memory-tiers.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/slab.h>
  3. #include <linux/lockdep.h>
  4. #include <linux/sysfs.h>
  5. #include <linux/kobject.h>
  6. #include <linux/memory.h>
  7. #include <linux/memory-tiers.h>
  8. #include "internal.h"
  9. struct memory_tier {
  10. /* hierarchy of memory tiers */
  11. struct list_head list;
  12. /* list of all memory types part of this tier */
  13. struct list_head memory_types;
  14. /*
  15. * start value of abstract distance. memory tier maps
  16. * an abstract distance range,
  17. * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
  18. */
  19. int adistance_start;
  20. struct device dev;
  21. /* All the nodes that are part of all the lower memory tiers. */
  22. nodemask_t lower_tier_mask;
  23. };
  24. struct demotion_nodes {
  25. nodemask_t preferred;
  26. };
  27. struct node_memory_type_map {
  28. struct memory_dev_type *memtype;
  29. int map_count;
  30. };
  31. static DEFINE_MUTEX(memory_tier_lock);
  32. static LIST_HEAD(memory_tiers);
  33. static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
  34. static struct memory_dev_type *default_dram_type;
  35. static struct bus_type memory_tier_subsys = {
  36. .name = "memory_tiering",
  37. .dev_name = "memory_tier",
  38. };
  39. #ifdef CONFIG_MIGRATION
  40. static int top_tier_adistance;
  41. /*
  42. * node_demotion[] examples:
  43. *
  44. * Example 1:
  45. *
  46. * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
  47. *
  48. * node distances:
  49. * node 0 1 2 3
  50. * 0 10 20 30 40
  51. * 1 20 10 40 30
  52. * 2 30 40 10 40
  53. * 3 40 30 40 10
  54. *
  55. * memory_tiers0 = 0-1
  56. * memory_tiers1 = 2-3
  57. *
  58. * node_demotion[0].preferred = 2
  59. * node_demotion[1].preferred = 3
  60. * node_demotion[2].preferred = <empty>
  61. * node_demotion[3].preferred = <empty>
  62. *
  63. * Example 2:
  64. *
  65. * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
  66. *
  67. * node distances:
  68. * node 0 1 2
  69. * 0 10 20 30
  70. * 1 20 10 30
  71. * 2 30 30 10
  72. *
  73. * memory_tiers0 = 0-2
  74. *
  75. * node_demotion[0].preferred = <empty>
  76. * node_demotion[1].preferred = <empty>
  77. * node_demotion[2].preferred = <empty>
  78. *
  79. * Example 3:
  80. *
  81. * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
  82. *
  83. * node distances:
  84. * node 0 1 2
  85. * 0 10 20 30
  86. * 1 20 10 40
  87. * 2 30 40 10
  88. *
  89. * memory_tiers0 = 1
  90. * memory_tiers1 = 0
  91. * memory_tiers2 = 2
  92. *
  93. * node_demotion[0].preferred = 2
  94. * node_demotion[1].preferred = 0
  95. * node_demotion[2].preferred = <empty>
  96. *
  97. */
  98. static struct demotion_nodes *node_demotion __read_mostly;
  99. #endif /* CONFIG_MIGRATION */
  100. static inline struct memory_tier *to_memory_tier(struct device *device)
  101. {
  102. return container_of(device, struct memory_tier, dev);
  103. }
  104. static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
  105. {
  106. nodemask_t nodes = NODE_MASK_NONE;
  107. struct memory_dev_type *memtype;
  108. list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling)
  109. nodes_or(nodes, nodes, memtype->nodes);
  110. return nodes;
  111. }
  112. static void memory_tier_device_release(struct device *dev)
  113. {
  114. struct memory_tier *tier = to_memory_tier(dev);
  115. /*
  116. * synchronize_rcu in clear_node_memory_tier makes sure
  117. * we don't have rcu access to this memory tier.
  118. */
  119. kfree(tier);
  120. }
  121. static ssize_t nodelist_show(struct device *dev,
  122. struct device_attribute *attr, char *buf)
  123. {
  124. int ret;
  125. nodemask_t nmask;
  126. mutex_lock(&memory_tier_lock);
  127. nmask = get_memtier_nodemask(to_memory_tier(dev));
  128. ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
  129. mutex_unlock(&memory_tier_lock);
  130. return ret;
  131. }
  132. static DEVICE_ATTR_RO(nodelist);
  133. static struct attribute *memtier_dev_attrs[] = {
  134. &dev_attr_nodelist.attr,
  135. NULL
  136. };
  137. static const struct attribute_group memtier_dev_group = {
  138. .attrs = memtier_dev_attrs,
  139. };
  140. static const struct attribute_group *memtier_dev_groups[] = {
  141. &memtier_dev_group,
  142. NULL
  143. };
  144. static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
  145. {
  146. int ret;
  147. bool found_slot = false;
  148. struct memory_tier *memtier, *new_memtier;
  149. int adistance = memtype->adistance;
  150. unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
  151. lockdep_assert_held_once(&memory_tier_lock);
  152. adistance = round_down(adistance, memtier_adistance_chunk_size);
  153. /*
  154. * If the memtype is already part of a memory tier,
  155. * just return that.
  156. */
  157. if (!list_empty(&memtype->tier_sibiling)) {
  158. list_for_each_entry(memtier, &memory_tiers, list) {
  159. if (adistance == memtier->adistance_start)
  160. return memtier;
  161. }
  162. WARN_ON(1);
  163. return ERR_PTR(-EINVAL);
  164. }
  165. list_for_each_entry(memtier, &memory_tiers, list) {
  166. if (adistance == memtier->adistance_start) {
  167. goto link_memtype;
  168. } else if (adistance < memtier->adistance_start) {
  169. found_slot = true;
  170. break;
  171. }
  172. }
  173. new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
  174. if (!new_memtier)
  175. return ERR_PTR(-ENOMEM);
  176. new_memtier->adistance_start = adistance;
  177. INIT_LIST_HEAD(&new_memtier->list);
  178. INIT_LIST_HEAD(&new_memtier->memory_types);
  179. if (found_slot)
  180. list_add_tail(&new_memtier->list, &memtier->list);
  181. else
  182. list_add_tail(&new_memtier->list, &memory_tiers);
  183. new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
  184. new_memtier->dev.bus = &memory_tier_subsys;
  185. new_memtier->dev.release = memory_tier_device_release;
  186. new_memtier->dev.groups = memtier_dev_groups;
  187. ret = device_register(&new_memtier->dev);
  188. if (ret) {
  189. list_del(&new_memtier->list);
  190. put_device(&new_memtier->dev);
  191. return ERR_PTR(ret);
  192. }
  193. memtier = new_memtier;
  194. link_memtype:
  195. list_add(&memtype->tier_sibiling, &memtier->memory_types);
  196. return memtier;
  197. }
  198. static struct memory_tier *__node_get_memory_tier(int node)
  199. {
  200. pg_data_t *pgdat;
  201. pgdat = NODE_DATA(node);
  202. if (!pgdat)
  203. return NULL;
  204. /*
  205. * Since we hold memory_tier_lock, we can avoid
  206. * RCU read locks when accessing the details. No
  207. * parallel updates are possible here.
  208. */
  209. return rcu_dereference_check(pgdat->memtier,
  210. lockdep_is_held(&memory_tier_lock));
  211. }
  212. #ifdef CONFIG_MIGRATION
  213. bool node_is_toptier(int node)
  214. {
  215. bool toptier;
  216. pg_data_t *pgdat;
  217. struct memory_tier *memtier;
  218. pgdat = NODE_DATA(node);
  219. if (!pgdat)
  220. return false;
  221. rcu_read_lock();
  222. memtier = rcu_dereference(pgdat->memtier);
  223. if (!memtier) {
  224. toptier = true;
  225. goto out;
  226. }
  227. if (memtier->adistance_start <= top_tier_adistance)
  228. toptier = true;
  229. else
  230. toptier = false;
  231. out:
  232. rcu_read_unlock();
  233. return toptier;
  234. }
  235. void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
  236. {
  237. struct memory_tier *memtier;
  238. /*
  239. * pg_data_t.memtier updates includes a synchronize_rcu()
  240. * which ensures that we either find NULL or a valid memtier
  241. * in NODE_DATA. protect the access via rcu_read_lock();
  242. */
  243. rcu_read_lock();
  244. memtier = rcu_dereference(pgdat->memtier);
  245. if (memtier)
  246. *targets = memtier->lower_tier_mask;
  247. else
  248. *targets = NODE_MASK_NONE;
  249. rcu_read_unlock();
  250. }
  251. /**
  252. * next_demotion_node() - Get the next node in the demotion path
  253. * @node: The starting node to lookup the next node
  254. *
  255. * Return: node id for next memory node in the demotion path hierarchy
  256. * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
  257. * @node online or guarantee that it *continues* to be the next demotion
  258. * target.
  259. */
  260. int next_demotion_node(int node)
  261. {
  262. struct demotion_nodes *nd;
  263. int target;
  264. if (!node_demotion)
  265. return NUMA_NO_NODE;
  266. nd = &node_demotion[node];
  267. /*
  268. * node_demotion[] is updated without excluding this
  269. * function from running.
  270. *
  271. * Make sure to use RCU over entire code blocks if
  272. * node_demotion[] reads need to be consistent.
  273. */
  274. rcu_read_lock();
  275. /*
  276. * If there are multiple target nodes, just select one
  277. * target node randomly.
  278. *
  279. * In addition, we can also use round-robin to select
  280. * target node, but we should introduce another variable
  281. * for node_demotion[] to record last selected target node,
  282. * that may cause cache ping-pong due to the changing of
  283. * last target node. Or introducing per-cpu data to avoid
  284. * caching issue, which seems more complicated. So selecting
  285. * target node randomly seems better until now.
  286. */
  287. target = node_random(&nd->preferred);
  288. rcu_read_unlock();
  289. return target;
  290. }
  291. static void disable_all_demotion_targets(void)
  292. {
  293. struct memory_tier *memtier;
  294. int node;
  295. for_each_node_state(node, N_MEMORY) {
  296. node_demotion[node].preferred = NODE_MASK_NONE;
  297. /*
  298. * We are holding memory_tier_lock, it is safe
  299. * to access pgda->memtier.
  300. */
  301. memtier = __node_get_memory_tier(node);
  302. if (memtier)
  303. memtier->lower_tier_mask = NODE_MASK_NONE;
  304. }
  305. /*
  306. * Ensure that the "disable" is visible across the system.
  307. * Readers will see either a combination of before+disable
  308. * state or disable+after. They will never see before and
  309. * after state together.
  310. */
  311. synchronize_rcu();
  312. }
  313. /*
  314. * Find an automatic demotion target for all memory
  315. * nodes. Failing here is OK. It might just indicate
  316. * being at the end of a chain.
  317. */
  318. static void establish_demotion_targets(void)
  319. {
  320. struct memory_tier *memtier;
  321. struct demotion_nodes *nd;
  322. int target = NUMA_NO_NODE, node;
  323. int distance, best_distance;
  324. nodemask_t tier_nodes, lower_tier;
  325. lockdep_assert_held_once(&memory_tier_lock);
  326. if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION))
  327. return;
  328. disable_all_demotion_targets();
  329. for_each_node_state(node, N_MEMORY) {
  330. best_distance = -1;
  331. nd = &node_demotion[node];
  332. memtier = __node_get_memory_tier(node);
  333. if (!memtier || list_is_last(&memtier->list, &memory_tiers))
  334. continue;
  335. /*
  336. * Get the lower memtier to find the demotion node list.
  337. */
  338. memtier = list_next_entry(memtier, list);
  339. tier_nodes = get_memtier_nodemask(memtier);
  340. /*
  341. * find_next_best_node, use 'used' nodemask as a skip list.
  342. * Add all memory nodes except the selected memory tier
  343. * nodelist to skip list so that we find the best node from the
  344. * memtier nodelist.
  345. */
  346. nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
  347. /*
  348. * Find all the nodes in the memory tier node list of same best distance.
  349. * add them to the preferred mask. We randomly select between nodes
  350. * in the preferred mask when allocating pages during demotion.
  351. */
  352. do {
  353. target = find_next_best_node(node, &tier_nodes);
  354. if (target == NUMA_NO_NODE)
  355. break;
  356. distance = node_distance(node, target);
  357. if (distance == best_distance || best_distance == -1) {
  358. best_distance = distance;
  359. node_set(target, nd->preferred);
  360. } else {
  361. break;
  362. }
  363. } while (1);
  364. }
  365. /*
  366. * Promotion is allowed from a memory tier to higher
  367. * memory tier only if the memory tier doesn't include
  368. * compute. We want to skip promotion from a memory tier,
  369. * if any node that is part of the memory tier have CPUs.
  370. * Once we detect such a memory tier, we consider that tier
  371. * as top tiper from which promotion is not allowed.
  372. */
  373. list_for_each_entry_reverse(memtier, &memory_tiers, list) {
  374. tier_nodes = get_memtier_nodemask(memtier);
  375. nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
  376. if (!nodes_empty(tier_nodes)) {
  377. /*
  378. * abstract distance below the max value of this memtier
  379. * is considered toptier.
  380. */
  381. top_tier_adistance = memtier->adistance_start +
  382. MEMTIER_CHUNK_SIZE - 1;
  383. break;
  384. }
  385. }
  386. /*
  387. * Now build the lower_tier mask for each node collecting node mask from
  388. * all memory tier below it. This allows us to fallback demotion page
  389. * allocation to a set of nodes that is closer the above selected
  390. * perferred node.
  391. */
  392. lower_tier = node_states[N_MEMORY];
  393. list_for_each_entry(memtier, &memory_tiers, list) {
  394. /*
  395. * Keep removing current tier from lower_tier nodes,
  396. * This will remove all nodes in current and above
  397. * memory tier from the lower_tier mask.
  398. */
  399. tier_nodes = get_memtier_nodemask(memtier);
  400. nodes_andnot(lower_tier, lower_tier, tier_nodes);
  401. memtier->lower_tier_mask = lower_tier;
  402. }
  403. }
  404. #else
  405. static inline void disable_all_demotion_targets(void) {}
  406. static inline void establish_demotion_targets(void) {}
  407. #endif /* CONFIG_MIGRATION */
  408. static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
  409. {
  410. if (!node_memory_types[node].memtype)
  411. node_memory_types[node].memtype = memtype;
  412. /*
  413. * for each device getting added in the same NUMA node
  414. * with this specific memtype, bump the map count. We
  415. * Only take memtype device reference once, so that
  416. * changing a node memtype can be done by droping the
  417. * only reference count taken here.
  418. */
  419. if (node_memory_types[node].memtype == memtype) {
  420. if (!node_memory_types[node].map_count++)
  421. kref_get(&memtype->kref);
  422. }
  423. }
  424. static struct memory_tier *set_node_memory_tier(int node)
  425. {
  426. struct memory_tier *memtier;
  427. struct memory_dev_type *memtype;
  428. pg_data_t *pgdat = NODE_DATA(node);
  429. lockdep_assert_held_once(&memory_tier_lock);
  430. if (!node_state(node, N_MEMORY))
  431. return ERR_PTR(-EINVAL);
  432. __init_node_memory_type(node, default_dram_type);
  433. memtype = node_memory_types[node].memtype;
  434. node_set(node, memtype->nodes);
  435. memtier = find_create_memory_tier(memtype);
  436. if (!IS_ERR(memtier))
  437. rcu_assign_pointer(pgdat->memtier, memtier);
  438. return memtier;
  439. }
  440. static void destroy_memory_tier(struct memory_tier *memtier)
  441. {
  442. list_del(&memtier->list);
  443. device_unregister(&memtier->dev);
  444. }
  445. static bool clear_node_memory_tier(int node)
  446. {
  447. bool cleared = false;
  448. pg_data_t *pgdat;
  449. struct memory_tier *memtier;
  450. pgdat = NODE_DATA(node);
  451. if (!pgdat)
  452. return false;
  453. /*
  454. * Make sure that anybody looking at NODE_DATA who finds
  455. * a valid memtier finds memory_dev_types with nodes still
  456. * linked to the memtier. We achieve this by waiting for
  457. * rcu read section to finish using synchronize_rcu.
  458. * This also enables us to free the destroyed memory tier
  459. * with kfree instead of kfree_rcu
  460. */
  461. memtier = __node_get_memory_tier(node);
  462. if (memtier) {
  463. struct memory_dev_type *memtype;
  464. rcu_assign_pointer(pgdat->memtier, NULL);
  465. synchronize_rcu();
  466. memtype = node_memory_types[node].memtype;
  467. node_clear(node, memtype->nodes);
  468. if (nodes_empty(memtype->nodes)) {
  469. list_del_init(&memtype->tier_sibiling);
  470. if (list_empty(&memtier->memory_types))
  471. destroy_memory_tier(memtier);
  472. }
  473. cleared = true;
  474. }
  475. return cleared;
  476. }
  477. static void release_memtype(struct kref *kref)
  478. {
  479. struct memory_dev_type *memtype;
  480. memtype = container_of(kref, struct memory_dev_type, kref);
  481. kfree(memtype);
  482. }
  483. struct memory_dev_type *alloc_memory_type(int adistance)
  484. {
  485. struct memory_dev_type *memtype;
  486. memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
  487. if (!memtype)
  488. return ERR_PTR(-ENOMEM);
  489. memtype->adistance = adistance;
  490. INIT_LIST_HEAD(&memtype->tier_sibiling);
  491. memtype->nodes = NODE_MASK_NONE;
  492. kref_init(&memtype->kref);
  493. return memtype;
  494. }
  495. EXPORT_SYMBOL_GPL(alloc_memory_type);
  496. void destroy_memory_type(struct memory_dev_type *memtype)
  497. {
  498. kref_put(&memtype->kref, release_memtype);
  499. }
  500. EXPORT_SYMBOL_GPL(destroy_memory_type);
  501. void init_node_memory_type(int node, struct memory_dev_type *memtype)
  502. {
  503. mutex_lock(&memory_tier_lock);
  504. __init_node_memory_type(node, memtype);
  505. mutex_unlock(&memory_tier_lock);
  506. }
  507. EXPORT_SYMBOL_GPL(init_node_memory_type);
  508. void clear_node_memory_type(int node, struct memory_dev_type *memtype)
  509. {
  510. mutex_lock(&memory_tier_lock);
  511. if (node_memory_types[node].memtype == memtype)
  512. node_memory_types[node].map_count--;
  513. /*
  514. * If we umapped all the attached devices to this node,
  515. * clear the node memory type.
  516. */
  517. if (!node_memory_types[node].map_count) {
  518. node_memory_types[node].memtype = NULL;
  519. kref_put(&memtype->kref, release_memtype);
  520. }
  521. mutex_unlock(&memory_tier_lock);
  522. }
  523. EXPORT_SYMBOL_GPL(clear_node_memory_type);
  524. static int __meminit memtier_hotplug_callback(struct notifier_block *self,
  525. unsigned long action, void *_arg)
  526. {
  527. struct memory_tier *memtier;
  528. struct memory_notify *arg = _arg;
  529. /*
  530. * Only update the node migration order when a node is
  531. * changing status, like online->offline.
  532. */
  533. if (arg->status_change_nid < 0)
  534. return notifier_from_errno(0);
  535. switch (action) {
  536. case MEM_OFFLINE:
  537. mutex_lock(&memory_tier_lock);
  538. if (clear_node_memory_tier(arg->status_change_nid))
  539. establish_demotion_targets();
  540. mutex_unlock(&memory_tier_lock);
  541. break;
  542. case MEM_ONLINE:
  543. mutex_lock(&memory_tier_lock);
  544. memtier = set_node_memory_tier(arg->status_change_nid);
  545. if (!IS_ERR(memtier))
  546. establish_demotion_targets();
  547. mutex_unlock(&memory_tier_lock);
  548. break;
  549. }
  550. return notifier_from_errno(0);
  551. }
  552. static int __init memory_tier_init(void)
  553. {
  554. int ret, node;
  555. struct memory_tier *memtier;
  556. ret = subsys_virtual_register(&memory_tier_subsys, NULL);
  557. if (ret)
  558. panic("%s() failed to register memory tier subsystem\n", __func__);
  559. #ifdef CONFIG_MIGRATION
  560. node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
  561. GFP_KERNEL);
  562. WARN_ON(!node_demotion);
  563. #endif
  564. mutex_lock(&memory_tier_lock);
  565. /*
  566. * For now we can have 4 faster memory tiers with smaller adistance
  567. * than default DRAM tier.
  568. */
  569. default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
  570. if (!default_dram_type)
  571. panic("%s() failed to allocate default DRAM tier\n", __func__);
  572. /*
  573. * Look at all the existing N_MEMORY nodes and add them to
  574. * default memory tier or to a tier if we already have memory
  575. * types assigned.
  576. */
  577. for_each_node_state(node, N_MEMORY) {
  578. memtier = set_node_memory_tier(node);
  579. if (IS_ERR(memtier))
  580. /*
  581. * Continue with memtiers we are able to setup
  582. */
  583. break;
  584. }
  585. establish_demotion_targets();
  586. mutex_unlock(&memory_tier_lock);
  587. hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO);
  588. return 0;
  589. }
  590. subsys_initcall(memory_tier_init);
  591. bool numa_demotion_enabled = false;
  592. #ifdef CONFIG_MIGRATION
  593. #ifdef CONFIG_SYSFS
  594. static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
  595. struct kobj_attribute *attr, char *buf)
  596. {
  597. return sysfs_emit(buf, "%s\n",
  598. numa_demotion_enabled ? "true" : "false");
  599. }
  600. static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
  601. struct kobj_attribute *attr,
  602. const char *buf, size_t count)
  603. {
  604. ssize_t ret;
  605. ret = kstrtobool(buf, &numa_demotion_enabled);
  606. if (ret)
  607. return ret;
  608. return count;
  609. }
  610. static struct kobj_attribute numa_demotion_enabled_attr =
  611. __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
  612. numa_demotion_enabled_store);
  613. static struct attribute *numa_attrs[] = {
  614. &numa_demotion_enabled_attr.attr,
  615. NULL,
  616. };
  617. static const struct attribute_group numa_attr_group = {
  618. .attrs = numa_attrs,
  619. };
  620. static int __init numa_init_sysfs(void)
  621. {
  622. int err;
  623. struct kobject *numa_kobj;
  624. numa_kobj = kobject_create_and_add("numa", mm_kobj);
  625. if (!numa_kobj) {
  626. pr_err("failed to create numa kobject\n");
  627. return -ENOMEM;
  628. }
  629. err = sysfs_create_group(numa_kobj, &numa_attr_group);
  630. if (err) {
  631. pr_err("failed to register numa group\n");
  632. goto delete_obj;
  633. }
  634. return 0;
  635. delete_obj:
  636. kobject_put(numa_kobj);
  637. return err;
  638. }
  639. subsys_initcall(numa_init_sysfs);
  640. #endif /* CONFIG_SYSFS */
  641. #endif