw pointer to the underlying data, the length of
- /// the vector (in elements), and the allocated capacity of the
- /// data (in elements). These are the same arguments in the same
- /// order as the arguments to [`from_raw_parts`].
- ///
- /// After calling this function, the caller is responsible for the
- /// memory previously managed by the `Vec`. The only way to do
- /// this is to convert the raw pointer, length, and capacity back
- /// into a `Vec` with the [`from_raw_parts`] function, allowing
- /// the destructor to perform the cleanup.
- ///
- /// [`from_raw_parts`]: Vec::from_raw_parts
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(vec_into_raw_parts)]
- /// let v: Vec<i32> = vec![-1, 0, 1];
- ///
- /// let (ptr, len, cap) = v.into_raw_parts();
- ///
- /// let rebuilt = unsafe {
- /// // We can now make changes to the components, such as
- /// // transmuting the raw pointer to a compatible type.
- /// let ptr = ptr as *mut u32;
- ///
- /// Vec::from_raw_parts(ptr, len, cap)
- /// };
- /// assert_eq!(rebuilt, [4294967295, 0, 1]);
- /// ```
- #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
- pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
- let mut me = ManuallyDrop::new(self);
- (me.as_mut_ptr(), me.len(), me.capacity())
- }
- /// Decomposes a `Vec<T>` into its raw components.
- ///
- /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
- /// the allocated capacity of the data (in elements), and the allocator. These are the same
- /// arguments in the same order as the arguments to [`from_raw_parts_in`].
- ///
- /// After calling this function, the caller is responsible for the
- /// memory previously managed by the `Vec`. The only way to do
- /// this is to convert the raw pointer, length, and capacity back
- /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
- /// the destructor to perform the cleanup.
- ///
- /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, vec_into_raw_parts)]
- ///
- /// use std::alloc::System;
- ///
- /// let mut v: Vec<i32, System> = Vec::new_in(System);
- /// v.push(-1);
- /// v.push(0);
- /// v.push(1);
- ///
- /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
- ///
- /// let rebuilt = unsafe {
- /// // We can now make changes to the components, such as
- /// // transmuting the raw pointer to a compatible type.
- /// let ptr = ptr as *mut u32;
- ///
- /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
- /// };
- /// assert_eq!(rebuilt, [4294967295, 0, 1]);
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
- pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
- let mut me = ManuallyDrop::new(self);
- let len = me.len();
- let capacity = me.capacity();
- let ptr = me.as_mut_ptr();
- let alloc = unsafe { ptr::read(me.allocator()) };
- (ptr, len, capacity, alloc)
- }
- /// Returns the number of elements the vector can hold without
- /// reallocating.
- ///
- /// # Examples
- ///
- /// ```
- /// let vec: Vec<i32> = Vec::with_capacity(10);
- /// assert_eq!(vec.capacity(), 10);
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn capacity(&self) -> usize {
- self.buf.capacity()
- }
- /// Reserves capacity for at least `additional` more elements to be inserted
- /// in the given `Vec<T>`. The collection may reserve more space to avoid
- /// frequent reallocations. After calling `reserve`, capacity will be
- /// greater than or equal to `self.len() + additional`. Does nothing if
- /// capacity is already sufficient.
- ///
- /// # Panics
- ///
- /// Panics if the new capacity exceeds `isize::MAX` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1];
- /// vec.reserve(10);
- /// assert!(vec.capacity() >= 11);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn reserve(&mut self, additional: usize) {
- self.buf.reserve(self.len, additional);
- }
- /// Reserves the minimum capacity for exactly `additional` more elements to
- /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
- /// capacity will be greater than or equal to `self.len() + additional`.
- /// Does nothing if the capacity is already sufficient.
- ///
- /// Note that the allocator may give the collection more space than it
- /// requests. Therefore, capacity can not be relied upon to be precisely
- /// minimal. Prefer [`reserve`] if future insertions are expected.
- ///
- /// [`reserve`]: Vec::reserve
- ///
- /// # Panics
- ///
- /// Panics if the new capacity exceeds `isize::MAX` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1];
- /// vec.reserve_exact(10);
- /// assert!(vec.capacity() >= 11);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn reserve_exact(&mut self, additional: usize) {
- self.buf.reserve_exact(self.len, additional);
- }
- /// Tries to reserve capacity for at least `additional` more elements to be inserted
- /// in the given `Vec<T>`. The collection may reserve more space to avoid
- /// frequent reallocations. After calling `try_reserve`, capacity will be
- /// greater than or equal to `self.len() + additional`. Does nothing if
- /// capacity is already sufficient.
- ///
- /// # Errors
- ///
- /// If the capacity overflows, or the allocator reports a failure, then an error
- /// is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::collections::TryReserveError;
- ///
- /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
- /// let mut output = Vec::new();
- ///
- /// // Pre-reserve the memory, exiting if we can't
- /// output.try_reserve(data.len())?;
- ///
- /// // Now we know this can't OOM in the middle of our complex work
- /// output.extend(data.iter().map(|&val| {
- /// val * 2 + 5 // very complicated
- /// }));
- ///
- /// Ok(output)
- /// }
- /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
- /// ```
- #[stable(feature = "try_reserve", since = "1.57.0")]
- pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.buf.try_reserve(self.len, additional)
- }
- /// Tries to reserve the minimum capacity for exactly `additional`
- /// elements to be inserted in the given `Vec<T>`. After calling
- /// `try_reserve_exact`, capacity will be greater than or equal to
- /// `self.len() + additional` if it returns `Ok(())`.
- /// Does nothing if the capacity is already sufficient.
- ///
- /// Note that the allocator may give the collection more space than it
- /// requests. Therefore, capacity can not be relied upon to be precisely
- /// minimal. Prefer [`try_reserve`] if future insertions are expected.
- ///
- /// [`try_reserve`]: Vec::try_reserve
- ///
- /// # Errors
- ///
- /// If the capacity overflows, or the allocator reports a failure, then an error
- /// is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::collections::TryReserveError;
- ///
- /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
- /// let mut output = Vec::new();
- ///
- /// // Pre-reserve the memory, exiting if we can't
- /// output.try_reserve_exact(data.len())?;
- ///
- /// // Now we know this can't OOM in the middle of our complex work
- /// output.extend(data.iter().map(|&val| {
- /// val * 2 + 5 // very complicated
- /// }));
- ///
- /// Ok(output)
- /// }
- /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
- /// ```
- #[stable(feature = "try_reserve", since = "1.57.0")]
- pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.buf.try_reserve_exact(self.len, additional)
- }
- /// Shrinks the capacity of the vector as much as possible.
- ///
- /// It will drop down as close as possible to the length but the allocator
- /// may still inform the vector that there is space for a few more elements.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = Vec::with_capacity(10);
- /// vec.extend([1, 2, 3]);
- /// assert_eq!(vec.capacity(), 10);
- /// vec.shrink_to_fit();
- /// assert!(vec.capacity() >= 3);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn shrink_to_fit(&mut self) {
- // The capacity is never less than the length, and there's nothing to do when
- // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
- // by only calling it with a greater capacity.
- if self.capacity() > self.len {
- self.buf.shrink_to_fit(self.len);
- }
- }
- /// Shrinks the capacity of the vector with a lower bound.
- ///
- /// The capacity will remain at least as large as both the length
- /// and the supplied value.
- ///
- /// If the current capacity is less than the lower limit, this is a no-op.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = Vec::with_capacity(10);
- /// vec.extend([1, 2, 3]);
- /// assert_eq!(vec.capacity(), 10);
- /// vec.shrink_to(4);
- /// assert!(vec.capacity() >= 4);
- /// vec.shrink_to(0);
- /// assert!(vec.capacity() >= 3);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "shrink_to", since = "1.56.0")]
- pub fn shrink_to(&mut self, min_capacity: usize) {
- if self.capacity() > min_capacity {
- self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
- }
- }
- /// Converts the vector into [`Box<[T]>`][owned slice].
- ///
- /// Note that this will drop any excess capacity.
- ///
- /// [owned slice]: Box
- ///
- /// # Examples
- ///
- /// ```
- /// let v = vec![1, 2, 3];
- ///
- /// let slice = v.into_boxed_slice();
- /// ```
- ///
- /// Any excess capacity is removed:
- ///
- /// ```
- /// let mut vec = Vec::with_capacity(10);
- /// vec.extend([1, 2, 3]);
- ///
- /// assert_eq!(vec.capacity(), 10);
- /// let slice = vec.into_boxed_slice();
- /// assert_eq!(slice.into_vec().capacity(), 3);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn into_boxed_slice(mut self) -> Box<[T], A> {
- unsafe {
- self.shrink_to_fit();
- let me = ManuallyDrop::new(self);
- let buf = ptr::read(&me.buf);
- let len = me.len();
- buf.into_box(len).assume_init()
- }
- }
- /// Shortens the vector, keeping the first `len` elements and dropping
- /// the rest.
- ///
- /// If `len` is greater than the vector's current length, this has no
- /// effect.
- ///
- /// The [`drain`] method can emulate `truncate`, but causes the excess
- /// elements to be returned instead of dropped.
- ///
- /// Note that this method has no effect on the allocated capacity
- /// of the vector.
- ///
- /// # Examples
- ///
- /// Truncating a five element vector to two elements:
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3, 4, 5];
- /// vec.truncate(2);
- /// assert_eq!(vec, [1, 2]);
- /// ```
- ///
- /// No truncation occurs when `len` is greater than the vector's current
- /// length:
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// vec.truncate(8);
- /// assert_eq!(vec, [1, 2, 3]);
- /// ```
- ///
- /// Truncating when `len == 0` is equivalent to calling the [`clear`]
- /// method.
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// vec.truncate(0);
- /// assert_eq!(vec, []);
- /// ```
- ///
- /// [`clear`]: Vec::clear
- /// [`drain`]: Vec::drain
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn truncate(&mut self, len: usize) {
- // This is safe because:
- //
- // * the slice passed to `drop_in_place` is valid; the `len > self.len`
- // case avoids creating an invalid slice, and
- // * the `len` of the vector is shrunk before calling `drop_in_place`,
- // such that no value will be dropped twice in case `drop_in_place`
- // were to panic once (if it panics twice, the program aborts).
- unsafe {
- // Note: It's intentional that this is `>` and not `>=`.
- // Changing it to `>=` has negative performance
- // implications in some cases. See #78884 for more.
- if len > self.len {
- return;
- }
- let remaining_len = self.len - len;
- let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
- self.len = len;
- ptr::drop_in_place(s);
- }
- }
- /// Extracts a slice containing the entire vector.
- ///
- /// Equivalent to `&s[..]`.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::io::{self, Write};
- /// let buffer = vec![1, 2, 3, 5, 8];
- /// io::sink().write(buffer.as_slice()).unwrap();
- /// ```
- #[inline]
- #[stable(feature = "vec_as_slice", since = "1.7.0")]
- pub fn as_slice(&self) -> &[T] {
- self
- }
- /// Extracts a mutable slice of the entire vector.
- ///
- /// Equivalent to `&mut s[..]`.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::io::{self, Read};
- /// let mut buffer = vec![0; 3];
- /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
- /// ```
- #[inline]
- #[stable(feature = "vec_as_slice", since = "1.7.0")]
- pub fn as_mut_slice(&mut self) -> &mut [T] {
- self
- }
- /// Returns a raw pointer to the vector's buffer.
- ///
- /// The caller must ensure that the vector outlives the pointer this
- /// function returns, or else it will end up pointing to garbage.
- /// Modifying the vector may cause its buffer to be reallocated,
- /// which would also make any pointers to it invalid.
- ///
- /// The caller must also ensure that the memory the pointer (non-transitively) points to
- /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
- /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
- ///
- /// # Examples
- ///
- /// ```
- /// let x = vec![1, 2, 4];
- /// let x_ptr = x.as_ptr();
- ///
- /// unsafe {
- /// for i in 0..x.len() {
- /// assert_eq!(*x_ptr.add(i), 1 << i);
- /// }
- /// }
- /// ```
- ///
- /// [`as_mut_ptr`]: Vec::as_mut_ptr
- #[stable(feature = "vec_as_ptr", since = "1.37.0")]
- #[inline]
- pub fn as_ptr(&self) -> *const T {
- // We shadow the slice method of the same name to avoid going through
- // `deref`, which creates an intermediate reference.
- let ptr = self.buf.ptr();
- unsafe {
- assume(!ptr.is_null());
- }
- ptr
- }
- /// Returns an unsafe mutable pointer to the vector's buffer.
- ///
- /// The caller must ensure that the vector outlives the pointer this
- /// function returns, or else it will end up pointing to garbage.
- /// Modifying the vector may cause its buffer to be reallocated,
- /// which would also make any pointers to it invalid.
- ///
- /// # Examples
- ///
- /// ```
- /// // Allocate vector big enough for 4 elements.
- /// let size = 4;
- /// let mut x: Vec<i32> = Vec::with_capacity(size);
- /// let x_ptr = x.as_mut_ptr();
- ///
- /// // Initialize elements via raw pointer writes, then set length.
- /// unsafe {
- /// for i in 0..size {
- /// *x_ptr.add(i) = i as i32;
- /// }
- /// x.set_len(size);
- /// }
- /// assert_eq!(&*x, &[0, 1, 2, 3]);
- /// ```
- #[stable(feature = "vec_as_ptr", since = "1.37.0")]
- #[inline]
- pub fn as_mut_ptr(&mut self) -> *mut T {
- // We shadow the slice method of the same name to avoid going through
- // `deref_mut`, which creates an intermediate reference.
- let ptr = self.buf.ptr();
- unsafe {
- assume(!ptr.is_null());
- }
- ptr
- }
- /// Returns a reference to the underlying allocator.
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn allocator(&self) -> &A {
- self.buf.allocator()
- }
- /// Forces the length of the vector to `new_len`.
- ///
- /// This is a low-level operation that maintains none of the normal
- /// invariants of the type. Normally changing the length of a vector
- /// is done using one of the safe operations instead, such as
- /// [`truncate`], [`resize`], [`extend`], or [`clear`].
- ///
- /// [`truncate`]: Vec::truncate
- /// [`resize`]: Vec::resize
- /// [`extend`]: Extend::extend
- /// [`clear`]: Vec::clear
- ///
- /// # Safety
- ///
- /// - `new_len` must be less than or equal to [`capacity()`].
- /// - The elements at `old_len..new_len` must be initialized.
- ///
- /// [`capacity()`]: Vec::capacity
- ///
- /// # Examples
- ///
- /// This method can be useful for situations in which the vector
- /// is serving as a buffer for other code, particularly over FFI:
- ///
- /// ```no_run
- /// # #![allow(dead_code)]
- /// # // This is just a minimal skeleton for the doc example;
- /// # // don't use this as a starting point for a real library.
- /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
- /// # const Z_OK: i32 = 0;
- /// # extern "C" {
- /// # fn deflateGetDictionary(
- /// # strm: *mut std::ffi::c_void,
- /// # dictionary: *mut u8,
- /// # dictLength: *mut usize,
- /// # ) -> i32;
- /// # }
- /// # impl StreamWrapper {
- /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
- /// // Per the FFI method's docs, "32768 bytes is always enough".
- /// let mut dict = Vec::with_capacity(32_768);
- /// let mut dict_length = 0;
- /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
- /// // 1. `dict_length` elements were initialized.
- /// // 2. `dict_length` <= the capacity (32_768)
- /// // which makes `set_len` safe to call.
- /// unsafe {
- /// // Make the FFI call...
- /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
- /// if r == Z_OK {
- /// // ...and update the length to what was initialized.
- /// dict.set_len(dict_length);
- /// Some(dict)
- /// } else {
- /// None
- /// }
- /// }
- /// }
- /// # }
- /// ```
- ///
- /// While the following example is sound, there is a memory leak since
- /// the inner vectors were not freed prior to the `set_len` call:
- ///
- /// ```
- /// let mut vec = vec![vec![1, 0, 0],
- /// vec![0, 1, 0],
- /// vec![0, 0, 1]];
- /// // SAFETY:
- /// // 1. `old_len..0` is empty so no elements need to be initialized.
- /// // 2. `0 <= capacity` always holds whatever `capacity` is.
- /// unsafe {
- /// vec.set_len(0);
- /// }
- /// ```
- ///
- /// Normally, here, one would use [`clear`] instead to correctly drop
- /// the contents and thus not leak memory.
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub unsafe fn set_len(&mut self, new_len: usize) {
- debug_assert!(new_len <= self.capacity());
- self.len = new_len;
- }
- /// Removes an element from the vector and returns it.
- ///
- /// The removed element is replaced by the last element of the vector.
- ///
- /// This does not preserve ordering, but is *O*(1).
- /// If you need to preserve the element order, use [`remove`] instead.
- ///
- /// [`remove`]: Vec::remove
- ///
- /// # Panics
- ///
- /// Panics if `index` is out of bounds.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = vec!["foo", "bar", "baz", "qux"];
- ///
- /// assert_eq!(v.swap_remove(1), "bar");
- /// assert_eq!(v, ["foo", "qux", "baz"]);
- ///
- /// assert_eq!(v.swap_remove(0), "foo");
- /// assert_eq!(v, ["baz", "qux"]);
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn swap_remove(&mut self, index: usize) -> T {
- #[cold]
- #[inline(never)]
- fn assert_failed(index: usize, len: usize) -> ! {
- panic!("swap_remove index (is {index}) should be < len (is {len})");
- }
- let len = self.len();
- if index >= len {
- assert_failed(index, len);
- }
- unsafe {
- // We replace self[index] with the last element. Note that if the
- // bounds check above succeeds there must be a last element (which
- // can be self[index] itself).
- let value = ptr::read(self.as_ptr().add(index));
- let base_ptr = self.as_mut_ptr();
- ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
- self.set_len(len - 1);
- value
- }
- }
- /// Inserts an element at position `index` within the vector, shifting all
- /// elements after it to the right.
- ///
- /// # Panics
- ///
- /// Panics if `index > len`.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// vec.insert(1, 4);
- /// assert_eq!(vec, [1, 4, 2, 3]);
- /// vec.insert(4, 5);
- /// assert_eq!(vec, [1, 4, 2, 3, 5]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn insert(&mut self, index: usize, element: T) {
- #[cold]
- #[inline(never)]
- fn assert_failed(index: usize, len: usize) -> ! {
- panic!("insertion index (is {index}) should be <= len (is {len})");
- }
- let len = self.len();
- if index > len {
- assert_failed(index, len);
- }
- // space for the new element
- if len == self.buf.capacity() {
- self.reserve(1);
- }
- unsafe {
- // infallible
- // The spot to put the new value
- {
- let p = self.as_mut_ptr().add(index);
- // Shift everything over to make space. (Duplicating the
- // `index`th element into two consecutive places.)
- ptr::copy(p, p.offset(1), len - index);
- // Write it in, overwriting the first copy of the `index`th
- // element.
- ptr::write(p, element);
- }
- self.set_len(len + 1);
- }
- }
- /// Removes and returns the element at position `index` within the vector,
- /// shifting all elements after it to the left.
- ///
- /// Note: Because this shifts over the remaining elements, it has a
- /// worst-case performance of *O*(*n*). If you don't need the order of elements
- /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
- /// elements from the beginning of the `Vec`, consider using
- /// [`VecDeque::pop_front`] instead.
- ///
- /// [`swap_remove`]: Vec::swap_remove
- /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
- ///
- /// # Panics
- ///
- /// Panics if `index` is out of bounds.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = vec![1, 2, 3];
- /// assert_eq!(v.remove(1), 2);
- /// assert_eq!(v, [1, 3]);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- #[track_caller]
- pub fn remove(&mut self, index: usize) -> T {
- #[cold]
- #[inline(never)]
- #[track_caller]
- fn assert_failed(index: usize, len: usize) -> ! {
- panic!("removal index (is {index}) should be < len (is {len})");
- }
- let len = self.len();
- if index >= len {
- assert_failed(index, len);
- }
- unsafe {
- // infallible
- let ret;
- {
- // the place we are taking from.
- let ptr = self.as_mut_ptr().add(index);
- // copy it out, unsafely having a copy of the value on
- // the stack and in the vector at the same time.
- ret = ptr::read(ptr);
- // Shift everything down to fill in that spot.
- ptr::copy(ptr.offset(1), ptr, len - index - 1);
- }
- self.set_len(len - 1);
- ret
- }
- }
- /// Retains only the elements specified by the predicate.
- ///
- /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
- /// This method operates in place, visiting each element exactly once in the
- /// original order, and preserves the order of the retained elements.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3, 4];
- /// vec.retain(|&x| x % 2 == 0);
- /// assert_eq!(vec, [2, 4]);
- /// ```
- ///
- /// Because the elements are visited exactly once in the original order,
- /// external state may be used to decide which elements to keep.
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3, 4, 5];
- /// let keep = [false, true, true, false, true];
- /// let mut iter = keep.iter();
- /// vec.retain(|_| *iter.next().unwrap());
- /// assert_eq!(vec, [2, 3, 5]);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn retain<F>(&mut self, mut f: F)
- where
- F: FnMut(&T) -> bool,
- {
- self.retain_mut(|elem| f(elem));
- }
- /// Retains only the elements specified by the predicate, passing a mutable reference to it.
- ///
- /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
- /// This method operates in place, visiting each element exactly once in the
- /// original order, and preserves the order of the retained elements.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3, 4];
- /// vec.retain_mut(|x| if *x > 3 {
- /// false
- /// } else {
- /// *x += 1;
- /// true
- /// });
- /// assert_eq!(vec, [2, 3, 4]);
- /// ```
- #[stable(feature = "vec_retain_mut", since = "1.61.0")]
- pub fn retain_mut<F>(&mut self, mut f: F)
- where
- F: FnMut(&mut T) -> bool,
- {
- let original_len = self.len();
- // Avoid double drop if the drop guard is not executed,
- // since we may make some holes during the process.
- unsafe { self.set_len(0) };
- // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
- // |<- processed len ->| ^- next to check
- // |<- deleted cnt ->|
- // |<- original_len ->|
- // Kept: Elements which predicate returns true on.
- // Hole: Moved or dropped element slot.
- // Unchecked: Unchecked valid elements.
- //
- // This drop guard will be invoked when predicate or `drop` of element panicked.
- // It shifts unchecked elements to cover holes and `set_len` to the correct length.
- // In cases when predicate and `drop` never panick, it will be optimized out.
- struct BackshiftOnDrop<'a, T, A: Allocator> {
- v: &'a mut Vec<T, A>,
- processed_len: usize,
- deleted_cnt: usize,
- original_len: usize,
- }
- impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
- fn drop(&mut self) {
- if self.deleted_cnt > 0 {
- // SAFETY: Trailing unchecked items must be valid since we never touch them.
- unsafe {
- ptr::copy(
- self.v.as_ptr().add(self.processed_len),
- self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
- self.original_len - self.processed_len,
- );
- }
- }
- // SAFETY: After filling holes, all items are in contiguous memory.
- unsafe {
- self.v.set_len(self.original_len - self.deleted_cnt);
- }
- }
- }
- let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
- fn process_loop<F, T, A: Allocator, const DELETED: bool>(
- original_len: usize,
- f: &mut F,
- g: &mut BackshiftOnDrop<'_, T, A>,
- ) where
- F: FnMut(&mut T) -> bool,
- {
- while g.processed_len != original_len {
- // SAFETY: Unchecked element must be valid.
- let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
- if !f(cur) {
- // Advance early to avoid double drop if `drop_in_place` panicked.
- g.processed_len += 1;
- g.deleted_cnt += 1;
- // SAFETY: We never touch this element again after dropped.
- unsafe { ptr::drop_in_place(cur) };
- // We already advanced the counter.
- if DELETED {
- continue;
- } else {
- break;
- }
- }
- if DELETED {
- // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
- // We use copy for move, and never touch this element again.
- unsafe {
- let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
- ptr::copy_nonoverlapping(cur, hole_slot, 1);
- }
- }
- g.processed_len += 1;
- }
- }
- // Stage 1: Nothing was deleted.
- process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
- // Stage 2: Some elements were deleted.
- process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
- // All item are processed. This can be optimized to `set_len` by LLVM.
- drop(g);
- }
- /// Removes all but the first of consecutive elements in the vector that resolve to the same
- /// key.
- ///
- /// If the vector is sorted, this removes all duplicates.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![10, 20, 21, 30, 20];
- ///
- /// vec.dedup_by_key(|i| *i / 10);
- ///
- /// assert_eq!(vec, [10, 20, 30, 20]);
- /// ```
- #[stable(feature = "dedup_by", since = "1.16.0")]
- #[inline]
- pub fn dedup_by_key<F, K>(&mut self, mut key: F)
- where
- F: FnMut(&mut T) -> K,
- K: PartialEq,
- {
- self.dedup_by(|a, b| key(a) == key(b))
- }
- /// Removes all but the first of consecutive elements in the vector satisfying a given equality
- /// relation.
- ///
- /// The `same_bucket` function is passed references to two elements from the vector and
- /// must determine if the elements compare equal. The elements are passed in opposite order
- /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
- ///
- /// If the vector is sorted, this removes all duplicates.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
- ///
- /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
- ///
- /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
- /// ```
- #[stable(feature = "dedup_by", since = "1.16.0")]
- pub fn dedup_by<F>(&mut self, mut same_bucket: F)
- where
- F: FnMut(&mut T, &mut T) -> bool,
- {
- let len = self.len();
- if len <= 1 {
- return;
- }
- /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
- struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
- /* Offset of the element we want to check if it is duplicate */
- read: usize,
- /* Offset of the place where we want to place the non-duplicate
- * when we find it. */
- write: usize,
- /* The Vec that would need correction if `same_bucket` panicked */
- vec: &'a mut Vec<T, A>,
- }
- impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
- fn drop(&mut self) {
- /* This code gets executed when `same_bucket` panics */
- /* SAFETY: invariant guarantees that `read - write`
- * and `len - read` never overflow and that the copy is always
- * in-bounds. */
- unsafe {
- let ptr = self.vec.as_mut_ptr();
- let len = self.vec.len();
- /* How many items were left when `same_bucket` panicked.
- * Basically vec[read..].len() */
- let items_left = len.wrapping_sub(self.read);
- /* Pointer to first item in vec[write..write+items_left] slice */
- let dropped_ptr = ptr.add(self.write);
- /* Pointer to first item in vec[read..] slice */
- let valid_ptr = ptr.add(self.read);
- /* Copy `vec[read..]` to `vec[write..write+items_left]`.
- * The slices can overlap, so `copy_nonoverlapping` cannot be used */
- ptr::copy(valid_ptr, dropped_ptr, items_left);
- /* How many items have been already dropped
- * Basically vec[read..write].len() */
- let dropped = self.read.wrapping_sub(self.write);
- self.vec.set_len(len - dropped);
- }
- }
- }
- let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
- let ptr = gap.vec.as_mut_ptr();
- /* Drop items while going through Vec, it should be more efficient than
- * doing slice partition_dedup + truncate */
- /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
- * are always in-bounds and read_ptr never aliases prev_ptr */
- unsafe {
- while gap.read < len {
- let read_ptr = ptr.add(gap.read);
- let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
- if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
- // Increase `gap.read` now since the drop may panic.
- gap.read += 1;
- /* We have found duplicate, drop it in-place */
- ptr::drop_in_place(read_ptr);
- } else {
- let write_ptr = ptr.add(gap.write);
- /* Because `read_ptr` can be equal to `write_ptr`, we either
- * have to use `copy` or conditional `copy_nonoverlapping`.
- * Looks like the first option is faster. */
- ptr::copy(read_ptr, write_ptr, 1);
- /* We have filled that place, so go further */
- gap.write += 1;
- gap.read += 1;
- }
- }
- /* Technically we could let `gap` clean up with its Drop, but
- * when `same_bucket` is guaranteed to not panic, this bloats a little
- * the codegen, so we just do it manually */
- gap.vec.set_len(gap.write);
- mem::forget(gap);
- }
- }
- /// Appends an element to the back of a collection.
- ///
- /// # Panics
- ///
- /// Panics if the new capacity exceeds `isize::MAX` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2];
- /// vec.push(3);
- /// assert_eq!(vec, [1, 2, 3]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn push(&mut self, value: T) {
- // This will panic or abort if we would allocate > isize::MAX bytes
- // or if the length increment would overflow for zero-sized types.
- if self.len == self.buf.capacity() {
- self.buf.reserve_for_push(self.len);
- }
- unsafe {
- let end = self.as_mut_ptr().add(self.len);
- ptr::write(end, value);
- self.len += 1;
- }
- }
- /// Tries to append an element to the back of a collection.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2];
- /// vec.try_push(3).unwrap();
- /// assert_eq!(vec, [1, 2, 3]);
- /// ```
- #[inline]
- #[stable(feature = "kernel", since = "1.0.0")]
- pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
- if self.len == self.buf.capacity() {
- self.buf.try_reserve_for_push(self.len)?;
- }
- unsafe {
- let end = self.as_mut_ptr().add(self.len);
- ptr::write(end, value);
- self.len += 1;
- }
- Ok(())
- }
- /// Removes the last element from a vector and returns it, or [`None`] if it
- /// is empty.
- ///
- /// If you'd like to pop the first element, consider using
- /// [`VecDeque::pop_front`] instead.
- ///
- /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// assert_eq!(vec.pop(), Some(3));
- /// assert_eq!(vec, [1, 2]);
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn pop(&mut self) -> Option<T> {
- if self.len == 0 {
- None
- } else {
- unsafe {
- self.len -= 1;
- Some(ptr::read(self.as_ptr().add(self.len())))
- }
- }
- }
- /// Moves all the elements of `other` into `self`, leaving `other` empty.
- ///
- /// # Panics
- ///
- /// Panics if the number of elements in the vector overflows a `usize`.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// let mut vec2 = vec![4, 5, 6];
- /// vec.append(&mut vec2);
- /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
- /// assert_eq!(vec2, []);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[stable(feature = "append", since = "1.4.0")]
- pub fn append(&mut self, other: &mut Self) {
- unsafe {
- self.append_elements(other.as_slice() as _);
- other.set_len(0);
- }
- }
- /// Appends elements to `self` from other buffer.
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- unsafe fn append_elements(&mut self, other: *const [T]) {
- let count = unsafe { (*other).len() };
- self.reserve(count);
- let len = self.len();
- unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
- self.len += count;
- }
- /// Removes the specified range from the vector in bulk, returning all
- /// removed elements as an iterator. If the iterator is dropped before
- /// being fully consumed, it drops the remaining removed elements.
- ///
- /// The returned iterator keeps a mutable borrow on the vector to optimize
- /// its implementation.
- ///
- /// # Panics
- ///
- /// Panics if the starting point is greater than the end point or if
- /// the end point is greater than the length of the vector.
- ///
- /// # Leaking
- ///
- /// If the returned iterator goes out of scope without being dropped (due to
- /// [`mem::forget`], for example), the vector may have lost and leaked
- /// elements arbitrarily, including elements outside the range.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = vec![1, 2, 3];
- /// let u: Vec<_> = v.drain(1..).collect();
- /// assert_eq!(v, &[1]);
- /// assert_eq!(u, &[2, 3]);
- ///
- /// // A full range clears the vector, like `clear()` does
- /// v.drain(..);
- /// assert_eq!(v, &[]);
- /// ```
- #[stable(feature = "drain", since = "1.6.0")]
- pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
- where
- R: RangeBounds<usize>,
- {
- // Memory safety
- //
- // When the Drain is first created, it shortens the length of
- // the source vector to make sure no uninitialized or moved-from elements
- // are accessible at all if the Drain's destructor never gets to run.
- //
- // Drain will ptr::read out the values to remove.
- // When finished, remaining tail of the vec is copied back to cover
- // the hole, and the vector length is restored to the new length.
- //
- let len = self.len();
- let Range { start, end } = slice::range(range, ..len);
- unsafe {
- // set self.vec length's to start, to be safe in case Drain is leaked
- self.set_len(start);
- // Use the borrow in the IterMut to indicate borrowing behavior of the
- // whole Drain iterator (like &mut T).
- let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
- Drain {
- tail_start: end,
- tail_len: len - end,
- iter: range_slice.iter(),
- vec: NonNull::from(self),
- }
- }
- }
- /// Clears the vector, removing all values.
- ///
- /// Note that this method has no effect on the allocated capacity
- /// of the vector.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = vec![1, 2, 3];
- ///
- /// v.clear();
- ///
- /// assert!(v.is_empty());
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn clear(&mut self) {
- let elems: *mut [T] = self.as_mut_slice();
- // SAFETY:
- // - `elems` comes directly from `as_mut_slice` and is therefore valid.
- // - Setting `self.len` before calling `drop_in_place` means that,
- // if an element's `Drop` impl panics, the vector's `Drop` impl will
- // do nothing (leaking the rest of the elements) instead of dropping
- // some twice.
- unsafe {
- self.len = 0;
- ptr::drop_in_place(elems);
- }
- }
- /// Returns the number of elements in the vector, also referred to
- /// as its 'length'.
- ///
- /// # Examples
- ///
- /// ```
- /// let a = vec![1, 2, 3];
- /// assert_eq!(a.len(), 3);
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn len(&self) -> usize {
- self.len
- }
- /// Returns `true` if the vector contains no elements.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = Vec::new();
- /// assert!(v.is_empty());
- ///
- /// v.push(1);
- /// assert!(!v.is_empty());
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn is_empty(&self) -> bool {
- self.len() == 0
- }
- /// Splits the collection into two at the given index.
- ///
- /// Returns a newly allocated vector containing the elements in the range
- /// `[at, len)`. After the call, the original vector will be left containing
- /// the elements `[0, at)` with its previous capacity unchanged.
- ///
- /// # Panics
- ///
- /// Panics if `at > len`.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// let vec2 = vec.split_off(1);
- /// assert_eq!(vec, [1]);
- /// assert_eq!(vec2, [2, 3]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[must_use = "use `.truncate()` if you don't need the other half"]
- #[stable(feature = "split_off", since = "1.4.0")]
- pub fn split_off(&mut self, at: usize) -> Self
- where
- A: Clone,
- {
- #[cold]
- #[inline(never)]
- fn assert_failed(at: usize, len: usize) -> ! {
- panic!("`at` split index (is {at}) should be <= len (is {len})");
- }
- if at > self.len() {
- assert_failed(at, self.len());
- }
- if at == 0 {
- // the new vector can take over the original buffer and avoid the copy
- return mem::replace(
- self,
- Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
- );
- }
- let other_len = self.len - at;
- let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
- // Unsafely `set_len` and copy items to `other`.
- unsafe {
- self.set_len(at);
- other.set_len(other_len);
- ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
- }
- other
- }
- /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
- ///
- /// If `new_len` is greater than `len`, the `Vec` is extended by the
- /// difference, with each additional slot filled with the result of
- /// calling the closure `f`. The return values from `f` will end up
- /// in the `Vec` in the order they have been generated.
- ///
- /// If `new_len` is less than `len`, the `Vec` is simply truncated.
- ///
- /// This method uses a closure to create new values on every push. If
- /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
- /// want to use the [`Default`] trait to generate values, you can
- /// pass [`Default::default`] as the second argument.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 3];
- /// vec.resize_with(5, Default::default);
- /// assert_eq!(vec, [1, 2, 3, 0, 0]);
- ///
- /// let mut vec = vec![];
- /// let mut p = 1;
- /// vec.resize_with(4, || { p *= 2; p });
- /// assert_eq!(vec, [2, 4, 8, 16]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_resize_with", since = "1.33.0")]
- pub fn resize_with<F>(&mut self, new_len: usize, f: F)
- where
- F: FnMut() -> T,
- {
- let len = self.len();
- if new_len > len {
- self.extend_with(new_len - len, ExtendFunc(f));
- } else {
- self.truncate(new_len);
- }
- }
- /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
- /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
- /// `'a`. If the type has only static references, or none at all, then this
- /// may be chosen to be `'static`.
- ///
- /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
- /// so the leaked allocation may include unused capacity that is not part
- /// of the returned slice.
- ///
- /// This function is mainly useful for data that lives for the remainder of
- /// the program's life. Dropping the returned reference will cause a memory
- /// leak.
- ///
- /// # Examples
- ///
- /// Simple usage:
- ///
- /// ```
- /// let x = vec![1, 2, 3];
- /// let static_ref: &'static mut [usize] = x.leak();
- /// static_ref[0] += 1;
- /// assert_eq!(static_ref, &[2, 2, 3]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_leak", since = "1.47.0")]
- #[inline]
- pub fn leak<'a>(self) -> &'a mut [T]
- where
- A: 'a,
- {
- let mut me = ManuallyDrop::new(self);
- unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
- }
- /// Returns the remaining spare capacity of the vector as a slice of
- /// `MaybeUninit<T>`.
- ///
- /// The returned slice can be used to fill the vector with data (e.g. by
- /// reading from a file) before marking the data as initialized using the
- /// [`set_len`] method.
- ///
- /// [`set_len`]: Vec::set_len
- ///
- /// # Examples
- ///
- /// ```
- /// // Allocate vector big enough for 10 elements.
- /// let mut v = Vec::with_capacity(10);
- ///
- /// // Fill in the first 3 elements.
- /// let uninit = v.spare_capacity_mut();
- /// uninit[0].write(0);
- /// uninit[1].write(1);
- /// uninit[2].write(2);
- ///
- /// // Mark the first 3 elements of the vector as being initialized.
- /// unsafe {
- /// v.set_len(3);
- /// }
- ///
- /// assert_eq!(&v, &[0, 1, 2]);
- /// ```
- #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
- #[inline]
- pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
- // Note:
- // This method is not implemented in terms of `split_at_spare_mut`,
- // to prevent invalidation of pointers to the buffer.
- unsafe {
- slice::from_raw_parts_mut(
- self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
- self.buf.capacity() - self.len,
- )
- }
- }
- /// Returns vector content as a slice of `T`, along with the remaining spare
- /// capacity of the vector as a slice of `MaybeUninit<T>`.
- ///
- /// The returned spare capacity slice can be used to fill the vector with data
- /// (e.g. by reading from a file) before marking the data as initialized using
- /// the [`set_len`] method.
- ///
- /// [`set_len`]: Vec::set_len
- ///
- /// Note that this is a low-level API, which should be used with care for
- /// optimization purposes. If you need to append data to a `Vec`
- /// you can use [`push`], [`extend`], [`extend_from_slice`],
- /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
- /// [`resize_with`], depending on your exact needs.
- ///
- /// [`push`]: Vec::push
- /// [`extend`]: Vec::extend
- /// [`extend_from_slice`]: Vec::extend_from_slice
- /// [`extend_from_within`]: Vec::extend_from_within
- /// [`insert`]: Vec::insert
- /// [`append`]: Vec::append
- /// [`resize`]: Vec::resize
- /// [`resize_with`]: Vec::resize_with
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(vec_split_at_spare)]
- ///
- /// let mut v = vec![1, 1, 2];
- ///
- /// // Reserve additional space big enough for 10 elements.
- /// v.reserve(10);
- ///
- /// let (init, uninit) = v.split_at_spare_mut();
- /// let sum = init.iter().copied().sum::<u32>();
- ///
- /// // Fill in the next 4 elements.
- /// uninit[0].write(sum);
- /// uninit[1].write(sum * 2);
- /// uninit[2].write(sum * 3);
- /// uninit[3].write(sum * 4);
- ///
- /// // Mark the 4 elements of the vector as being initialized.
- /// unsafe {
- /// let len = v.len();
- /// v.set_len(len + 4);
- /// }
- ///
- /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
- /// ```
- #[unstable(feature = "vec_split_at_spare", issue = "81944")]
- #[inline]
- pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
- // SAFETY:
- // - len is ignored and so never changed
- let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
- (init, spare)
- }
- /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
- ///
- /// This method provides unique access to all vec parts at once in `extend_from_within`.
- unsafe fn split_at_spare_mut_with_len(
- &mut self,
- ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
- let ptr = self.as_mut_ptr();
- // SAFETY:
- // - `ptr` is guaranteed to be valid for `self.len` elements
- // - but the allocation extends out to `self.buf.capacity()` elements, possibly
- // uninitialized
- let spare_ptr = unsafe { ptr.add(self.len) };
- let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
- let spare_len = self.buf.capacity() - self.len;
- // SAFETY:
- // - `ptr` is guaranteed to be valid for `self.len` elements
- // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
- unsafe {
- let initialized = slice::from_raw_parts_mut(ptr, self.len);
- let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
- (initialized, spare, &mut self.len)
- }
- }
- }
- impl<T: Clone, A: Allocator> Vec<T, A> {
- /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
- ///
- /// If `new_len` is greater than `len`, the `Vec` is extended by the
- /// difference, with each additional slot filled with `value`.
- /// If `new_len` is less than `len`, the `Vec` is simply truncated.
- ///
- /// This method requires `T` to implement [`Clone`],
- /// in order to be able to clone the passed value.
- /// If you need more flexibility (or want to rely on [`Default`] instead of
- /// [`Clone`]), use [`Vec::resize_with`].
- /// If you only need to resize to a smaller size, use [`Vec::truncate`].
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec!["hello"];
- /// vec.resize(3, "world");
- /// assert_eq!(vec, ["hello", "world", "world"]);
- ///
- /// let mut vec = vec![1, 2, 3, 4];
- /// vec.resize(2, 0);
- /// assert_eq!(vec, [1, 2]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_resize", since = "1.5.0")]
- pub fn resize(&mut self, new_len: usize, value: T) {
- let len = self.len();
- if new_len > len {
- self.extend_with(new_len - len, ExtendElement(value))
- } else {
- self.truncate(new_len);
- }
- }
- /// Clones and appends all elements in a slice to the `Vec`.
- ///
- /// Iterates over the slice `other`, clones each element, and then appends
- /// it to this `Vec`. The `other` slice is traversed in-order.
- ///
- /// Note that this function is same as [`extend`] except that it is
- /// specialized to work with slices instead. If and when Rust gets
- /// specialization this function will likely be deprecated (but still
- /// available).
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1];
- /// vec.extend_from_slice(&[2, 3, 4]);
- /// assert_eq!(vec, [1, 2, 3, 4]);
- /// ```
- ///
- /// [`extend`]: Vec::extend
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
- pub fn extend_from_slice(&mut self, other: &[T]) {
- self.spec_extend(other.iter())
- }
- /// Copies elements from `src` range to the end of the vector.
- ///
- /// # Panics
- ///
- /// Panics if the starting point is greater than the end point or if
- /// the end point is greater than the length of the vector.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![0, 1, 2, 3, 4];
- ///
- /// vec.extend_from_within(2..);
- /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
- ///
- /// vec.extend_from_within(..2);
- /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
- ///
- /// vec.extend_from_within(4..8);
- /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
- pub fn extend_from_within<R>(&mut self, src: R)
- where
- R: RangeBounds<usize>,
- {
- let range = slice::range(src, ..self.len());
- self.reserve(range.len());
- // SAFETY:
- // - `slice::range` guarantees that the given range is valid for indexing self
- unsafe {
- self.spec_extend_from_within(range);
- }
- }
- }
- impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
- /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
- ///
- /// # Panics
- ///
- /// Panics if the length of the resulting vector would overflow a `usize`.
- ///
- /// This is only possible when flattening a vector of arrays of zero-sized
- /// types, and thus tends to be irrelevant in practice. If
- /// `size_of::<T>() > 0`, this will never panic.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(slice_flatten)]
- ///
- /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
- /// assert_eq!(vec.pop(), Some([7, 8, 9]));
- ///
- /// let mut flattened = vec.into_flattened();
- /// assert_eq!(flattened.pop(), Some(6));
- /// ```
- #[unstable(feature = "slice_flatten", issue = "95629")]
- pub fn into_flattened(self) -> Vec<T, A> {
- let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
- let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
- (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
- } else {
- // SAFETY:
- // - `cap * N` cannot overflow because the allocation is already in
- // the address space.
- // - Each `[T; N]` has `N` valid elements, so there are `len * N`
- // valid elements in the allocation.
- unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
- };
- // SAFETY:
- // - `ptr` was allocated by `self`
- // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
- // - `new_cap` refers to the same sized allocation as `cap` because
- // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
- // - `len` <= `cap`, so `len * N` <= `cap * N`.
- unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
- }
- }
- // This code generalizes `extend_with_{element,default}`.
- trait ExtendWith<T> {
- fn next(&mut self) -> T;
- fn last(self) -> T;
- }
- struct ExtendElement<T>(T);
- impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
- fn next(&mut self) -> T {
- self.0.clone()
- }
- fn last(self) -> T {
- self.0
- }
- }
- struct ExtendFunc<F>(F);
- impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
- fn next(&mut self) -> T {
- (self.0)()
- }
- fn last(mut self) -> T {
- (self.0)()
- }
- }
- impl<T, A: Allocator> Vec<T, A> {
- #[cfg(not(no_global_oom_handling))]
- /// Extend the vector by `n` values, using the given generator.
- fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
- self.reserve(n);
- unsafe {
- let mut ptr = self.as_mut_ptr().add(self.len());
- // Use SetLenOnDrop to work around bug where compiler
- // might not realize the store through `ptr` through self.set_len()
- // don't alias.
- let mut local_len = SetLenOnDrop::new(&mut self.len);
- // Write all elements except the last one
- for _ in 1..n {
- ptr::write(ptr, value.next());
- ptr = ptr.offset(1);
- // Increment the length in every step in case next() panics
- local_len.increment_len(1);
- }
- if n > 0 {
- // We can write the last element directly without cloning needlessly
- ptr::write(ptr, value.last());
- local_len.increment_len(1);
- }
- // len set by scope guard
- }
- }
- }
- impl<T: PartialEq, A: Allocator> Vec<T, A> {
- /// Removes consecutive repeated elements in the vector according to the
- /// [`PartialEq`] trait implementation.
- ///
- /// If the vector is sorted, this removes all duplicates.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut vec = vec![1, 2, 2, 3, 2];
- ///
- /// vec.dedup();
- ///
- /// assert_eq!(vec, [1, 2, 3, 2]);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- #[inline]
- pub fn dedup(&mut self) {
- self.dedup_by(|a, b| a == b)
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- // Internal methods and functions
- ////////////////////////////////////////////////////////////////////////////////
- #[doc(hidden)]
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
- <T as SpecFromElem>::from_elem(elem, n, Global)
- }
- #[doc(hidden)]
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "allocator_api", issue = "32838")]
- pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
- <T as SpecFromElem>::from_elem(elem, n, alloc)
- }
- trait ExtendFromWithinSpec {
- /// # Safety
- ///
- /// - `src` needs to be valid index
- /// - `self.capacity() - self.len()` must be `>= src.len()`
- unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
- }
- impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
- default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
- // SAFETY:
- // - len is increased only after initializing elements
- let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
- // SAFETY:
- // - caller guaratees that src is a valid index
- let to_clone = unsafe { this.get_unchecked(src) };
- iter::zip(to_clone, spare)
- .map(|(src, dst)| dst.write(src.clone()))
- // Note:
- // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
- // - len is increased after each element to prevent leaks (see issue #82533)
- .for_each(|_| *len += 1);
- }
- }
- impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
- unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
- let count = src.len();
- {
- let (init, spare) = self.split_at_spare_mut();
- // SAFETY:
- // - caller guaratees that `src` is a valid index
- let source = unsafe { init.get_unchecked(src) };
- // SAFETY:
- // - Both pointers are created from unique slice references (`&mut [_]`)
- // so they are valid and do not overlap.
- // - Elements are :Copy so it's OK to to copy them, without doing
- // anything with the original values
- // - `count` is equal to the len of `source`, so source is valid for
- // `count` reads
- // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
- // is valid for `count` writes
- unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
- }
- // SAFETY:
- // - The elements were just initialized by `copy_nonoverlapping`
- self.len += count;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- // Common trait implementations for Vec
- ////////////////////////////////////////////////////////////////////////////////
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> ops::Deref for Vec<T, A> {
- type Target = [T];
- fn deref(&self) -> &[T] {
- unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
- fn deref_mut(&mut self) -> &mut [T] {
- unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
- }
- }
- #[cfg(not(no_global_oom_handling))]
- trait SpecCloneFrom {
- fn clone_from(this: &mut Self, other: &Self);
- }
- #[cfg(not(no_global_oom_handling))]
- impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
- default fn clone_from(this: &mut Self, other: &Self) {
- // drop anything that will not be overwritten
- this.truncate(other.len());
- // self.len <= other.len due to the truncate above, so the
- // slices here are always in-bounds.
- let (init, tail) = other.split_at(this.len());
- // reuse the contained values' allocations/resources.
- this.clone_from_slice(init);
- this.extend_from_slice(tail);
- }
- }
- #[cfg(not(no_global_oom_handling))]
- impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
- fn clone_from(this: &mut Self, other: &Self) {
- this.clear();
- this.extend_from_slice(other);
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
- #[cfg(not(test))]
- fn clone(&self) -> Self {
- let alloc = self.allocator().clone();
- <[T]>::to_vec_in(&**self, alloc)
- }
- // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
- // required for this method definition, is not available. Instead use the
- // `slice::to_vec` function which is only available with cfg(test)
- // NB see the slice::hack module in slice.rs for more information
- #[cfg(test)]
- fn clone(&self) -> Self {
- let alloc = self.allocator().clone();
- crate::slice::to_vec(&**self, alloc)
- }
- fn clone_from(&mut self, other: &Self) {
- SpecCloneFrom::clone_from(self, other)
- }
- }
- /// The hash of a vector is the same as that of the corresponding slice,
- /// as required by the `core::borrow::Borrow` implementation.
- ///
- /// ```
- /// #![feature(build_hasher_simple_hash_one)]
- /// use std::hash::BuildHasher;
- ///
- /// let b = std::collections::hash_map::RandomState::new();
- /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
- /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
- /// assert_eq!(b.hash_one(v), b.hash_one(s));
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
- #[inline]
- fn hash<H: Hasher>(&self, state: &mut H) {
- Hash::hash(&**self, state)
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- #[rustc_on_unimplemented(
- message = "vector indices are of type `usize` or ranges of `usize`",
- label = "vector indices are of type `usize` or ranges of `usize`"
- )]
- impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
- type Output = I::Output;
- #[inline]
- fn index(&self, index: I) -> &Self::Output {
- Index::index(&**self, index)
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- #[rustc_on_unimplemented(
- message = "vector indices are of type `usize` or ranges of `usize`",
- label = "vector indices are of type `usize` or ranges of `usize`"
- )]
- impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
- #[inline]
- fn index_mut(&mut self, index: I) -> &mut Self::Output {
- IndexMut::index_mut(&mut **self, index)
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T> FromIterator<T> for Vec<T> {
- #[inline]
- fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
- <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> IntoIterator for Vec<T, A> {
- type Item = T;
- type IntoIter = IntoIter<T, A>;
- /// Creates a consuming iterator, that is, one that moves each value out of
- /// the vector (from start to end). The vector cannot be used after calling
- /// this.
- ///
- /// # Examples
- ///
- /// ```
- /// let v = vec!["a".to_string(), "b".to_string()];
- /// for s in v.into_iter() {
- /// // s has type String, not &String
- /// println!("{s}");
- /// }
- /// ```
- #[inline]
- fn into_iter(self) -> IntoIter<T, A> {
- unsafe {
- let mut me = ManuallyDrop::new(self);
- let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
- let begin = me.as_mut_ptr();
- let end = if mem::size_of::<T>() == 0 {
- arith_offset(begin as *const i8, me.len() as isize) as *const T
- } else {
- begin.add(me.len()) as *const T
- };
- let cap = me.buf.capacity();
- IntoIter {
- buf: NonNull::new_unchecked(begin),
- phantom: PhantomData,
- cap,
- alloc,
- ptr: begin,
- end,
- }
- }
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
- type Item = &'a T;
- type IntoIter = slice::Iter<'a, T>;
- fn into_iter(self) -> slice::Iter<'a, T> {
- self.iter()
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
- type Item = &'a mut T;
- type IntoIter = slice::IterMut<'a, T>;
- fn into_iter(self) -> slice::IterMut<'a, T> {
- self.iter_mut()
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> Extend<T> for Vec<T, A> {
- #[inline]
- fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
- }
- #[inline]
- fn extend_one(&mut self, item: T) {
- self.push(item);
- }
- #[inline]
- fn extend_reserve(&mut self, additional: usize) {
- self.reserve(additional);
- }
- }
- impl<T, A: Allocator> Vec<T, A> {
- // leaf method to which various SpecFrom/SpecExtend implementations delegate when
- // they have no further optimizations to apply
- #[cfg(not(no_global_oom_handling))]
- fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
- // This is the case for a general iterator.
- //
- // This function should be the moral equivalent of:
- //
- // for item in iterator {
- // self.push(item);
- // }
- while let Some(element) = iterator.next() {
- let len = self.len();
- if len == self.capacity() {
- let (lower, _) = iterator.size_hint();
- self.reserve(lower.saturating_add(1));
- }
- unsafe {
- ptr::write(self.as_mut_ptr().add(len), element);
- // Since next() executes user code which can panic we have to bump the length
- // after each step.
- // NB can't overflow since we would have had to alloc the address space
- self.set_len(len + 1);
- }
- }
- }
- /// Creates a splicing iterator that replaces the specified range in the vector
- /// with the given `replace_with` iterator and yields the removed items.
- /// `replace_with` does not need to be the same length as `range`.
- ///
- /// `range` is removed even if the iterator is not consumed until the end.
- ///
- /// It is unspecified how many elements are removed from the vector
- /// if the `Splice` value is leaked.
- ///
- /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
- ///
- /// This is optimal if:
- ///
- /// * The tail (elements in the vector after `range`) is empty,
- /// * or `replace_with` yields fewer or equal elements than `range`’s length
- /// * or the lower bound of its `size_hint()` is exact.
- ///
- /// Otherwise, a temporary vector is allocated and the tail is moved twice.
- ///
- /// # Panics
- ///
- /// Panics if the starting point is greater than the end point or if
- /// the end point is greater than the length of the vector.
- ///
- /// # Examples
- ///
- /// ```
- /// let mut v = vec![1, 2, 3, 4];
- /// let new = [7, 8, 9];
- /// let u: Vec<_> = v.splice(1..3, new).collect();
- /// assert_eq!(v, &[1, 7, 8, 9, 4]);
- /// assert_eq!(u, &[2, 3]);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[stable(feature = "vec_splice", since = "1.21.0")]
- pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
- where
- R: RangeBounds<usize>,
- I: IntoIterator<Item = T>,
- {
- Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
- }
- /// Creates an iterator which uses a closure to determine if an element should be removed.
- ///
- /// If the closure returns true, then the element is removed and yielded.
- /// If the closure returns false, the element will remain in the vector and will not be yielded
- /// by the iterator.
- ///
- /// Using this method is equivalent to the following code:
- ///
- /// ```
- /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
- /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
- /// let mut i = 0;
- /// while i < vec.len() {
- /// if some_predicate(&mut vec[i]) {
- /// let val = vec.remove(i);
- /// // your code here
- /// } else {
- /// i += 1;
- /// }
- /// }
- ///
- /// # assert_eq!(vec, vec![1, 4, 5]);
- /// ```
- ///
- /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
- /// because it can backshift the elements of the array in bulk.
- ///
- /// Note that `drain_filter` also lets you mutate every element in the filter closure,
- /// regardless of whether you choose to keep or remove it.
- ///
- /// # Examples
- ///
- /// Splitting an array into evens and odds, reusing the original allocation:
- ///
- /// ```
- /// #![feature(drain_filter)]
- /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
- ///
- /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
- /// let odds = numbers;
- ///
- /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
- /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
- /// ```
- #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
- pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
- where
- F: FnMut(&mut T) -> bool,
- {
- let old_len = self.len();
- // Guard against us getting leaked (leak amplification)
- unsafe {
- self.set_len(0);
- }
- DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
- }
- }
- /// Extend implementation that copies elements out of references before pushing them onto the Vec.
- ///
- /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
- /// append the entire slice at once.
- ///
- /// [`copy_from_slice`]: slice::copy_from_slice
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "extend_ref", since = "1.2.0")]
- impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
- fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
- self.spec_extend(iter.into_iter())
- }
- #[inline]
- fn extend_one(&mut self, &item: &'a T) {
- self.push(item);
- }
- #[inline]
- fn extend_reserve(&mut self, additional: usize) {
- self.reserve(additional);
- }
- }
- /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
- #[inline]
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
- PartialOrd::partial_cmp(&**self, &**other)
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
- /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
- #[inline]
- fn cmp(&self, other: &Self) -> Ordering {
- Ord::cmp(&**self, &**other)
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
- fn drop(&mut self) {
- unsafe {
- // use drop for [T]
- // use a raw slice to refer to the elements of the vector as weakest necessary type;
- // could avoid questions of validity in certain cases
- ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
- }
- // RawVec handles deallocation
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
- impl<T> const Default for Vec<T> {
- /// Creates an empty `Vec<T>`.
- fn default() -> Vec<T> {
- Vec::new()
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Debug::fmt(&**self, f)
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
- fn as_ref(&self) -> &Vec<T, A> {
- self
- }
- }
- #[stable(feature = "vec_as_mut", since = "1.5.0")]
- impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
- fn as_mut(&mut self) -> &mut Vec<T, A> {
- self
- }
- }
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
- fn as_ref(&self) -> &[T] {
- self
- }
- }
- #[stable(feature = "vec_as_mut", since = "1.5.0")]
- impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
- fn as_mut(&mut self) -> &mut [T] {
- self
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- impl<T: Clone> From<&[T]> for Vec<T> {
- /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
- /// ```
- #[cfg(not(test))]
- fn from(s: &[T]) -> Vec<T> {
- s.to_vec()
- }
- #[cfg(test)]
- fn from(s: &[T]) -> Vec<T> {
- crate::slice::to_vec(s, Global)
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_from_mut", since = "1.19.0")]
- impl<T: Clone> From<&mut [T]> for Vec<T> {
- /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
- /// ```
- #[cfg(not(test))]
- fn from(s: &mut [T]) -> Vec<T> {
- s.to_vec()
- }
- #[cfg(test)]
- fn from(s: &mut [T]) -> Vec<T> {
- crate::slice::to_vec(s, Global)
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "vec_from_array", since = "1.44.0")]
- impl<T, const N: usize> From<[T; N]> for Vec<T> {
- /// Allocate a `Vec<T>` and move `s`'s items into it.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
- /// ```
- #[cfg(not(test))]
- fn from(s: [T; N]) -> Vec<T> {
- <[T]>::into_vec(box s)
- }
- #[cfg(test)]
- fn from(s: [T; N]) -> Vec<T> {
- crate::slice::into_vec(box s)
- }
- }
- #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
- impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
- where
- [T]: ToOwned<Owned = Vec<T>>,
- {
- /// Convert a clone-on-write slice into a vector.
- ///
- /// If `s` already owns a `Vec<T>`, it will be returned directly.
- /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
- /// filled by cloning `s`'s items into it.
- ///
- /// # Examples
- ///
- /// ```
- /// # use std::borrow::Cow;
- /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
- /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
- /// assert_eq!(Vec::from(o), Vec::from(b));
- /// ```
- fn from(s: Cow<'a, [T]>) -> Vec<T> {
- s.into_owned()
- }
- }
- // note: test pulls in libstd, which causes errors here
- #[cfg(not(test))]
- #[stable(feature = "vec_from_box", since = "1.18.0")]
- impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
- /// Convert a boxed slice into a vector by transferring ownership of
- /// the existing heap allocation.
- ///
- /// # Examples
- ///
- /// ```
- /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
- /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
- /// ```
- fn from(s: Box<[T], A>) -> Self {
- s.into_vec()
- }
- }
- // note: test pulls in libstd, which causes errors here
- #[cfg(not(no_global_oom_handling))]
- #[cfg(not(test))]
- #[stable(feature = "box_from_vec", since = "1.20.0")]
- impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
- /// Convert a vector into a boxed slice.
- ///
- /// If `v` has excess capacity, its items will be moved into a
- /// newly-allocated buffer with exactly the right capacity.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
- /// ```
- fn from(v: Vec<T, A>) -> Self {
- v.into_boxed_slice()
- }
- }
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "rust1", since = "1.0.0")]
- impl From<&str> for Vec<u8> {
- /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
- /// ```
- fn from(s: &str) -> Vec<u8> {
- From::from(s.as_bytes())
- }
- }
- #[stable(feature = "array_try_from_vec", since = "1.48.0")]
- impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
- type Error = Vec<T, A>;
- /// Gets the entire contents of the `Vec<T>` as an array,
- /// if its size exactly matches that of the requested array.
- ///
- /// # Examples
- ///
- /// ```
- /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
- /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
- /// ```
- ///
- /// If the length doesn't match, the input comes back in `Err`:
- /// ```
- /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
- /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
- /// ```
- ///
- /// If you're fine with just getting a prefix of the `Vec<T>`,
- /// you can call [`.truncate(N)`](Vec::truncate) first.
- /// ```
- /// let mut v = String::from("hello world").into_bytes();
- /// v.sort();
- /// v.truncate(2);
- /// let [a, b]: [_; 2] = v.try_into().unwrap();
- /// assert_eq!(a, b' ');
- /// assert_eq!(b, b'd');
- /// ```
- fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
- if vec.len() != N {
- return Err(vec);
- }
- // SAFETY: `.set_len(0)` is always sound.
- unsafe { vec.set_len(0) };
- // SAFETY: A `Vec`'s pointer is always aligned properly, and
- // the alignment the array needs is the same as the items.
- // We checked earlier that we have sufficient items.
- // The items will not double-drop as the `set_len`
- // tells the `Vec` not to also drop them.
- let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
- Ok(array)
- }
- }
|