123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright (C) 2008, 2009 Intel Corporation
- * Authors: Andi Kleen, Fengguang Wu
- *
- * High level machine check handler. Handles pages reported by the
- * hardware as being corrupted usually due to a multi-bit ECC memory or cache
- * failure.
- *
- * In addition there is a "soft offline" entry point that allows stop using
- * not-yet-corrupted-by-suspicious pages without killing anything.
- *
- * Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronously in respect to
- * other VM users, because memory failures could happen anytime and
- * anywhere. This could violate some of their assumptions. This is why
- * this code has to be extremely careful. Generally it tries to use
- * normal locking rules, as in get the standard locks, even if that means
- * the error handling takes potentially a long time.
- *
- * It can be very tempting to add handling for obscure cases here.
- * In general any code for handling new cases should only be added iff:
- * - You know how to test it.
- * - You have a test that can be added to mce-test
- * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
- * - The case actually shows up as a frequent (top 10) page state in
- * tools/vm/page-types when running a real workload.
- *
- * There are several operations here with exponential complexity because
- * of unsuitable VM data structures. For example the operation to map back
- * from RMAP chains to processes has to walk the complete process list and
- * has non linear complexity with the number. But since memory corruptions
- * are rare we hope to get away with this. This avoids impacting the core
- * VM.
- */
- #define pr_fmt(fmt) "Memory failure: " fmt
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/page-flags.h>
- #include <linux/kernel-page-flags.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/task.h>
- #include <linux/dax.h>
- #include <linux/ksm.h>
- #include <linux/rmap.h>
- #include <linux/export.h>
- #include <linux/pagemap.h>
- #include <linux/swap.h>
- #include <linux/backing-dev.h>
- #include <linux/migrate.h>
- #include <linux/suspend.h>
- #include <linux/slab.h>
- #include <linux/swapops.h>
- #include <linux/hugetlb.h>
- #include <linux/memory_hotplug.h>
- #include <linux/mm_inline.h>
- #include <linux/memremap.h>
- #include <linux/kfifo.h>
- #include <linux/ratelimit.h>
- #include <linux/page-isolation.h>
- #include <linux/pagewalk.h>
- #include <linux/shmem_fs.h>
- #include "swap.h"
- #include "internal.h"
- #include "ras/ras_event.h"
- int sysctl_memory_failure_early_kill __read_mostly = 0;
- int sysctl_memory_failure_recovery __read_mostly = 1;
- atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
- static bool hw_memory_failure __read_mostly = false;
- /*
- * Return values:
- * 1: the page is dissolved (if needed) and taken off from buddy,
- * 0: the page is dissolved (if needed) and not taken off from buddy,
- * < 0: failed to dissolve.
- */
- static int __page_handle_poison(struct page *page)
- {
- int ret;
- zone_pcp_disable(page_zone(page));
- ret = dissolve_free_huge_page(page);
- if (!ret)
- ret = take_page_off_buddy(page);
- zone_pcp_enable(page_zone(page));
- return ret;
- }
- static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
- {
- if (hugepage_or_freepage) {
- /*
- * Doing this check for free pages is also fine since dissolve_free_huge_page
- * returns 0 for non-hugetlb pages as well.
- */
- if (__page_handle_poison(page) <= 0)
- /*
- * We could fail to take off the target page from buddy
- * for example due to racy page allocation, but that's
- * acceptable because soft-offlined page is not broken
- * and if someone really want to use it, they should
- * take it.
- */
- return false;
- }
- SetPageHWPoison(page);
- if (release)
- put_page(page);
- page_ref_inc(page);
- num_poisoned_pages_inc();
- return true;
- }
- #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
- u32 hwpoison_filter_enable = 0;
- u32 hwpoison_filter_dev_major = ~0U;
- u32 hwpoison_filter_dev_minor = ~0U;
- u64 hwpoison_filter_flags_mask;
- u64 hwpoison_filter_flags_value;
- EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
- EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
- EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
- EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
- EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
- static int hwpoison_filter_dev(struct page *p)
- {
- struct address_space *mapping;
- dev_t dev;
- if (hwpoison_filter_dev_major == ~0U &&
- hwpoison_filter_dev_minor == ~0U)
- return 0;
- mapping = page_mapping(p);
- if (mapping == NULL || mapping->host == NULL)
- return -EINVAL;
- dev = mapping->host->i_sb->s_dev;
- if (hwpoison_filter_dev_major != ~0U &&
- hwpoison_filter_dev_major != MAJOR(dev))
- return -EINVAL;
- if (hwpoison_filter_dev_minor != ~0U &&
- hwpoison_filter_dev_minor != MINOR(dev))
- return -EINVAL;
- return 0;
- }
- static int hwpoison_filter_flags(struct page *p)
- {
- if (!hwpoison_filter_flags_mask)
- return 0;
- if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
- hwpoison_filter_flags_value)
- return 0;
- else
- return -EINVAL;
- }
- /*
- * This allows stress tests to limit test scope to a collection of tasks
- * by putting them under some memcg. This prevents killing unrelated/important
- * processes such as /sbin/init. Note that the target task may share clean
- * pages with init (eg. libc text), which is harmless. If the target task
- * share _dirty_ pages with another task B, the test scheme must make sure B
- * is also included in the memcg. At last, due to race conditions this filter
- * can only guarantee that the page either belongs to the memcg tasks, or is
- * a freed page.
- */
- #ifdef CONFIG_MEMCG
- u64 hwpoison_filter_memcg;
- EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
- static int hwpoison_filter_task(struct page *p)
- {
- if (!hwpoison_filter_memcg)
- return 0;
- if (page_cgroup_ino(p) != hwpoison_filter_memcg)
- return -EINVAL;
- return 0;
- }
- #else
- static int hwpoison_filter_task(struct page *p) { return 0; }
- #endif
- int hwpoison_filter(struct page *p)
- {
- if (!hwpoison_filter_enable)
- return 0;
- if (hwpoison_filter_dev(p))
- return -EINVAL;
- if (hwpoison_filter_flags(p))
- return -EINVAL;
- if (hwpoison_filter_task(p))
- return -EINVAL;
- return 0;
- }
- #else
- int hwpoison_filter(struct page *p)
- {
- return 0;
- }
- #endif
- EXPORT_SYMBOL_GPL(hwpoison_filter);
- /*
- * Kill all processes that have a poisoned page mapped and then isolate
- * the page.
- *
- * General strategy:
- * Find all processes having the page mapped and kill them.
- * But we keep a page reference around so that the page is not
- * actually freed yet.
- * Then stash the page away
- *
- * There's no convenient way to get back to mapped processes
- * from the VMAs. So do a brute-force search over all
- * running processes.
- *
- * Remember that machine checks are not common (or rather
- * if they are common you have other problems), so this shouldn't
- * be a performance issue.
- *
- * Also there are some races possible while we get from the
- * error detection to actually handle it.
- */
- struct to_kill {
- struct list_head nd;
- struct task_struct *tsk;
- unsigned long addr;
- short size_shift;
- };
- /*
- * Send all the processes who have the page mapped a signal.
- * ``action optional'' if they are not immediately affected by the error
- * ``action required'' if error happened in current execution context
- */
- static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
- {
- struct task_struct *t = tk->tsk;
- short addr_lsb = tk->size_shift;
- int ret = 0;
- pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
- pfn, t->comm, t->pid);
- if ((flags & MF_ACTION_REQUIRED) && (t == current))
- ret = force_sig_mceerr(BUS_MCEERR_AR,
- (void __user *)tk->addr, addr_lsb);
- else
- /*
- * Signal other processes sharing the page if they have
- * PF_MCE_EARLY set.
- * Don't use force here, it's convenient if the signal
- * can be temporarily blocked.
- * This could cause a loop when the user sets SIGBUS
- * to SIG_IGN, but hopefully no one will do that?
- */
- ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
- addr_lsb, t);
- if (ret < 0)
- pr_info("Error sending signal to %s:%d: %d\n",
- t->comm, t->pid, ret);
- return ret;
- }
- /*
- * Unknown page type encountered. Try to check whether it can turn PageLRU by
- * lru_add_drain_all.
- */
- void shake_page(struct page *p)
- {
- if (PageHuge(p))
- return;
- if (!PageSlab(p)) {
- lru_add_drain_all();
- if (PageLRU(p) || is_free_buddy_page(p))
- return;
- }
- /*
- * TODO: Could shrink slab caches here if a lightweight range-based
- * shrinker will be available.
- */
- }
- EXPORT_SYMBOL_GPL(shake_page);
- static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
- unsigned long address)
- {
- unsigned long ret = 0;
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- VM_BUG_ON_VMA(address == -EFAULT, vma);
- pgd = pgd_offset(vma->vm_mm, address);
- if (!pgd_present(*pgd))
- return 0;
- p4d = p4d_offset(pgd, address);
- if (!p4d_present(*p4d))
- return 0;
- pud = pud_offset(p4d, address);
- if (!pud_present(*pud))
- return 0;
- if (pud_devmap(*pud))
- return PUD_SHIFT;
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return 0;
- if (pmd_devmap(*pmd))
- return PMD_SHIFT;
- pte = pte_offset_map(pmd, address);
- if (pte_present(*pte) && pte_devmap(*pte))
- ret = PAGE_SHIFT;
- pte_unmap(pte);
- return ret;
- }
- /*
- * Failure handling: if we can't find or can't kill a process there's
- * not much we can do. We just print a message and ignore otherwise.
- */
- #define FSDAX_INVALID_PGOFF ULONG_MAX
- /*
- * Schedule a process for later kill.
- * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
- *
- * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
- * filesystem with a memory failure handler has claimed the
- * memory_failure event. In all other cases, page->index and
- * page->mapping are sufficient for mapping the page back to its
- * corresponding user virtual address.
- */
- static void add_to_kill(struct task_struct *tsk, struct page *p,
- pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
- struct list_head *to_kill)
- {
- struct to_kill *tk;
- tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
- if (!tk) {
- pr_err("Out of memory while machine check handling\n");
- return;
- }
- tk->addr = page_address_in_vma(p, vma);
- if (is_zone_device_page(p)) {
- if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
- tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
- tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
- } else
- tk->size_shift = page_shift(compound_head(p));
- /*
- * Send SIGKILL if "tk->addr == -EFAULT". Also, as
- * "tk->size_shift" is always non-zero for !is_zone_device_page(),
- * so "tk->size_shift == 0" effectively checks no mapping on
- * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
- * to a process' address space, it's possible not all N VMAs
- * contain mappings for the page, but at least one VMA does.
- * Only deliver SIGBUS with payload derived from the VMA that
- * has a mapping for the page.
- */
- if (tk->addr == -EFAULT) {
- pr_info("Unable to find user space address %lx in %s\n",
- page_to_pfn(p), tsk->comm);
- } else if (tk->size_shift == 0) {
- kfree(tk);
- return;
- }
- get_task_struct(tsk);
- tk->tsk = tsk;
- list_add_tail(&tk->nd, to_kill);
- }
- /*
- * Kill the processes that have been collected earlier.
- *
- * Only do anything when FORCEKILL is set, otherwise just free the
- * list (this is used for clean pages which do not need killing)
- * Also when FAIL is set do a force kill because something went
- * wrong earlier.
- */
- static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
- unsigned long pfn, int flags)
- {
- struct to_kill *tk, *next;
- list_for_each_entry_safe(tk, next, to_kill, nd) {
- if (forcekill) {
- /*
- * In case something went wrong with munmapping
- * make sure the process doesn't catch the
- * signal and then access the memory. Just kill it.
- */
- if (fail || tk->addr == -EFAULT) {
- pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
- do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
- tk->tsk, PIDTYPE_PID);
- }
- /*
- * In theory the process could have mapped
- * something else on the address in-between. We could
- * check for that, but we need to tell the
- * process anyways.
- */
- else if (kill_proc(tk, pfn, flags) < 0)
- pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
- }
- list_del(&tk->nd);
- put_task_struct(tk->tsk);
- kfree(tk);
- }
- }
- /*
- * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
- * on behalf of the thread group. Return task_struct of the (first found)
- * dedicated thread if found, and return NULL otherwise.
- *
- * We already hold read_lock(&tasklist_lock) in the caller, so we don't
- * have to call rcu_read_lock/unlock() in this function.
- */
- static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
- {
- struct task_struct *t;
- for_each_thread(tsk, t) {
- if (t->flags & PF_MCE_PROCESS) {
- if (t->flags & PF_MCE_EARLY)
- return t;
- } else {
- if (sysctl_memory_failure_early_kill)
- return t;
- }
- }
- return NULL;
- }
- /*
- * Determine whether a given process is "early kill" process which expects
- * to be signaled when some page under the process is hwpoisoned.
- * Return task_struct of the dedicated thread (main thread unless explicitly
- * specified) if the process is "early kill" and otherwise returns NULL.
- *
- * Note that the above is true for Action Optional case. For Action Required
- * case, it's only meaningful to the current thread which need to be signaled
- * with SIGBUS, this error is Action Optional for other non current
- * processes sharing the same error page,if the process is "early kill", the
- * task_struct of the dedicated thread will also be returned.
- */
- static struct task_struct *task_early_kill(struct task_struct *tsk,
- int force_early)
- {
- if (!tsk->mm)
- return NULL;
- /*
- * Comparing ->mm here because current task might represent
- * a subthread, while tsk always points to the main thread.
- */
- if (force_early && tsk->mm == current->mm)
- return current;
- return find_early_kill_thread(tsk);
- }
- /*
- * Collect processes when the error hit an anonymous page.
- */
- static void collect_procs_anon(struct page *page, struct list_head *to_kill,
- int force_early)
- {
- struct folio *folio = page_folio(page);
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct anon_vma *av;
- pgoff_t pgoff;
- av = folio_lock_anon_vma_read(folio, NULL);
- if (av == NULL) /* Not actually mapped anymore */
- return;
- pgoff = page_to_pgoff(page);
- read_lock(&tasklist_lock);
- for_each_process (tsk) {
- struct anon_vma_chain *vmac;
- struct task_struct *t = task_early_kill(tsk, force_early);
- if (!t)
- continue;
- anon_vma_interval_tree_foreach(vmac, &av->rb_root,
- pgoff, pgoff) {
- vma = vmac->vma;
- if (vma->vm_mm != t->mm)
- continue;
- if (!page_mapped_in_vma(page, vma))
- continue;
- add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
- }
- }
- read_unlock(&tasklist_lock);
- anon_vma_unlock_read(av);
- }
- /*
- * Collect processes when the error hit a file mapped page.
- */
- static void collect_procs_file(struct page *page, struct list_head *to_kill,
- int force_early)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct address_space *mapping = page->mapping;
- pgoff_t pgoff;
- i_mmap_lock_read(mapping);
- read_lock(&tasklist_lock);
- pgoff = page_to_pgoff(page);
- for_each_process(tsk) {
- struct task_struct *t = task_early_kill(tsk, force_early);
- if (!t)
- continue;
- vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
- pgoff) {
- /*
- * Send early kill signal to tasks where a vma covers
- * the page but the corrupted page is not necessarily
- * mapped it in its pte.
- * Assume applications who requested early kill want
- * to be informed of all such data corruptions.
- */
- if (vma->vm_mm == t->mm)
- add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
- to_kill);
- }
- }
- read_unlock(&tasklist_lock);
- i_mmap_unlock_read(mapping);
- }
- #ifdef CONFIG_FS_DAX
- /*
- * Collect processes when the error hit a fsdax page.
- */
- static void collect_procs_fsdax(struct page *page,
- struct address_space *mapping, pgoff_t pgoff,
- struct list_head *to_kill)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- i_mmap_lock_read(mapping);
- read_lock(&tasklist_lock);
- for_each_process(tsk) {
- struct task_struct *t = task_early_kill(tsk, true);
- if (!t)
- continue;
- vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
- if (vma->vm_mm == t->mm)
- add_to_kill(t, page, pgoff, vma, to_kill);
- }
- }
- read_unlock(&tasklist_lock);
- i_mmap_unlock_read(mapping);
- }
- #endif /* CONFIG_FS_DAX */
- /*
- * Collect the processes who have the corrupted page mapped to kill.
- */
- static void collect_procs(struct page *page, struct list_head *tokill,
- int force_early)
- {
- if (!page->mapping)
- return;
- if (PageAnon(page))
- collect_procs_anon(page, tokill, force_early);
- else
- collect_procs_file(page, tokill, force_early);
- }
- struct hwp_walk {
- struct to_kill tk;
- unsigned long pfn;
- int flags;
- };
- static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
- {
- tk->addr = addr;
- tk->size_shift = shift;
- }
- static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
- unsigned long poisoned_pfn, struct to_kill *tk)
- {
- unsigned long pfn = 0;
- if (pte_present(pte)) {
- pfn = pte_pfn(pte);
- } else {
- swp_entry_t swp = pte_to_swp_entry(pte);
- if (is_hwpoison_entry(swp))
- pfn = swp_offset_pfn(swp);
- }
- if (!pfn || pfn != poisoned_pfn)
- return 0;
- set_to_kill(tk, addr, shift);
- return 1;
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
- struct hwp_walk *hwp)
- {
- pmd_t pmd = *pmdp;
- unsigned long pfn;
- unsigned long hwpoison_vaddr;
- if (!pmd_present(pmd))
- return 0;
- pfn = pmd_pfn(pmd);
- if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
- hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
- set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
- return 1;
- }
- return 0;
- }
- #else
- static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
- struct hwp_walk *hwp)
- {
- return 0;
- }
- #endif
- static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
- unsigned long end, struct mm_walk *walk)
- {
- struct hwp_walk *hwp = walk->private;
- int ret = 0;
- pte_t *ptep, *mapped_pte;
- spinlock_t *ptl;
- ptl = pmd_trans_huge_lock(pmdp, walk->vma);
- if (ptl) {
- ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
- spin_unlock(ptl);
- goto out;
- }
- if (pmd_trans_unstable(pmdp))
- goto out;
- mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
- addr, &ptl);
- for (; addr != end; ptep++, addr += PAGE_SIZE) {
- ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
- hwp->pfn, &hwp->tk);
- if (ret == 1)
- break;
- }
- pte_unmap_unlock(mapped_pte, ptl);
- out:
- cond_resched();
- return ret;
- }
- #ifdef CONFIG_HUGETLB_PAGE
- static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
- {
- struct hwp_walk *hwp = walk->private;
- pte_t pte = huge_ptep_get(ptep);
- struct hstate *h = hstate_vma(walk->vma);
- return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
- hwp->pfn, &hwp->tk);
- }
- #else
- #define hwpoison_hugetlb_range NULL
- #endif
- static const struct mm_walk_ops hwp_walk_ops = {
- .pmd_entry = hwpoison_pte_range,
- .hugetlb_entry = hwpoison_hugetlb_range,
- .walk_lock = PGWALK_RDLOCK,
- };
- /*
- * Sends SIGBUS to the current process with error info.
- *
- * This function is intended to handle "Action Required" MCEs on already
- * hardware poisoned pages. They could happen, for example, when
- * memory_failure() failed to unmap the error page at the first call, or
- * when multiple local machine checks happened on different CPUs.
- *
- * MCE handler currently has no easy access to the error virtual address,
- * so this function walks page table to find it. The returned virtual address
- * is proper in most cases, but it could be wrong when the application
- * process has multiple entries mapping the error page.
- */
- static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
- int flags)
- {
- int ret;
- struct hwp_walk priv = {
- .pfn = pfn,
- };
- priv.tk.tsk = p;
- if (!p->mm)
- return -EFAULT;
- mmap_read_lock(p->mm);
- ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
- (void *)&priv);
- if (ret == 1 && priv.tk.addr)
- kill_proc(&priv.tk, pfn, flags);
- else
- ret = 0;
- mmap_read_unlock(p->mm);
- return ret > 0 ? -EHWPOISON : -EFAULT;
- }
- static const char *action_name[] = {
- [MF_IGNORED] = "Ignored",
- [MF_FAILED] = "Failed",
- [MF_DELAYED] = "Delayed",
- [MF_RECOVERED] = "Recovered",
- };
- static const char * const action_page_types[] = {
- [MF_MSG_KERNEL] = "reserved kernel page",
- [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
- [MF_MSG_SLAB] = "kernel slab page",
- [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
- [MF_MSG_HUGE] = "huge page",
- [MF_MSG_FREE_HUGE] = "free huge page",
- [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
- [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
- [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
- [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
- [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
- [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
- [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
- [MF_MSG_DIRTY_LRU] = "dirty LRU page",
- [MF_MSG_CLEAN_LRU] = "clean LRU page",
- [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
- [MF_MSG_BUDDY] = "free buddy page",
- [MF_MSG_DAX] = "dax page",
- [MF_MSG_UNSPLIT_THP] = "unsplit thp",
- [MF_MSG_UNKNOWN] = "unknown page",
- };
- /*
- * XXX: It is possible that a page is isolated from LRU cache,
- * and then kept in swap cache or failed to remove from page cache.
- * The page count will stop it from being freed by unpoison.
- * Stress tests should be aware of this memory leak problem.
- */
- static int delete_from_lru_cache(struct page *p)
- {
- if (!isolate_lru_page(p)) {
- /*
- * Clear sensible page flags, so that the buddy system won't
- * complain when the page is unpoison-and-freed.
- */
- ClearPageActive(p);
- ClearPageUnevictable(p);
- /*
- * Poisoned page might never drop its ref count to 0 so we have
- * to uncharge it manually from its memcg.
- */
- mem_cgroup_uncharge(page_folio(p));
- /*
- * drop the page count elevated by isolate_lru_page()
- */
- put_page(p);
- return 0;
- }
- return -EIO;
- }
- static int truncate_error_page(struct page *p, unsigned long pfn,
- struct address_space *mapping)
- {
- int ret = MF_FAILED;
- if (mapping->a_ops->error_remove_page) {
- int err = mapping->a_ops->error_remove_page(mapping, p);
- if (err != 0) {
- pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
- } else if (page_has_private(p) &&
- !try_to_release_page(p, GFP_NOIO)) {
- pr_info("%#lx: failed to release buffers\n", pfn);
- } else {
- ret = MF_RECOVERED;
- }
- } else {
- /*
- * If the file system doesn't support it just invalidate
- * This fails on dirty or anything with private pages
- */
- if (invalidate_inode_page(p))
- ret = MF_RECOVERED;
- else
- pr_info("%#lx: Failed to invalidate\n", pfn);
- }
- return ret;
- }
- struct page_state {
- unsigned long mask;
- unsigned long res;
- enum mf_action_page_type type;
- /* Callback ->action() has to unlock the relevant page inside it. */
- int (*action)(struct page_state *ps, struct page *p);
- };
- /*
- * Return true if page is still referenced by others, otherwise return
- * false.
- *
- * The extra_pins is true when one extra refcount is expected.
- */
- static bool has_extra_refcount(struct page_state *ps, struct page *p,
- bool extra_pins)
- {
- int count = page_count(p) - 1;
- if (extra_pins)
- count -= 1;
- if (count > 0) {
- pr_err("%#lx: %s still referenced by %d users\n",
- page_to_pfn(p), action_page_types[ps->type], count);
- return true;
- }
- return false;
- }
- /*
- * Error hit kernel page.
- * Do nothing, try to be lucky and not touch this instead. For a few cases we
- * could be more sophisticated.
- */
- static int me_kernel(struct page_state *ps, struct page *p)
- {
- unlock_page(p);
- return MF_IGNORED;
- }
- /*
- * Page in unknown state. Do nothing.
- */
- static int me_unknown(struct page_state *ps, struct page *p)
- {
- pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
- unlock_page(p);
- return MF_FAILED;
- }
- /*
- * Clean (or cleaned) page cache page.
- */
- static int me_pagecache_clean(struct page_state *ps, struct page *p)
- {
- int ret;
- struct address_space *mapping;
- bool extra_pins;
- delete_from_lru_cache(p);
- /*
- * For anonymous pages we're done the only reference left
- * should be the one m_f() holds.
- */
- if (PageAnon(p)) {
- ret = MF_RECOVERED;
- goto out;
- }
- /*
- * Now truncate the page in the page cache. This is really
- * more like a "temporary hole punch"
- * Don't do this for block devices when someone else
- * has a reference, because it could be file system metadata
- * and that's not safe to truncate.
- */
- mapping = page_mapping(p);
- if (!mapping) {
- /*
- * Page has been teared down in the meanwhile
- */
- ret = MF_FAILED;
- goto out;
- }
- /*
- * The shmem page is kept in page cache instead of truncating
- * so is expected to have an extra refcount after error-handling.
- */
- extra_pins = shmem_mapping(mapping);
- /*
- * Truncation is a bit tricky. Enable it per file system for now.
- *
- * Open: to take i_rwsem or not for this? Right now we don't.
- */
- ret = truncate_error_page(p, page_to_pfn(p), mapping);
- if (has_extra_refcount(ps, p, extra_pins))
- ret = MF_FAILED;
- out:
- unlock_page(p);
- return ret;
- }
- /*
- * Dirty pagecache page
- * Issues: when the error hit a hole page the error is not properly
- * propagated.
- */
- static int me_pagecache_dirty(struct page_state *ps, struct page *p)
- {
- struct address_space *mapping = page_mapping(p);
- SetPageError(p);
- /* TBD: print more information about the file. */
- if (mapping) {
- /*
- * IO error will be reported by write(), fsync(), etc.
- * who check the mapping.
- * This way the application knows that something went
- * wrong with its dirty file data.
- *
- * There's one open issue:
- *
- * The EIO will be only reported on the next IO
- * operation and then cleared through the IO map.
- * Normally Linux has two mechanisms to pass IO error
- * first through the AS_EIO flag in the address space
- * and then through the PageError flag in the page.
- * Since we drop pages on memory failure handling the
- * only mechanism open to use is through AS_AIO.
- *
- * This has the disadvantage that it gets cleared on
- * the first operation that returns an error, while
- * the PageError bit is more sticky and only cleared
- * when the page is reread or dropped. If an
- * application assumes it will always get error on
- * fsync, but does other operations on the fd before
- * and the page is dropped between then the error
- * will not be properly reported.
- *
- * This can already happen even without hwpoisoned
- * pages: first on metadata IO errors (which only
- * report through AS_EIO) or when the page is dropped
- * at the wrong time.
- *
- * So right now we assume that the application DTRT on
- * the first EIO, but we're not worse than other parts
- * of the kernel.
- */
- mapping_set_error(mapping, -EIO);
- }
- return me_pagecache_clean(ps, p);
- }
- /*
- * Clean and dirty swap cache.
- *
- * Dirty swap cache page is tricky to handle. The page could live both in page
- * cache and swap cache(ie. page is freshly swapped in). So it could be
- * referenced concurrently by 2 types of PTEs:
- * normal PTEs and swap PTEs. We try to handle them consistently by calling
- * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
- * and then
- * - clear dirty bit to prevent IO
- * - remove from LRU
- * - but keep in the swap cache, so that when we return to it on
- * a later page fault, we know the application is accessing
- * corrupted data and shall be killed (we installed simple
- * interception code in do_swap_page to catch it).
- *
- * Clean swap cache pages can be directly isolated. A later page fault will
- * bring in the known good data from disk.
- */
- static int me_swapcache_dirty(struct page_state *ps, struct page *p)
- {
- int ret;
- bool extra_pins = false;
- ClearPageDirty(p);
- /* Trigger EIO in shmem: */
- ClearPageUptodate(p);
- ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
- unlock_page(p);
- if (ret == MF_DELAYED)
- extra_pins = true;
- if (has_extra_refcount(ps, p, extra_pins))
- ret = MF_FAILED;
- return ret;
- }
- static int me_swapcache_clean(struct page_state *ps, struct page *p)
- {
- struct folio *folio = page_folio(p);
- int ret;
- delete_from_swap_cache(folio);
- ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
- folio_unlock(folio);
- if (has_extra_refcount(ps, p, false))
- ret = MF_FAILED;
- return ret;
- }
- /*
- * Huge pages. Needs work.
- * Issues:
- * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
- * To narrow down kill region to one page, we need to break up pmd.
- */
- static int me_huge_page(struct page_state *ps, struct page *p)
- {
- int res;
- struct page *hpage = compound_head(p);
- struct address_space *mapping;
- bool extra_pins = false;
- if (!PageHuge(hpage))
- return MF_DELAYED;
- mapping = page_mapping(hpage);
- if (mapping) {
- res = truncate_error_page(hpage, page_to_pfn(p), mapping);
- /* The page is kept in page cache. */
- extra_pins = true;
- unlock_page(hpage);
- } else {
- unlock_page(hpage);
- /*
- * migration entry prevents later access on error hugepage,
- * so we can free and dissolve it into buddy to save healthy
- * subpages.
- */
- put_page(hpage);
- if (__page_handle_poison(p) >= 0) {
- page_ref_inc(p);
- res = MF_RECOVERED;
- } else {
- res = MF_FAILED;
- }
- }
- if (has_extra_refcount(ps, p, extra_pins))
- res = MF_FAILED;
- return res;
- }
- /*
- * Various page states we can handle.
- *
- * A page state is defined by its current page->flags bits.
- * The table matches them in order and calls the right handler.
- *
- * This is quite tricky because we can access page at any time
- * in its live cycle, so all accesses have to be extremely careful.
- *
- * This is not complete. More states could be added.
- * For any missing state don't attempt recovery.
- */
- #define dirty (1UL << PG_dirty)
- #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
- #define unevict (1UL << PG_unevictable)
- #define mlock (1UL << PG_mlocked)
- #define lru (1UL << PG_lru)
- #define head (1UL << PG_head)
- #define slab (1UL << PG_slab)
- #define reserved (1UL << PG_reserved)
- static struct page_state error_states[] = {
- { reserved, reserved, MF_MSG_KERNEL, me_kernel },
- /*
- * free pages are specially detected outside this table:
- * PG_buddy pages only make a small fraction of all free pages.
- */
- /*
- * Could in theory check if slab page is free or if we can drop
- * currently unused objects without touching them. But just
- * treat it as standard kernel for now.
- */
- { slab, slab, MF_MSG_SLAB, me_kernel },
- { head, head, MF_MSG_HUGE, me_huge_page },
- { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
- { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
- { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
- { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
- { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
- { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
- { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
- { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
- /*
- * Catchall entry: must be at end.
- */
- { 0, 0, MF_MSG_UNKNOWN, me_unknown },
- };
- #undef dirty
- #undef sc
- #undef unevict
- #undef mlock
- #undef lru
- #undef head
- #undef slab
- #undef reserved
- /*
- * "Dirty/Clean" indication is not 100% accurate due to the possibility of
- * setting PG_dirty outside page lock. See also comment above set_page_dirty().
- */
- static void action_result(unsigned long pfn, enum mf_action_page_type type,
- enum mf_result result)
- {
- trace_memory_failure_event(pfn, type, result);
- num_poisoned_pages_inc();
- pr_err("%#lx: recovery action for %s: %s\n",
- pfn, action_page_types[type], action_name[result]);
- }
- static int page_action(struct page_state *ps, struct page *p,
- unsigned long pfn)
- {
- int result;
- /* page p should be unlocked after returning from ps->action(). */
- result = ps->action(ps, p);
- action_result(pfn, ps->type, result);
- /* Could do more checks here if page looks ok */
- /*
- * Could adjust zone counters here to correct for the missing page.
- */
- return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
- }
- static inline bool PageHWPoisonTakenOff(struct page *page)
- {
- return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
- }
- void SetPageHWPoisonTakenOff(struct page *page)
- {
- set_page_private(page, MAGIC_HWPOISON);
- }
- void ClearPageHWPoisonTakenOff(struct page *page)
- {
- if (PageHWPoison(page))
- set_page_private(page, 0);
- }
- /*
- * Return true if a page type of a given page is supported by hwpoison
- * mechanism (while handling could fail), otherwise false. This function
- * does not return true for hugetlb or device memory pages, so it's assumed
- * to be called only in the context where we never have such pages.
- */
- static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
- {
- /* Soft offline could migrate non-LRU movable pages */
- if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
- return true;
- return PageLRU(page) || is_free_buddy_page(page);
- }
- static int __get_hwpoison_page(struct page *page, unsigned long flags)
- {
- struct page *head = compound_head(page);
- int ret = 0;
- bool hugetlb = false;
- ret = get_hwpoison_huge_page(head, &hugetlb);
- if (hugetlb)
- return ret;
- /*
- * This check prevents from calling get_page_unless_zero() for any
- * unsupported type of page in order to reduce the risk of unexpected
- * races caused by taking a page refcount.
- */
- if (!HWPoisonHandlable(head, flags))
- return -EBUSY;
- if (get_page_unless_zero(head)) {
- if (head == compound_head(page))
- return 1;
- pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
- put_page(head);
- }
- return 0;
- }
- static int get_any_page(struct page *p, unsigned long flags)
- {
- int ret = 0, pass = 0;
- bool count_increased = false;
- if (flags & MF_COUNT_INCREASED)
- count_increased = true;
- try_again:
- if (!count_increased) {
- ret = __get_hwpoison_page(p, flags);
- if (!ret) {
- if (page_count(p)) {
- /* We raced with an allocation, retry. */
- if (pass++ < 3)
- goto try_again;
- ret = -EBUSY;
- } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
- /* We raced with put_page, retry. */
- if (pass++ < 3)
- goto try_again;
- ret = -EIO;
- }
- goto out;
- } else if (ret == -EBUSY) {
- /*
- * We raced with (possibly temporary) unhandlable
- * page, retry.
- */
- if (pass++ < 3) {
- shake_page(p);
- goto try_again;
- }
- ret = -EIO;
- goto out;
- }
- }
- if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
- ret = 1;
- } else {
- /*
- * A page we cannot handle. Check whether we can turn
- * it into something we can handle.
- */
- if (pass++ < 3) {
- put_page(p);
- shake_page(p);
- count_increased = false;
- goto try_again;
- }
- put_page(p);
- ret = -EIO;
- }
- out:
- if (ret == -EIO)
- pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
- return ret;
- }
- static int __get_unpoison_page(struct page *page)
- {
- struct page *head = compound_head(page);
- int ret = 0;
- bool hugetlb = false;
- ret = get_hwpoison_huge_page(head, &hugetlb);
- if (hugetlb)
- return ret;
- /*
- * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
- * but also isolated from buddy freelist, so need to identify the
- * state and have to cancel both operations to unpoison.
- */
- if (PageHWPoisonTakenOff(page))
- return -EHWPOISON;
- return get_page_unless_zero(page) ? 1 : 0;
- }
- /**
- * get_hwpoison_page() - Get refcount for memory error handling
- * @p: Raw error page (hit by memory error)
- * @flags: Flags controlling behavior of error handling
- *
- * get_hwpoison_page() takes a page refcount of an error page to handle memory
- * error on it, after checking that the error page is in a well-defined state
- * (defined as a page-type we can successfully handle the memory error on it,
- * such as LRU page and hugetlb page).
- *
- * Memory error handling could be triggered at any time on any type of page,
- * so it's prone to race with typical memory management lifecycle (like
- * allocation and free). So to avoid such races, get_hwpoison_page() takes
- * extra care for the error page's state (as done in __get_hwpoison_page()),
- * and has some retry logic in get_any_page().
- *
- * When called from unpoison_memory(), the caller should already ensure that
- * the given page has PG_hwpoison. So it's never reused for other page
- * allocations, and __get_unpoison_page() never races with them.
- *
- * Return: 0 on failure,
- * 1 on success for in-use pages in a well-defined state,
- * -EIO for pages on which we can not handle memory errors,
- * -EBUSY when get_hwpoison_page() has raced with page lifecycle
- * operations like allocation and free,
- * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
- */
- static int get_hwpoison_page(struct page *p, unsigned long flags)
- {
- int ret;
- zone_pcp_disable(page_zone(p));
- if (flags & MF_UNPOISON)
- ret = __get_unpoison_page(p);
- else
- ret = get_any_page(p, flags);
- zone_pcp_enable(page_zone(p));
- return ret;
- }
- /*
- * Do all that is necessary to remove user space mappings. Unmap
- * the pages and send SIGBUS to the processes if the data was dirty.
- */
- static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
- int flags, struct page *hpage)
- {
- struct folio *folio = page_folio(hpage);
- enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
- struct address_space *mapping;
- LIST_HEAD(tokill);
- bool unmap_success;
- int forcekill;
- bool mlocked = PageMlocked(hpage);
- /*
- * Here we are interested only in user-mapped pages, so skip any
- * other types of pages.
- */
- if (PageReserved(p) || PageSlab(p) || PageTable(p))
- return true;
- if (!(PageLRU(hpage) || PageHuge(p)))
- return true;
- /*
- * This check implies we don't kill processes if their pages
- * are in the swap cache early. Those are always late kills.
- */
- if (!page_mapped(hpage))
- return true;
- if (PageKsm(p)) {
- pr_err("%#lx: can't handle KSM pages.\n", pfn);
- return false;
- }
- if (PageSwapCache(p)) {
- pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
- ttu &= ~TTU_HWPOISON;
- }
- /*
- * Propagate the dirty bit from PTEs to struct page first, because we
- * need this to decide if we should kill or just drop the page.
- * XXX: the dirty test could be racy: set_page_dirty() may not always
- * be called inside page lock (it's recommended but not enforced).
- */
- mapping = page_mapping(hpage);
- if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
- mapping_can_writeback(mapping)) {
- if (page_mkclean(hpage)) {
- SetPageDirty(hpage);
- } else {
- ttu &= ~TTU_HWPOISON;
- pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
- pfn);
- }
- }
- /*
- * First collect all the processes that have the page
- * mapped in dirty form. This has to be done before try_to_unmap,
- * because ttu takes the rmap data structures down.
- */
- collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
- if (PageHuge(hpage) && !PageAnon(hpage)) {
- /*
- * For hugetlb pages in shared mappings, try_to_unmap
- * could potentially call huge_pmd_unshare. Because of
- * this, take semaphore in write mode here and set
- * TTU_RMAP_LOCKED to indicate we have taken the lock
- * at this higher level.
- */
- mapping = hugetlb_page_mapping_lock_write(hpage);
- if (mapping) {
- try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
- i_mmap_unlock_write(mapping);
- } else
- pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
- } else {
- try_to_unmap(folio, ttu);
- }
- unmap_success = !page_mapped(hpage);
- if (!unmap_success)
- pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
- pfn, page_mapcount(hpage));
- /*
- * try_to_unmap() might put mlocked page in lru cache, so call
- * shake_page() again to ensure that it's flushed.
- */
- if (mlocked)
- shake_page(hpage);
- /*
- * Now that the dirty bit has been propagated to the
- * struct page and all unmaps done we can decide if
- * killing is needed or not. Only kill when the page
- * was dirty or the process is not restartable,
- * otherwise the tokill list is merely
- * freed. When there was a problem unmapping earlier
- * use a more force-full uncatchable kill to prevent
- * any accesses to the poisoned memory.
- */
- forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
- !unmap_success;
- kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
- return unmap_success;
- }
- static int identify_page_state(unsigned long pfn, struct page *p,
- unsigned long page_flags)
- {
- struct page_state *ps;
- /*
- * The first check uses the current page flags which may not have any
- * relevant information. The second check with the saved page flags is
- * carried out only if the first check can't determine the page status.
- */
- for (ps = error_states;; ps++)
- if ((p->flags & ps->mask) == ps->res)
- break;
- page_flags |= (p->flags & (1UL << PG_dirty));
- if (!ps->mask)
- for (ps = error_states;; ps++)
- if ((page_flags & ps->mask) == ps->res)
- break;
- return page_action(ps, p, pfn);
- }
- static int try_to_split_thp_page(struct page *page)
- {
- int ret;
- lock_page(page);
- ret = split_huge_page(page);
- unlock_page(page);
- if (unlikely(ret))
- put_page(page);
- return ret;
- }
- static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
- struct address_space *mapping, pgoff_t index, int flags)
- {
- struct to_kill *tk;
- unsigned long size = 0;
- list_for_each_entry(tk, to_kill, nd)
- if (tk->size_shift)
- size = max(size, 1UL << tk->size_shift);
- if (size) {
- /*
- * Unmap the largest mapping to avoid breaking up device-dax
- * mappings which are constant size. The actual size of the
- * mapping being torn down is communicated in siginfo, see
- * kill_proc()
- */
- loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
- unmap_mapping_range(mapping, start, size, 0);
- }
- kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
- }
- static int mf_generic_kill_procs(unsigned long long pfn, int flags,
- struct dev_pagemap *pgmap)
- {
- struct page *page = pfn_to_page(pfn);
- LIST_HEAD(to_kill);
- dax_entry_t cookie;
- int rc = 0;
- /*
- * Pages instantiated by device-dax (not filesystem-dax)
- * may be compound pages.
- */
- page = compound_head(page);
- /*
- * Prevent the inode from being freed while we are interrogating
- * the address_space, typically this would be handled by
- * lock_page(), but dax pages do not use the page lock. This
- * also prevents changes to the mapping of this pfn until
- * poison signaling is complete.
- */
- cookie = dax_lock_page(page);
- if (!cookie)
- return -EBUSY;
- if (hwpoison_filter(page)) {
- rc = -EOPNOTSUPP;
- goto unlock;
- }
- switch (pgmap->type) {
- case MEMORY_DEVICE_PRIVATE:
- case MEMORY_DEVICE_COHERENT:
- /*
- * TODO: Handle device pages which may need coordination
- * with device-side memory.
- */
- rc = -ENXIO;
- goto unlock;
- default:
- break;
- }
- /*
- * Use this flag as an indication that the dax page has been
- * remapped UC to prevent speculative consumption of poison.
- */
- SetPageHWPoison(page);
- /*
- * Unlike System-RAM there is no possibility to swap in a
- * different physical page at a given virtual address, so all
- * userspace consumption of ZONE_DEVICE memory necessitates
- * SIGBUS (i.e. MF_MUST_KILL)
- */
- flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
- collect_procs(page, &to_kill, true);
- unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
- unlock:
- dax_unlock_page(page, cookie);
- return rc;
- }
- #ifdef CONFIG_FS_DAX
- /**
- * mf_dax_kill_procs - Collect and kill processes who are using this file range
- * @mapping: address_space of the file in use
- * @index: start pgoff of the range within the file
- * @count: length of the range, in unit of PAGE_SIZE
- * @mf_flags: memory failure flags
- */
- int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
- unsigned long count, int mf_flags)
- {
- LIST_HEAD(to_kill);
- dax_entry_t cookie;
- struct page *page;
- size_t end = index + count;
- mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
- for (; index < end; index++) {
- page = NULL;
- cookie = dax_lock_mapping_entry(mapping, index, &page);
- if (!cookie)
- return -EBUSY;
- if (!page)
- goto unlock;
- SetPageHWPoison(page);
- collect_procs_fsdax(page, mapping, index, &to_kill);
- unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
- index, mf_flags);
- unlock:
- dax_unlock_mapping_entry(mapping, index, cookie);
- }
- return 0;
- }
- EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
- #endif /* CONFIG_FS_DAX */
- #ifdef CONFIG_HUGETLB_PAGE
- /*
- * Struct raw_hwp_page represents information about "raw error page",
- * constructing singly linked list originated from ->private field of
- * SUBPAGE_INDEX_HWPOISON-th tail page.
- */
- struct raw_hwp_page {
- struct llist_node node;
- struct page *page;
- };
- static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
- {
- return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON);
- }
- static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
- {
- struct llist_head *head;
- struct llist_node *t, *tnode;
- unsigned long count = 0;
- head = raw_hwp_list_head(hpage);
- llist_for_each_safe(tnode, t, head->first) {
- struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
- if (move_flag)
- SetPageHWPoison(p->page);
- kfree(p);
- count++;
- }
- llist_del_all(head);
- return count;
- }
- static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
- {
- struct llist_head *head;
- struct raw_hwp_page *raw_hwp;
- struct llist_node *t, *tnode;
- int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
- /*
- * Once the hwpoison hugepage has lost reliable raw error info,
- * there is little meaning to keep additional error info precisely,
- * so skip to add additional raw error info.
- */
- if (HPageRawHwpUnreliable(hpage))
- return -EHWPOISON;
- head = raw_hwp_list_head(hpage);
- llist_for_each_safe(tnode, t, head->first) {
- struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
- if (p->page == page)
- return -EHWPOISON;
- }
- raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
- if (raw_hwp) {
- raw_hwp->page = page;
- llist_add(&raw_hwp->node, head);
- /* the first error event will be counted in action_result(). */
- if (ret)
- num_poisoned_pages_inc();
- } else {
- /*
- * Failed to save raw error info. We no longer trace all
- * hwpoisoned subpages, and we need refuse to free/dissolve
- * this hwpoisoned hugepage.
- */
- SetHPageRawHwpUnreliable(hpage);
- /*
- * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
- * used any more, so free it.
- */
- __free_raw_hwp_pages(hpage, false);
- }
- return ret;
- }
- static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
- {
- /*
- * HPageVmemmapOptimized hugepages can't be freed because struct
- * pages for tail pages are required but they don't exist.
- */
- if (move_flag && HPageVmemmapOptimized(hpage))
- return 0;
- /*
- * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
- * definition.
- */
- if (HPageRawHwpUnreliable(hpage))
- return 0;
- return __free_raw_hwp_pages(hpage, move_flag);
- }
- void hugetlb_clear_page_hwpoison(struct page *hpage)
- {
- if (HPageRawHwpUnreliable(hpage))
- return;
- ClearPageHWPoison(hpage);
- free_raw_hwp_pages(hpage, true);
- }
- /*
- * Called from hugetlb code with hugetlb_lock held.
- *
- * Return values:
- * 0 - free hugepage
- * 1 - in-use hugepage
- * 2 - not a hugepage
- * -EBUSY - the hugepage is busy (try to retry)
- * -EHWPOISON - the hugepage is already hwpoisoned
- */
- int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
- {
- struct page *page = pfn_to_page(pfn);
- struct page *head = compound_head(page);
- int ret = 2; /* fallback to normal page handling */
- bool count_increased = false;
- if (!PageHeadHuge(head))
- goto out;
- if (flags & MF_COUNT_INCREASED) {
- ret = 1;
- count_increased = true;
- } else if (HPageFreed(head)) {
- ret = 0;
- } else if (HPageMigratable(head)) {
- ret = get_page_unless_zero(head);
- if (ret)
- count_increased = true;
- } else {
- ret = -EBUSY;
- if (!(flags & MF_NO_RETRY))
- goto out;
- }
- if (hugetlb_set_page_hwpoison(head, page)) {
- ret = -EHWPOISON;
- goto out;
- }
- return ret;
- out:
- if (count_increased)
- put_page(head);
- return ret;
- }
- /*
- * Taking refcount of hugetlb pages needs extra care about race conditions
- * with basic operations like hugepage allocation/free/demotion.
- * So some of prechecks for hwpoison (pinning, and testing/setting
- * PageHWPoison) should be done in single hugetlb_lock range.
- */
- static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
- {
- int res;
- struct page *p = pfn_to_page(pfn);
- struct page *head;
- unsigned long page_flags;
- *hugetlb = 1;
- retry:
- res = get_huge_page_for_hwpoison(pfn, flags);
- if (res == 2) { /* fallback to normal page handling */
- *hugetlb = 0;
- return 0;
- } else if (res == -EHWPOISON) {
- pr_err("%#lx: already hardware poisoned\n", pfn);
- if (flags & MF_ACTION_REQUIRED) {
- head = compound_head(p);
- res = kill_accessing_process(current, page_to_pfn(head), flags);
- }
- return res;
- } else if (res == -EBUSY) {
- if (!(flags & MF_NO_RETRY)) {
- flags |= MF_NO_RETRY;
- goto retry;
- }
- action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
- return res;
- }
- head = compound_head(p);
- lock_page(head);
- if (hwpoison_filter(p)) {
- hugetlb_clear_page_hwpoison(head);
- unlock_page(head);
- if (res == 1)
- put_page(head);
- return -EOPNOTSUPP;
- }
- /*
- * Handling free hugepage. The possible race with hugepage allocation
- * or demotion can be prevented by PageHWPoison flag.
- */
- if (res == 0) {
- unlock_page(head);
- if (__page_handle_poison(p) >= 0) {
- page_ref_inc(p);
- res = MF_RECOVERED;
- } else {
- res = MF_FAILED;
- }
- action_result(pfn, MF_MSG_FREE_HUGE, res);
- return res == MF_RECOVERED ? 0 : -EBUSY;
- }
- page_flags = head->flags;
- if (!hwpoison_user_mappings(p, pfn, flags, head)) {
- action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
- res = -EBUSY;
- goto out;
- }
- return identify_page_state(pfn, p, page_flags);
- out:
- unlock_page(head);
- return res;
- }
- #else
- static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
- {
- return 0;
- }
- static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
- {
- return 0;
- }
- #endif /* CONFIG_HUGETLB_PAGE */
- static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
- struct dev_pagemap *pgmap)
- {
- struct page *page = pfn_to_page(pfn);
- int rc = -ENXIO;
- if (flags & MF_COUNT_INCREASED)
- /*
- * Drop the extra refcount in case we come from madvise().
- */
- put_page(page);
- /* device metadata space is not recoverable */
- if (!pgmap_pfn_valid(pgmap, pfn))
- goto out;
- /*
- * Call driver's implementation to handle the memory failure, otherwise
- * fall back to generic handler.
- */
- if (pgmap_has_memory_failure(pgmap)) {
- rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
- /*
- * Fall back to generic handler too if operation is not
- * supported inside the driver/device/filesystem.
- */
- if (rc != -EOPNOTSUPP)
- goto out;
- }
- rc = mf_generic_kill_procs(pfn, flags, pgmap);
- out:
- /* drop pgmap ref acquired in caller */
- put_dev_pagemap(pgmap);
- action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
- return rc;
- }
- static DEFINE_MUTEX(mf_mutex);
- /**
- * memory_failure - Handle memory failure of a page.
- * @pfn: Page Number of the corrupted page
- * @flags: fine tune action taken
- *
- * This function is called by the low level machine check code
- * of an architecture when it detects hardware memory corruption
- * of a page. It tries its best to recover, which includes
- * dropping pages, killing processes etc.
- *
- * The function is primarily of use for corruptions that
- * happen outside the current execution context (e.g. when
- * detected by a background scrubber)
- *
- * Must run in process context (e.g. a work queue) with interrupts
- * enabled and no spinlocks hold.
- *
- * Return: 0 for successfully handled the memory error,
- * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
- * < 0(except -EOPNOTSUPP) on failure.
- */
- int memory_failure(unsigned long pfn, int flags)
- {
- struct page *p;
- struct page *hpage;
- struct dev_pagemap *pgmap;
- int res = 0;
- unsigned long page_flags;
- bool retry = true;
- int hugetlb = 0;
- if (!sysctl_memory_failure_recovery)
- panic("Memory failure on page %lx", pfn);
- mutex_lock(&mf_mutex);
- if (!(flags & MF_SW_SIMULATED))
- hw_memory_failure = true;
- p = pfn_to_online_page(pfn);
- if (!p) {
- res = arch_memory_failure(pfn, flags);
- if (res == 0)
- goto unlock_mutex;
- if (pfn_valid(pfn)) {
- pgmap = get_dev_pagemap(pfn, NULL);
- if (pgmap) {
- res = memory_failure_dev_pagemap(pfn, flags,
- pgmap);
- goto unlock_mutex;
- }
- }
- pr_err("%#lx: memory outside kernel control\n", pfn);
- res = -ENXIO;
- goto unlock_mutex;
- }
- try_again:
- res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
- if (hugetlb)
- goto unlock_mutex;
- if (TestSetPageHWPoison(p)) {
- pr_err("%#lx: already hardware poisoned\n", pfn);
- res = -EHWPOISON;
- if (flags & MF_ACTION_REQUIRED)
- res = kill_accessing_process(current, pfn, flags);
- if (flags & MF_COUNT_INCREASED)
- put_page(p);
- goto unlock_mutex;
- }
- hpage = compound_head(p);
- /*
- * We need/can do nothing about count=0 pages.
- * 1) it's a free page, and therefore in safe hand:
- * check_new_page() will be the gate keeper.
- * 2) it's part of a non-compound high order page.
- * Implies some kernel user: cannot stop them from
- * R/W the page; let's pray that the page has been
- * used and will be freed some time later.
- * In fact it's dangerous to directly bump up page count from 0,
- * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
- */
- if (!(flags & MF_COUNT_INCREASED)) {
- res = get_hwpoison_page(p, flags);
- if (!res) {
- if (is_free_buddy_page(p)) {
- if (take_page_off_buddy(p)) {
- page_ref_inc(p);
- res = MF_RECOVERED;
- } else {
- /* We lost the race, try again */
- if (retry) {
- ClearPageHWPoison(p);
- retry = false;
- goto try_again;
- }
- res = MF_FAILED;
- }
- action_result(pfn, MF_MSG_BUDDY, res);
- res = res == MF_RECOVERED ? 0 : -EBUSY;
- } else {
- action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
- res = -EBUSY;
- }
- goto unlock_mutex;
- } else if (res < 0) {
- action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
- res = -EBUSY;
- goto unlock_mutex;
- }
- }
- if (PageTransHuge(hpage)) {
- /*
- * The flag must be set after the refcount is bumped
- * otherwise it may race with THP split.
- * And the flag can't be set in get_hwpoison_page() since
- * it is called by soft offline too and it is just called
- * for !MF_COUNT_INCREASE. So here seems to be the best
- * place.
- *
- * Don't need care about the above error handling paths for
- * get_hwpoison_page() since they handle either free page
- * or unhandlable page. The refcount is bumped iff the
- * page is a valid handlable page.
- */
- SetPageHasHWPoisoned(hpage);
- if (try_to_split_thp_page(p) < 0) {
- action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
- res = -EBUSY;
- goto unlock_mutex;
- }
- VM_BUG_ON_PAGE(!page_count(p), p);
- }
- /*
- * We ignore non-LRU pages for good reasons.
- * - PG_locked is only well defined for LRU pages and a few others
- * - to avoid races with __SetPageLocked()
- * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
- * The check (unnecessarily) ignores LRU pages being isolated and
- * walked by the page reclaim code, however that's not a big loss.
- */
- shake_page(p);
- lock_page(p);
- /*
- * We're only intended to deal with the non-Compound page here.
- * However, the page could have changed compound pages due to
- * race window. If this happens, we could try again to hopefully
- * handle the page next round.
- */
- if (PageCompound(p)) {
- if (retry) {
- ClearPageHWPoison(p);
- unlock_page(p);
- put_page(p);
- flags &= ~MF_COUNT_INCREASED;
- retry = false;
- goto try_again;
- }
- action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
- res = -EBUSY;
- goto unlock_page;
- }
- /*
- * We use page flags to determine what action should be taken, but
- * the flags can be modified by the error containment action. One
- * example is an mlocked page, where PG_mlocked is cleared by
- * page_remove_rmap() in try_to_unmap_one(). So to determine page status
- * correctly, we save a copy of the page flags at this time.
- */
- page_flags = p->flags;
- if (hwpoison_filter(p)) {
- ClearPageHWPoison(p);
- unlock_page(p);
- put_page(p);
- res = -EOPNOTSUPP;
- goto unlock_mutex;
- }
- /*
- * __munlock_pagevec may clear a writeback page's LRU flag without
- * page_lock. We need wait writeback completion for this page or it
- * may trigger vfs BUG while evict inode.
- */
- if (!PageLRU(p) && !PageWriteback(p))
- goto identify_page_state;
- /*
- * It's very difficult to mess with pages currently under IO
- * and in many cases impossible, so we just avoid it here.
- */
- wait_on_page_writeback(p);
- /*
- * Now take care of user space mappings.
- * Abort on fail: __filemap_remove_folio() assumes unmapped page.
- */
- if (!hwpoison_user_mappings(p, pfn, flags, p)) {
- action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
- res = -EBUSY;
- goto unlock_page;
- }
- /*
- * Torn down by someone else?
- */
- if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
- action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
- res = -EBUSY;
- goto unlock_page;
- }
- identify_page_state:
- res = identify_page_state(pfn, p, page_flags);
- mutex_unlock(&mf_mutex);
- return res;
- unlock_page:
- unlock_page(p);
- unlock_mutex:
- mutex_unlock(&mf_mutex);
- return res;
- }
- EXPORT_SYMBOL_GPL(memory_failure);
- #define MEMORY_FAILURE_FIFO_ORDER 4
- #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
- struct memory_failure_entry {
- unsigned long pfn;
- int flags;
- };
- struct memory_failure_cpu {
- DECLARE_KFIFO(fifo, struct memory_failure_entry,
- MEMORY_FAILURE_FIFO_SIZE);
- spinlock_t lock;
- struct work_struct work;
- };
- static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
- /**
- * memory_failure_queue - Schedule handling memory failure of a page.
- * @pfn: Page Number of the corrupted page
- * @flags: Flags for memory failure handling
- *
- * This function is called by the low level hardware error handler
- * when it detects hardware memory corruption of a page. It schedules
- * the recovering of error page, including dropping pages, killing
- * processes etc.
- *
- * The function is primarily of use for corruptions that
- * happen outside the current execution context (e.g. when
- * detected by a background scrubber)
- *
- * Can run in IRQ context.
- */
- void memory_failure_queue(unsigned long pfn, int flags)
- {
- struct memory_failure_cpu *mf_cpu;
- unsigned long proc_flags;
- struct memory_failure_entry entry = {
- .pfn = pfn,
- .flags = flags,
- };
- mf_cpu = &get_cpu_var(memory_failure_cpu);
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, entry))
- schedule_work_on(smp_processor_id(), &mf_cpu->work);
- else
- pr_err("buffer overflow when queuing memory failure at %#lx\n",
- pfn);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
- put_cpu_var(memory_failure_cpu);
- }
- EXPORT_SYMBOL_GPL(memory_failure_queue);
- static void memory_failure_work_func(struct work_struct *work)
- {
- struct memory_failure_cpu *mf_cpu;
- struct memory_failure_entry entry = { 0, };
- unsigned long proc_flags;
- int gotten;
- mf_cpu = container_of(work, struct memory_failure_cpu, work);
- for (;;) {
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- gotten = kfifo_get(&mf_cpu->fifo, &entry);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
- if (!gotten)
- break;
- if (entry.flags & MF_SOFT_OFFLINE)
- soft_offline_page(entry.pfn, entry.flags);
- else
- memory_failure(entry.pfn, entry.flags);
- }
- }
- /*
- * Process memory_failure work queued on the specified CPU.
- * Used to avoid return-to-userspace racing with the memory_failure workqueue.
- */
- void memory_failure_queue_kick(int cpu)
- {
- struct memory_failure_cpu *mf_cpu;
- mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- cancel_work_sync(&mf_cpu->work);
- memory_failure_work_func(&mf_cpu->work);
- }
- static int __init memory_failure_init(void)
- {
- struct memory_failure_cpu *mf_cpu;
- int cpu;
- for_each_possible_cpu(cpu) {
- mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- spin_lock_init(&mf_cpu->lock);
- INIT_KFIFO(mf_cpu->fifo);
- INIT_WORK(&mf_cpu->work, memory_failure_work_func);
- }
- return 0;
- }
- core_initcall(memory_failure_init);
- #undef pr_fmt
- #define pr_fmt(fmt) "" fmt
- #define unpoison_pr_info(fmt, pfn, rs) \
- ({ \
- if (__ratelimit(rs)) \
- pr_info(fmt, pfn); \
- })
- /**
- * unpoison_memory - Unpoison a previously poisoned page
- * @pfn: Page number of the to be unpoisoned page
- *
- * Software-unpoison a page that has been poisoned by
- * memory_failure() earlier.
- *
- * This is only done on the software-level, so it only works
- * for linux injected failures, not real hardware failures
- *
- * Returns 0 for success, otherwise -errno.
- */
- int unpoison_memory(unsigned long pfn)
- {
- struct page *page;
- struct page *p;
- int ret = -EBUSY;
- int freeit = 0;
- unsigned long count = 1;
- static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
- if (!pfn_valid(pfn))
- return -ENXIO;
- p = pfn_to_page(pfn);
- page = compound_head(p);
- mutex_lock(&mf_mutex);
- if (hw_memory_failure) {
- unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
- pfn, &unpoison_rs);
- ret = -EOPNOTSUPP;
- goto unlock_mutex;
- }
- if (!PageHWPoison(p)) {
- unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
- pfn, &unpoison_rs);
- goto unlock_mutex;
- }
- if (page_count(page) > 1) {
- unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
- pfn, &unpoison_rs);
- goto unlock_mutex;
- }
- if (page_mapped(page)) {
- unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
- pfn, &unpoison_rs);
- goto unlock_mutex;
- }
- if (page_mapping(page)) {
- unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
- pfn, &unpoison_rs);
- goto unlock_mutex;
- }
- if (PageSlab(page) || PageTable(page) || PageReserved(page))
- goto unlock_mutex;
- ret = get_hwpoison_page(p, MF_UNPOISON);
- if (!ret) {
- if (PageHuge(p)) {
- count = free_raw_hwp_pages(page, false);
- if (count == 0) {
- ret = -EBUSY;
- goto unlock_mutex;
- }
- }
- ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
- } else if (ret < 0) {
- if (ret == -EHWPOISON) {
- ret = put_page_back_buddy(p) ? 0 : -EBUSY;
- } else
- unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
- pfn, &unpoison_rs);
- } else {
- if (PageHuge(p)) {
- count = free_raw_hwp_pages(page, false);
- if (count == 0) {
- ret = -EBUSY;
- put_page(page);
- goto unlock_mutex;
- }
- }
- freeit = !!TestClearPageHWPoison(p);
- put_page(page);
- if (freeit) {
- put_page(page);
- ret = 0;
- }
- }
- unlock_mutex:
- mutex_unlock(&mf_mutex);
- if (!ret || freeit) {
- num_poisoned_pages_sub(count);
- unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
- page_to_pfn(p), &unpoison_rs);
- }
- return ret;
- }
- EXPORT_SYMBOL(unpoison_memory);
- static bool isolate_page(struct page *page, struct list_head *pagelist)
- {
- bool isolated = false;
- if (PageHuge(page)) {
- isolated = !isolate_hugetlb(page, pagelist);
- } else {
- bool lru = !__PageMovable(page);
- if (lru)
- isolated = !isolate_lru_page(page);
- else
- isolated = !isolate_movable_page(page,
- ISOLATE_UNEVICTABLE);
- if (isolated) {
- list_add(&page->lru, pagelist);
- if (lru)
- inc_node_page_state(page, NR_ISOLATED_ANON +
- page_is_file_lru(page));
- }
- }
- /*
- * If we succeed to isolate the page, we grabbed another refcount on
- * the page, so we can safely drop the one we got from get_any_pages().
- * If we failed to isolate the page, it means that we cannot go further
- * and we will return an error, so drop the reference we got from
- * get_any_pages() as well.
- */
- put_page(page);
- return isolated;
- }
- /*
- * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
- * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
- * If the page is mapped, it migrates the contents over.
- */
- static int soft_offline_in_use_page(struct page *page)
- {
- long ret = 0;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_head(page);
- char const *msg_page[] = {"page", "hugepage"};
- bool huge = PageHuge(page);
- LIST_HEAD(pagelist);
- struct migration_target_control mtc = {
- .nid = NUMA_NO_NODE,
- .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
- };
- if (!huge && PageTransHuge(hpage)) {
- if (try_to_split_thp_page(page)) {
- pr_info("soft offline: %#lx: thp split failed\n", pfn);
- return -EBUSY;
- }
- hpage = page;
- }
- lock_page(page);
- if (!PageHuge(page))
- wait_on_page_writeback(page);
- if (PageHWPoison(page)) {
- unlock_page(page);
- put_page(page);
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
- return 0;
- }
- if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
- /*
- * Try to invalidate first. This should work for
- * non dirty unmapped page cache pages.
- */
- ret = invalidate_inode_page(page);
- unlock_page(page);
- if (ret) {
- pr_info("soft_offline: %#lx: invalidated\n", pfn);
- page_handle_poison(page, false, true);
- return 0;
- }
- if (isolate_page(hpage, &pagelist)) {
- ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
- (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
- if (!ret) {
- bool release = !huge;
- if (!page_handle_poison(page, huge, release))
- ret = -EBUSY;
- } else {
- if (!list_empty(&pagelist))
- putback_movable_pages(&pagelist);
- pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
- pfn, msg_page[huge], ret, &page->flags);
- if (ret > 0)
- ret = -EBUSY;
- }
- } else {
- pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
- pfn, msg_page[huge], page_count(page), &page->flags);
- ret = -EBUSY;
- }
- return ret;
- }
- static void put_ref_page(struct page *page)
- {
- if (page)
- put_page(page);
- }
- /**
- * soft_offline_page - Soft offline a page.
- * @pfn: pfn to soft-offline
- * @flags: flags. Same as memory_failure().
- *
- * Returns 0 on success
- * -EOPNOTSUPP for hwpoison_filter() filtered the error event
- * < 0 otherwise negated errno.
- *
- * Soft offline a page, by migration or invalidation,
- * without killing anything. This is for the case when
- * a page is not corrupted yet (so it's still valid to access),
- * but has had a number of corrected errors and is better taken
- * out.
- *
- * The actual policy on when to do that is maintained by
- * user space.
- *
- * This should never impact any application or cause data loss,
- * however it might take some time.
- *
- * This is not a 100% solution for all memory, but tries to be
- * ``good enough'' for the majority of memory.
- */
- int soft_offline_page(unsigned long pfn, int flags)
- {
- int ret;
- bool try_again = true;
- struct page *page, *ref_page = NULL;
- WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
- if (!pfn_valid(pfn))
- return -ENXIO;
- if (flags & MF_COUNT_INCREASED)
- ref_page = pfn_to_page(pfn);
- /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
- page = pfn_to_online_page(pfn);
- if (!page) {
- put_ref_page(ref_page);
- return -EIO;
- }
- mutex_lock(&mf_mutex);
- if (PageHWPoison(page)) {
- pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
- put_ref_page(ref_page);
- mutex_unlock(&mf_mutex);
- return 0;
- }
- retry:
- get_online_mems();
- ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
- put_online_mems();
- if (hwpoison_filter(page)) {
- if (ret > 0)
- put_page(page);
- mutex_unlock(&mf_mutex);
- return -EOPNOTSUPP;
- }
- if (ret > 0) {
- ret = soft_offline_in_use_page(page);
- } else if (ret == 0) {
- if (!page_handle_poison(page, true, false)) {
- if (try_again) {
- try_again = false;
- flags &= ~MF_COUNT_INCREASED;
- goto retry;
- }
- ret = -EBUSY;
- }
- }
- mutex_unlock(&mf_mutex);
- return ret;
- }
- void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
- {
- int i, total = 0;
- /*
- * A further optimization is to have per section refcounted
- * num_poisoned_pages. But that would need more space per memmap, so
- * for now just do a quick global check to speed up this routine in the
- * absence of bad pages.
- */
- if (atomic_long_read(&num_poisoned_pages) == 0)
- return;
- for (i = 0; i < nr_pages; i++) {
- if (PageHWPoison(&memmap[i])) {
- total++;
- ClearPageHWPoison(&memmap[i]);
- }
- }
- if (total)
- num_poisoned_pages_sub(total);
- }
|