huge_memory.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2009 Red Hat, Inc.
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/mm.h>
  7. #include <linux/sched.h>
  8. #include <linux/sched/mm.h>
  9. #include <linux/sched/coredump.h>
  10. #include <linux/sched/numa_balancing.h>
  11. #include <linux/highmem.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/mmu_notifier.h>
  14. #include <linux/rmap.h>
  15. #include <linux/swap.h>
  16. #include <linux/shrinker.h>
  17. #include <linux/mm_inline.h>
  18. #include <linux/swapops.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <linux/numa.h>
  35. #include <linux/page_owner.h>
  36. #include <linux/sched/sysctl.h>
  37. #include <linux/memory-tiers.h>
  38. #include <asm/tlb.h>
  39. #include <asm/pgalloc.h>
  40. #include "internal.h"
  41. #include "swap.h"
  42. #define CREATE_TRACE_POINTS
  43. #include <trace/events/thp.h>
  44. /*
  45. * By default, transparent hugepage support is disabled in order to avoid
  46. * risking an increased memory footprint for applications that are not
  47. * guaranteed to benefit from it. When transparent hugepage support is
  48. * enabled, it is for all mappings, and khugepaged scans all mappings.
  49. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  50. * for all hugepage allocations.
  51. */
  52. unsigned long transparent_hugepage_flags __read_mostly =
  53. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  54. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  55. #endif
  56. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  57. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  58. #endif
  59. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  60. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  61. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  62. static struct shrinker deferred_split_shrinker;
  63. static atomic_t huge_zero_refcount;
  64. struct page *huge_zero_page __read_mostly;
  65. unsigned long huge_zero_pfn __read_mostly = ~0UL;
  66. bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
  67. bool smaps, bool in_pf, bool enforce_sysfs)
  68. {
  69. if (!vma->vm_mm) /* vdso */
  70. return false;
  71. /*
  72. * Explicitly disabled through madvise or prctl, or some
  73. * architectures may disable THP for some mappings, for
  74. * example, s390 kvm.
  75. * */
  76. if ((vm_flags & VM_NOHUGEPAGE) ||
  77. test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  78. return false;
  79. /*
  80. * If the hardware/firmware marked hugepage support disabled.
  81. */
  82. if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
  83. return false;
  84. /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
  85. if (vma_is_dax(vma))
  86. return in_pf;
  87. /*
  88. * Special VMA and hugetlb VMA.
  89. * Must be checked after dax since some dax mappings may have
  90. * VM_MIXEDMAP set.
  91. */
  92. if (vm_flags & VM_NO_KHUGEPAGED)
  93. return false;
  94. /*
  95. * Check alignment for file vma and size for both file and anon vma.
  96. *
  97. * Skip the check for page fault. Huge fault does the check in fault
  98. * handlers. And this check is not suitable for huge PUD fault.
  99. */
  100. if (!in_pf &&
  101. !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
  102. return false;
  103. /*
  104. * Enabled via shmem mount options or sysfs settings.
  105. * Must be done before hugepage flags check since shmem has its
  106. * own flags.
  107. */
  108. if (!in_pf && shmem_file(vma->vm_file))
  109. return shmem_huge_enabled(vma, !enforce_sysfs);
  110. /* Enforce sysfs THP requirements as necessary */
  111. if (enforce_sysfs &&
  112. (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
  113. !hugepage_flags_always())))
  114. return false;
  115. /* Only regular file is valid */
  116. if (!in_pf && file_thp_enabled(vma))
  117. return true;
  118. if (!vma_is_anonymous(vma))
  119. return false;
  120. if (vma_is_temporary_stack(vma))
  121. return false;
  122. /*
  123. * THPeligible bit of smaps should show 1 for proper VMAs even
  124. * though anon_vma is not initialized yet.
  125. *
  126. * Allow page fault since anon_vma may be not initialized until
  127. * the first page fault.
  128. */
  129. if (!vma->anon_vma)
  130. return (smaps || in_pf);
  131. return true;
  132. }
  133. static bool get_huge_zero_page(void)
  134. {
  135. struct page *zero_page;
  136. retry:
  137. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  138. return true;
  139. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  140. HPAGE_PMD_ORDER);
  141. if (!zero_page) {
  142. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  143. return false;
  144. }
  145. preempt_disable();
  146. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  147. preempt_enable();
  148. __free_pages(zero_page, compound_order(zero_page));
  149. goto retry;
  150. }
  151. WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
  152. /* We take additional reference here. It will be put back by shrinker */
  153. atomic_set(&huge_zero_refcount, 2);
  154. preempt_enable();
  155. count_vm_event(THP_ZERO_PAGE_ALLOC);
  156. return true;
  157. }
  158. static void put_huge_zero_page(void)
  159. {
  160. /*
  161. * Counter should never go to zero here. Only shrinker can put
  162. * last reference.
  163. */
  164. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  165. }
  166. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  167. {
  168. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  169. return READ_ONCE(huge_zero_page);
  170. if (!get_huge_zero_page())
  171. return NULL;
  172. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  173. put_huge_zero_page();
  174. return READ_ONCE(huge_zero_page);
  175. }
  176. void mm_put_huge_zero_page(struct mm_struct *mm)
  177. {
  178. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  179. put_huge_zero_page();
  180. }
  181. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  182. struct shrink_control *sc)
  183. {
  184. /* we can free zero page only if last reference remains */
  185. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  186. }
  187. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  188. struct shrink_control *sc)
  189. {
  190. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  191. struct page *zero_page = xchg(&huge_zero_page, NULL);
  192. BUG_ON(zero_page == NULL);
  193. WRITE_ONCE(huge_zero_pfn, ~0UL);
  194. __free_pages(zero_page, compound_order(zero_page));
  195. return HPAGE_PMD_NR;
  196. }
  197. return 0;
  198. }
  199. static struct shrinker huge_zero_page_shrinker = {
  200. .count_objects = shrink_huge_zero_page_count,
  201. .scan_objects = shrink_huge_zero_page_scan,
  202. .seeks = DEFAULT_SEEKS,
  203. };
  204. #ifdef CONFIG_SYSFS
  205. static ssize_t enabled_show(struct kobject *kobj,
  206. struct kobj_attribute *attr, char *buf)
  207. {
  208. const char *output;
  209. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  210. output = "[always] madvise never";
  211. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  212. &transparent_hugepage_flags))
  213. output = "always [madvise] never";
  214. else
  215. output = "always madvise [never]";
  216. return sysfs_emit(buf, "%s\n", output);
  217. }
  218. static ssize_t enabled_store(struct kobject *kobj,
  219. struct kobj_attribute *attr,
  220. const char *buf, size_t count)
  221. {
  222. ssize_t ret = count;
  223. if (sysfs_streq(buf, "always")) {
  224. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  225. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  226. } else if (sysfs_streq(buf, "madvise")) {
  227. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  228. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  229. } else if (sysfs_streq(buf, "never")) {
  230. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  231. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  232. } else
  233. ret = -EINVAL;
  234. if (ret > 0) {
  235. int err = start_stop_khugepaged();
  236. if (err)
  237. ret = err;
  238. }
  239. return ret;
  240. }
  241. static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
  242. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  243. struct kobj_attribute *attr, char *buf,
  244. enum transparent_hugepage_flag flag)
  245. {
  246. return sysfs_emit(buf, "%d\n",
  247. !!test_bit(flag, &transparent_hugepage_flags));
  248. }
  249. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  250. struct kobj_attribute *attr,
  251. const char *buf, size_t count,
  252. enum transparent_hugepage_flag flag)
  253. {
  254. unsigned long value;
  255. int ret;
  256. ret = kstrtoul(buf, 10, &value);
  257. if (ret < 0)
  258. return ret;
  259. if (value > 1)
  260. return -EINVAL;
  261. if (value)
  262. set_bit(flag, &transparent_hugepage_flags);
  263. else
  264. clear_bit(flag, &transparent_hugepage_flags);
  265. return count;
  266. }
  267. static ssize_t defrag_show(struct kobject *kobj,
  268. struct kobj_attribute *attr, char *buf)
  269. {
  270. const char *output;
  271. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  272. &transparent_hugepage_flags))
  273. output = "[always] defer defer+madvise madvise never";
  274. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  275. &transparent_hugepage_flags))
  276. output = "always [defer] defer+madvise madvise never";
  277. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
  278. &transparent_hugepage_flags))
  279. output = "always defer [defer+madvise] madvise never";
  280. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
  281. &transparent_hugepage_flags))
  282. output = "always defer defer+madvise [madvise] never";
  283. else
  284. output = "always defer defer+madvise madvise [never]";
  285. return sysfs_emit(buf, "%s\n", output);
  286. }
  287. static ssize_t defrag_store(struct kobject *kobj,
  288. struct kobj_attribute *attr,
  289. const char *buf, size_t count)
  290. {
  291. if (sysfs_streq(buf, "always")) {
  292. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  293. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  294. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  295. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  296. } else if (sysfs_streq(buf, "defer+madvise")) {
  297. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  298. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  299. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  300. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  301. } else if (sysfs_streq(buf, "defer")) {
  302. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  303. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  304. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  305. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  306. } else if (sysfs_streq(buf, "madvise")) {
  307. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  308. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  309. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  310. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  311. } else if (sysfs_streq(buf, "never")) {
  312. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  313. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  314. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  315. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  316. } else
  317. return -EINVAL;
  318. return count;
  319. }
  320. static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
  321. static ssize_t use_zero_page_show(struct kobject *kobj,
  322. struct kobj_attribute *attr, char *buf)
  323. {
  324. return single_hugepage_flag_show(kobj, attr, buf,
  325. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  326. }
  327. static ssize_t use_zero_page_store(struct kobject *kobj,
  328. struct kobj_attribute *attr, const char *buf, size_t count)
  329. {
  330. return single_hugepage_flag_store(kobj, attr, buf, count,
  331. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  332. }
  333. static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
  334. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  335. struct kobj_attribute *attr, char *buf)
  336. {
  337. return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
  338. }
  339. static struct kobj_attribute hpage_pmd_size_attr =
  340. __ATTR_RO(hpage_pmd_size);
  341. static struct attribute *hugepage_attr[] = {
  342. &enabled_attr.attr,
  343. &defrag_attr.attr,
  344. &use_zero_page_attr.attr,
  345. &hpage_pmd_size_attr.attr,
  346. #ifdef CONFIG_SHMEM
  347. &shmem_enabled_attr.attr,
  348. #endif
  349. NULL,
  350. };
  351. static const struct attribute_group hugepage_attr_group = {
  352. .attrs = hugepage_attr,
  353. };
  354. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  355. {
  356. int err;
  357. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  358. if (unlikely(!*hugepage_kobj)) {
  359. pr_err("failed to create transparent hugepage kobject\n");
  360. return -ENOMEM;
  361. }
  362. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  363. if (err) {
  364. pr_err("failed to register transparent hugepage group\n");
  365. goto delete_obj;
  366. }
  367. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  368. if (err) {
  369. pr_err("failed to register transparent hugepage group\n");
  370. goto remove_hp_group;
  371. }
  372. return 0;
  373. remove_hp_group:
  374. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  375. delete_obj:
  376. kobject_put(*hugepage_kobj);
  377. return err;
  378. }
  379. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  380. {
  381. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  382. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  383. kobject_put(hugepage_kobj);
  384. }
  385. #else
  386. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  387. {
  388. return 0;
  389. }
  390. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  391. {
  392. }
  393. #endif /* CONFIG_SYSFS */
  394. static int __init hugepage_init(void)
  395. {
  396. int err;
  397. struct kobject *hugepage_kobj;
  398. if (!has_transparent_hugepage()) {
  399. /*
  400. * Hardware doesn't support hugepages, hence disable
  401. * DAX PMD support.
  402. */
  403. transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
  404. return -EINVAL;
  405. }
  406. /*
  407. * hugepages can't be allocated by the buddy allocator
  408. */
  409. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  410. /*
  411. * we use page->mapping and page->index in second tail page
  412. * as list_head: assuming THP order >= 2
  413. */
  414. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  415. err = hugepage_init_sysfs(&hugepage_kobj);
  416. if (err)
  417. goto err_sysfs;
  418. err = khugepaged_init();
  419. if (err)
  420. goto err_slab;
  421. err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
  422. if (err)
  423. goto err_hzp_shrinker;
  424. err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
  425. if (err)
  426. goto err_split_shrinker;
  427. /*
  428. * By default disable transparent hugepages on smaller systems,
  429. * where the extra memory used could hurt more than TLB overhead
  430. * is likely to save. The admin can still enable it through /sys.
  431. */
  432. if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
  433. transparent_hugepage_flags = 0;
  434. return 0;
  435. }
  436. err = start_stop_khugepaged();
  437. if (err)
  438. goto err_khugepaged;
  439. return 0;
  440. err_khugepaged:
  441. unregister_shrinker(&deferred_split_shrinker);
  442. err_split_shrinker:
  443. unregister_shrinker(&huge_zero_page_shrinker);
  444. err_hzp_shrinker:
  445. khugepaged_destroy();
  446. err_slab:
  447. hugepage_exit_sysfs(hugepage_kobj);
  448. err_sysfs:
  449. return err;
  450. }
  451. subsys_initcall(hugepage_init);
  452. static int __init setup_transparent_hugepage(char *str)
  453. {
  454. int ret = 0;
  455. if (!str)
  456. goto out;
  457. if (!strcmp(str, "always")) {
  458. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  459. &transparent_hugepage_flags);
  460. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  461. &transparent_hugepage_flags);
  462. ret = 1;
  463. } else if (!strcmp(str, "madvise")) {
  464. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  465. &transparent_hugepage_flags);
  466. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  467. &transparent_hugepage_flags);
  468. ret = 1;
  469. } else if (!strcmp(str, "never")) {
  470. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  471. &transparent_hugepage_flags);
  472. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  473. &transparent_hugepage_flags);
  474. ret = 1;
  475. }
  476. out:
  477. if (!ret)
  478. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  479. return ret;
  480. }
  481. __setup("transparent_hugepage=", setup_transparent_hugepage);
  482. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  483. {
  484. if (likely(vma->vm_flags & VM_WRITE))
  485. pmd = pmd_mkwrite(pmd);
  486. return pmd;
  487. }
  488. #ifdef CONFIG_MEMCG
  489. static inline struct deferred_split *get_deferred_split_queue(struct page *page)
  490. {
  491. struct mem_cgroup *memcg = page_memcg(compound_head(page));
  492. struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
  493. if (memcg)
  494. return &memcg->deferred_split_queue;
  495. else
  496. return &pgdat->deferred_split_queue;
  497. }
  498. #else
  499. static inline struct deferred_split *get_deferred_split_queue(struct page *page)
  500. {
  501. struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
  502. return &pgdat->deferred_split_queue;
  503. }
  504. #endif
  505. void prep_transhuge_page(struct page *page)
  506. {
  507. /*
  508. * we use page->mapping and page->index in second tail page
  509. * as list_head: assuming THP order >= 2
  510. */
  511. INIT_LIST_HEAD(page_deferred_list(page));
  512. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  513. }
  514. static inline bool is_transparent_hugepage(struct page *page)
  515. {
  516. if (!PageCompound(page))
  517. return false;
  518. page = compound_head(page);
  519. return is_huge_zero_page(page) ||
  520. page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
  521. }
  522. static unsigned long __thp_get_unmapped_area(struct file *filp,
  523. unsigned long addr, unsigned long len,
  524. loff_t off, unsigned long flags, unsigned long size)
  525. {
  526. loff_t off_end = off + len;
  527. loff_t off_align = round_up(off, size);
  528. unsigned long len_pad, ret;
  529. if (off_end <= off_align || (off_end - off_align) < size)
  530. return 0;
  531. len_pad = len + size;
  532. if (len_pad < len || (off + len_pad) < off)
  533. return 0;
  534. ret = current->mm->get_unmapped_area(filp, addr, len_pad,
  535. off >> PAGE_SHIFT, flags);
  536. /*
  537. * The failure might be due to length padding. The caller will retry
  538. * without the padding.
  539. */
  540. if (IS_ERR_VALUE(ret))
  541. return 0;
  542. /*
  543. * Do not try to align to THP boundary if allocation at the address
  544. * hint succeeds.
  545. */
  546. if (ret == addr)
  547. return addr;
  548. ret += (off - ret) & (size - 1);
  549. return ret;
  550. }
  551. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  552. unsigned long len, unsigned long pgoff, unsigned long flags)
  553. {
  554. unsigned long ret;
  555. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  556. ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
  557. if (ret)
  558. return ret;
  559. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  560. }
  561. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  562. static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
  563. struct page *page, gfp_t gfp)
  564. {
  565. struct vm_area_struct *vma = vmf->vma;
  566. pgtable_t pgtable;
  567. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  568. vm_fault_t ret = 0;
  569. VM_BUG_ON_PAGE(!PageCompound(page), page);
  570. if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
  571. put_page(page);
  572. count_vm_event(THP_FAULT_FALLBACK);
  573. count_vm_event(THP_FAULT_FALLBACK_CHARGE);
  574. return VM_FAULT_FALLBACK;
  575. }
  576. cgroup_throttle_swaprate(page, gfp);
  577. pgtable = pte_alloc_one(vma->vm_mm);
  578. if (unlikely(!pgtable)) {
  579. ret = VM_FAULT_OOM;
  580. goto release;
  581. }
  582. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  583. /*
  584. * The memory barrier inside __SetPageUptodate makes sure that
  585. * clear_huge_page writes become visible before the set_pmd_at()
  586. * write.
  587. */
  588. __SetPageUptodate(page);
  589. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  590. if (unlikely(!pmd_none(*vmf->pmd))) {
  591. goto unlock_release;
  592. } else {
  593. pmd_t entry;
  594. ret = check_stable_address_space(vma->vm_mm);
  595. if (ret)
  596. goto unlock_release;
  597. /* Deliver the page fault to userland */
  598. if (userfaultfd_missing(vma)) {
  599. spin_unlock(vmf->ptl);
  600. put_page(page);
  601. pte_free(vma->vm_mm, pgtable);
  602. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  603. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  604. return ret;
  605. }
  606. entry = mk_huge_pmd(page, vma->vm_page_prot);
  607. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  608. page_add_new_anon_rmap(page, vma, haddr);
  609. lru_cache_add_inactive_or_unevictable(page, vma);
  610. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  611. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  612. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  613. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  614. mm_inc_nr_ptes(vma->vm_mm);
  615. spin_unlock(vmf->ptl);
  616. count_vm_event(THP_FAULT_ALLOC);
  617. count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
  618. }
  619. return 0;
  620. unlock_release:
  621. spin_unlock(vmf->ptl);
  622. release:
  623. if (pgtable)
  624. pte_free(vma->vm_mm, pgtable);
  625. put_page(page);
  626. return ret;
  627. }
  628. /*
  629. * always: directly stall for all thp allocations
  630. * defer: wake kswapd and fail if not immediately available
  631. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  632. * fail if not immediately available
  633. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  634. * available
  635. * never: never stall for any thp allocation
  636. */
  637. gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
  638. {
  639. const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
  640. /* Always do synchronous compaction */
  641. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  642. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  643. /* Kick kcompactd and fail quickly */
  644. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  645. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  646. /* Synchronous compaction if madvised, otherwise kick kcompactd */
  647. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  648. return GFP_TRANSHUGE_LIGHT |
  649. (vma_madvised ? __GFP_DIRECT_RECLAIM :
  650. __GFP_KSWAPD_RECLAIM);
  651. /* Only do synchronous compaction if madvised */
  652. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  653. return GFP_TRANSHUGE_LIGHT |
  654. (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
  655. return GFP_TRANSHUGE_LIGHT;
  656. }
  657. /* Caller must hold page table lock. */
  658. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  659. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  660. struct page *zero_page)
  661. {
  662. pmd_t entry;
  663. if (!pmd_none(*pmd))
  664. return;
  665. entry = mk_pmd(zero_page, vma->vm_page_prot);
  666. entry = pmd_mkhuge(entry);
  667. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  668. set_pmd_at(mm, haddr, pmd, entry);
  669. mm_inc_nr_ptes(mm);
  670. }
  671. vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  672. {
  673. struct vm_area_struct *vma = vmf->vma;
  674. gfp_t gfp;
  675. struct folio *folio;
  676. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  677. if (!transhuge_vma_suitable(vma, haddr))
  678. return VM_FAULT_FALLBACK;
  679. if (unlikely(anon_vma_prepare(vma)))
  680. return VM_FAULT_OOM;
  681. khugepaged_enter_vma(vma, vma->vm_flags);
  682. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  683. !mm_forbids_zeropage(vma->vm_mm) &&
  684. transparent_hugepage_use_zero_page()) {
  685. pgtable_t pgtable;
  686. struct page *zero_page;
  687. vm_fault_t ret;
  688. pgtable = pte_alloc_one(vma->vm_mm);
  689. if (unlikely(!pgtable))
  690. return VM_FAULT_OOM;
  691. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  692. if (unlikely(!zero_page)) {
  693. pte_free(vma->vm_mm, pgtable);
  694. count_vm_event(THP_FAULT_FALLBACK);
  695. return VM_FAULT_FALLBACK;
  696. }
  697. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  698. ret = 0;
  699. if (pmd_none(*vmf->pmd)) {
  700. ret = check_stable_address_space(vma->vm_mm);
  701. if (ret) {
  702. spin_unlock(vmf->ptl);
  703. pte_free(vma->vm_mm, pgtable);
  704. } else if (userfaultfd_missing(vma)) {
  705. spin_unlock(vmf->ptl);
  706. pte_free(vma->vm_mm, pgtable);
  707. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  708. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  709. } else {
  710. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  711. haddr, vmf->pmd, zero_page);
  712. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  713. spin_unlock(vmf->ptl);
  714. }
  715. } else {
  716. spin_unlock(vmf->ptl);
  717. pte_free(vma->vm_mm, pgtable);
  718. }
  719. return ret;
  720. }
  721. gfp = vma_thp_gfp_mask(vma);
  722. folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
  723. if (unlikely(!folio)) {
  724. count_vm_event(THP_FAULT_FALLBACK);
  725. return VM_FAULT_FALLBACK;
  726. }
  727. return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
  728. }
  729. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  730. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  731. pgtable_t pgtable)
  732. {
  733. struct mm_struct *mm = vma->vm_mm;
  734. pmd_t entry;
  735. spinlock_t *ptl;
  736. ptl = pmd_lock(mm, pmd);
  737. if (!pmd_none(*pmd)) {
  738. if (write) {
  739. if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
  740. WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
  741. goto out_unlock;
  742. }
  743. entry = pmd_mkyoung(*pmd);
  744. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  745. if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
  746. update_mmu_cache_pmd(vma, addr, pmd);
  747. }
  748. goto out_unlock;
  749. }
  750. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  751. if (pfn_t_devmap(pfn))
  752. entry = pmd_mkdevmap(entry);
  753. if (write) {
  754. entry = pmd_mkyoung(pmd_mkdirty(entry));
  755. entry = maybe_pmd_mkwrite(entry, vma);
  756. }
  757. if (pgtable) {
  758. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  759. mm_inc_nr_ptes(mm);
  760. pgtable = NULL;
  761. }
  762. set_pmd_at(mm, addr, pmd, entry);
  763. update_mmu_cache_pmd(vma, addr, pmd);
  764. out_unlock:
  765. spin_unlock(ptl);
  766. if (pgtable)
  767. pte_free(mm, pgtable);
  768. }
  769. /**
  770. * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
  771. * @vmf: Structure describing the fault
  772. * @pfn: pfn to insert
  773. * @pgprot: page protection to use
  774. * @write: whether it's a write fault
  775. *
  776. * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
  777. * also consult the vmf_insert_mixed_prot() documentation when
  778. * @pgprot != @vmf->vma->vm_page_prot.
  779. *
  780. * Return: vm_fault_t value.
  781. */
  782. vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
  783. pgprot_t pgprot, bool write)
  784. {
  785. unsigned long addr = vmf->address & PMD_MASK;
  786. struct vm_area_struct *vma = vmf->vma;
  787. pgtable_t pgtable = NULL;
  788. /*
  789. * If we had pmd_special, we could avoid all these restrictions,
  790. * but we need to be consistent with PTEs and architectures that
  791. * can't support a 'special' bit.
  792. */
  793. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  794. !pfn_t_devmap(pfn));
  795. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  796. (VM_PFNMAP|VM_MIXEDMAP));
  797. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  798. if (addr < vma->vm_start || addr >= vma->vm_end)
  799. return VM_FAULT_SIGBUS;
  800. if (arch_needs_pgtable_deposit()) {
  801. pgtable = pte_alloc_one(vma->vm_mm);
  802. if (!pgtable)
  803. return VM_FAULT_OOM;
  804. }
  805. track_pfn_insert(vma, &pgprot, pfn);
  806. insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
  807. return VM_FAULT_NOPAGE;
  808. }
  809. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
  810. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  811. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  812. {
  813. if (likely(vma->vm_flags & VM_WRITE))
  814. pud = pud_mkwrite(pud);
  815. return pud;
  816. }
  817. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  818. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  819. {
  820. struct mm_struct *mm = vma->vm_mm;
  821. pud_t entry;
  822. spinlock_t *ptl;
  823. ptl = pud_lock(mm, pud);
  824. if (!pud_none(*pud)) {
  825. if (write) {
  826. if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
  827. WARN_ON_ONCE(!is_huge_zero_pud(*pud));
  828. goto out_unlock;
  829. }
  830. entry = pud_mkyoung(*pud);
  831. entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
  832. if (pudp_set_access_flags(vma, addr, pud, entry, 1))
  833. update_mmu_cache_pud(vma, addr, pud);
  834. }
  835. goto out_unlock;
  836. }
  837. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  838. if (pfn_t_devmap(pfn))
  839. entry = pud_mkdevmap(entry);
  840. if (write) {
  841. entry = pud_mkyoung(pud_mkdirty(entry));
  842. entry = maybe_pud_mkwrite(entry, vma);
  843. }
  844. set_pud_at(mm, addr, pud, entry);
  845. update_mmu_cache_pud(vma, addr, pud);
  846. out_unlock:
  847. spin_unlock(ptl);
  848. }
  849. /**
  850. * vmf_insert_pfn_pud_prot - insert a pud size pfn
  851. * @vmf: Structure describing the fault
  852. * @pfn: pfn to insert
  853. * @pgprot: page protection to use
  854. * @write: whether it's a write fault
  855. *
  856. * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
  857. * also consult the vmf_insert_mixed_prot() documentation when
  858. * @pgprot != @vmf->vma->vm_page_prot.
  859. *
  860. * Return: vm_fault_t value.
  861. */
  862. vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
  863. pgprot_t pgprot, bool write)
  864. {
  865. unsigned long addr = vmf->address & PUD_MASK;
  866. struct vm_area_struct *vma = vmf->vma;
  867. /*
  868. * If we had pud_special, we could avoid all these restrictions,
  869. * but we need to be consistent with PTEs and architectures that
  870. * can't support a 'special' bit.
  871. */
  872. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  873. !pfn_t_devmap(pfn));
  874. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  875. (VM_PFNMAP|VM_MIXEDMAP));
  876. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  877. if (addr < vma->vm_start || addr >= vma->vm_end)
  878. return VM_FAULT_SIGBUS;
  879. track_pfn_insert(vma, &pgprot, pfn);
  880. insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
  881. return VM_FAULT_NOPAGE;
  882. }
  883. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
  884. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  885. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  886. pmd_t *pmd, bool write)
  887. {
  888. pmd_t _pmd;
  889. _pmd = pmd_mkyoung(*pmd);
  890. if (write)
  891. _pmd = pmd_mkdirty(_pmd);
  892. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  893. pmd, _pmd, write))
  894. update_mmu_cache_pmd(vma, addr, pmd);
  895. }
  896. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  897. pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
  898. {
  899. unsigned long pfn = pmd_pfn(*pmd);
  900. struct mm_struct *mm = vma->vm_mm;
  901. struct page *page;
  902. assert_spin_locked(pmd_lockptr(mm, pmd));
  903. /* FOLL_GET and FOLL_PIN are mutually exclusive. */
  904. if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
  905. (FOLL_PIN | FOLL_GET)))
  906. return NULL;
  907. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  908. return NULL;
  909. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  910. /* pass */;
  911. else
  912. return NULL;
  913. if (flags & FOLL_TOUCH)
  914. touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
  915. /*
  916. * device mapped pages can only be returned if the
  917. * caller will manage the page reference count.
  918. */
  919. if (!(flags & (FOLL_GET | FOLL_PIN)))
  920. return ERR_PTR(-EEXIST);
  921. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  922. *pgmap = get_dev_pagemap(pfn, *pgmap);
  923. if (!*pgmap)
  924. return ERR_PTR(-EFAULT);
  925. page = pfn_to_page(pfn);
  926. if (!try_grab_page(page, flags))
  927. page = ERR_PTR(-ENOMEM);
  928. return page;
  929. }
  930. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  931. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  932. struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
  933. {
  934. spinlock_t *dst_ptl, *src_ptl;
  935. struct page *src_page;
  936. pmd_t pmd;
  937. pgtable_t pgtable = NULL;
  938. int ret = -ENOMEM;
  939. /* Skip if can be re-fill on fault */
  940. if (!vma_is_anonymous(dst_vma))
  941. return 0;
  942. pgtable = pte_alloc_one(dst_mm);
  943. if (unlikely(!pgtable))
  944. goto out;
  945. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  946. src_ptl = pmd_lockptr(src_mm, src_pmd);
  947. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  948. ret = -EAGAIN;
  949. pmd = *src_pmd;
  950. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  951. if (unlikely(is_swap_pmd(pmd))) {
  952. swp_entry_t entry = pmd_to_swp_entry(pmd);
  953. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  954. if (!is_readable_migration_entry(entry)) {
  955. entry = make_readable_migration_entry(
  956. swp_offset(entry));
  957. pmd = swp_entry_to_pmd(entry);
  958. if (pmd_swp_soft_dirty(*src_pmd))
  959. pmd = pmd_swp_mksoft_dirty(pmd);
  960. if (pmd_swp_uffd_wp(*src_pmd))
  961. pmd = pmd_swp_mkuffd_wp(pmd);
  962. set_pmd_at(src_mm, addr, src_pmd, pmd);
  963. }
  964. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  965. mm_inc_nr_ptes(dst_mm);
  966. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  967. if (!userfaultfd_wp(dst_vma))
  968. pmd = pmd_swp_clear_uffd_wp(pmd);
  969. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  970. ret = 0;
  971. goto out_unlock;
  972. }
  973. #endif
  974. if (unlikely(!pmd_trans_huge(pmd))) {
  975. pte_free(dst_mm, pgtable);
  976. goto out_unlock;
  977. }
  978. /*
  979. * When page table lock is held, the huge zero pmd should not be
  980. * under splitting since we don't split the page itself, only pmd to
  981. * a page table.
  982. */
  983. if (is_huge_zero_pmd(pmd)) {
  984. /*
  985. * get_huge_zero_page() will never allocate a new page here,
  986. * since we already have a zero page to copy. It just takes a
  987. * reference.
  988. */
  989. mm_get_huge_zero_page(dst_mm);
  990. goto out_zero_page;
  991. }
  992. src_page = pmd_page(pmd);
  993. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  994. get_page(src_page);
  995. if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
  996. /* Page maybe pinned: split and retry the fault on PTEs. */
  997. put_page(src_page);
  998. pte_free(dst_mm, pgtable);
  999. spin_unlock(src_ptl);
  1000. spin_unlock(dst_ptl);
  1001. __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
  1002. return -EAGAIN;
  1003. }
  1004. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1005. out_zero_page:
  1006. mm_inc_nr_ptes(dst_mm);
  1007. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  1008. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  1009. if (!userfaultfd_wp(dst_vma))
  1010. pmd = pmd_clear_uffd_wp(pmd);
  1011. pmd = pmd_mkold(pmd_wrprotect(pmd));
  1012. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  1013. ret = 0;
  1014. out_unlock:
  1015. spin_unlock(src_ptl);
  1016. spin_unlock(dst_ptl);
  1017. out:
  1018. return ret;
  1019. }
  1020. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1021. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  1022. pud_t *pud, bool write)
  1023. {
  1024. pud_t _pud;
  1025. _pud = pud_mkyoung(*pud);
  1026. if (write)
  1027. _pud = pud_mkdirty(_pud);
  1028. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  1029. pud, _pud, write))
  1030. update_mmu_cache_pud(vma, addr, pud);
  1031. }
  1032. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  1033. pud_t *pud, int flags, struct dev_pagemap **pgmap)
  1034. {
  1035. unsigned long pfn = pud_pfn(*pud);
  1036. struct mm_struct *mm = vma->vm_mm;
  1037. struct page *page;
  1038. assert_spin_locked(pud_lockptr(mm, pud));
  1039. if (flags & FOLL_WRITE && !pud_write(*pud))
  1040. return NULL;
  1041. /* FOLL_GET and FOLL_PIN are mutually exclusive. */
  1042. if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
  1043. (FOLL_PIN | FOLL_GET)))
  1044. return NULL;
  1045. if (pud_present(*pud) && pud_devmap(*pud))
  1046. /* pass */;
  1047. else
  1048. return NULL;
  1049. if (flags & FOLL_TOUCH)
  1050. touch_pud(vma, addr, pud, flags & FOLL_WRITE);
  1051. /*
  1052. * device mapped pages can only be returned if the
  1053. * caller will manage the page reference count.
  1054. *
  1055. * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
  1056. */
  1057. if (!(flags & (FOLL_GET | FOLL_PIN)))
  1058. return ERR_PTR(-EEXIST);
  1059. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  1060. *pgmap = get_dev_pagemap(pfn, *pgmap);
  1061. if (!*pgmap)
  1062. return ERR_PTR(-EFAULT);
  1063. page = pfn_to_page(pfn);
  1064. if (!try_grab_page(page, flags))
  1065. page = ERR_PTR(-ENOMEM);
  1066. return page;
  1067. }
  1068. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  1069. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  1070. struct vm_area_struct *vma)
  1071. {
  1072. spinlock_t *dst_ptl, *src_ptl;
  1073. pud_t pud;
  1074. int ret;
  1075. dst_ptl = pud_lock(dst_mm, dst_pud);
  1076. src_ptl = pud_lockptr(src_mm, src_pud);
  1077. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  1078. ret = -EAGAIN;
  1079. pud = *src_pud;
  1080. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  1081. goto out_unlock;
  1082. /*
  1083. * When page table lock is held, the huge zero pud should not be
  1084. * under splitting since we don't split the page itself, only pud to
  1085. * a page table.
  1086. */
  1087. if (is_huge_zero_pud(pud)) {
  1088. /* No huge zero pud yet */
  1089. }
  1090. /*
  1091. * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
  1092. * and split if duplicating fails.
  1093. */
  1094. pudp_set_wrprotect(src_mm, addr, src_pud);
  1095. pud = pud_mkold(pud_wrprotect(pud));
  1096. set_pud_at(dst_mm, addr, dst_pud, pud);
  1097. ret = 0;
  1098. out_unlock:
  1099. spin_unlock(src_ptl);
  1100. spin_unlock(dst_ptl);
  1101. return ret;
  1102. }
  1103. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  1104. {
  1105. bool write = vmf->flags & FAULT_FLAG_WRITE;
  1106. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  1107. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  1108. goto unlock;
  1109. touch_pud(vmf->vma, vmf->address, vmf->pud, write);
  1110. unlock:
  1111. spin_unlock(vmf->ptl);
  1112. }
  1113. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1114. void huge_pmd_set_accessed(struct vm_fault *vmf)
  1115. {
  1116. bool write = vmf->flags & FAULT_FLAG_WRITE;
  1117. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  1118. if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
  1119. goto unlock;
  1120. touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
  1121. unlock:
  1122. spin_unlock(vmf->ptl);
  1123. }
  1124. vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
  1125. {
  1126. const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
  1127. struct vm_area_struct *vma = vmf->vma;
  1128. struct folio *folio;
  1129. struct page *page;
  1130. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1131. pmd_t orig_pmd = vmf->orig_pmd;
  1132. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1133. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1134. VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
  1135. VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
  1136. if (is_huge_zero_pmd(orig_pmd))
  1137. goto fallback;
  1138. spin_lock(vmf->ptl);
  1139. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1140. spin_unlock(vmf->ptl);
  1141. return 0;
  1142. }
  1143. page = pmd_page(orig_pmd);
  1144. folio = page_folio(page);
  1145. VM_BUG_ON_PAGE(!PageHead(page), page);
  1146. /* Early check when only holding the PT lock. */
  1147. if (PageAnonExclusive(page))
  1148. goto reuse;
  1149. if (!folio_trylock(folio)) {
  1150. folio_get(folio);
  1151. spin_unlock(vmf->ptl);
  1152. folio_lock(folio);
  1153. spin_lock(vmf->ptl);
  1154. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1155. spin_unlock(vmf->ptl);
  1156. folio_unlock(folio);
  1157. folio_put(folio);
  1158. return 0;
  1159. }
  1160. folio_put(folio);
  1161. }
  1162. /* Recheck after temporarily dropping the PT lock. */
  1163. if (PageAnonExclusive(page)) {
  1164. folio_unlock(folio);
  1165. goto reuse;
  1166. }
  1167. /*
  1168. * See do_wp_page(): we can only reuse the folio exclusively if
  1169. * there are no additional references. Note that we always drain
  1170. * the LRU pagevecs immediately after adding a THP.
  1171. */
  1172. if (folio_ref_count(folio) >
  1173. 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
  1174. goto unlock_fallback;
  1175. if (folio_test_swapcache(folio))
  1176. folio_free_swap(folio);
  1177. if (folio_ref_count(folio) == 1) {
  1178. pmd_t entry;
  1179. page_move_anon_rmap(page, vma);
  1180. folio_unlock(folio);
  1181. reuse:
  1182. if (unlikely(unshare)) {
  1183. spin_unlock(vmf->ptl);
  1184. return 0;
  1185. }
  1186. entry = pmd_mkyoung(orig_pmd);
  1187. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1188. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1189. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1190. spin_unlock(vmf->ptl);
  1191. return VM_FAULT_WRITE;
  1192. }
  1193. unlock_fallback:
  1194. folio_unlock(folio);
  1195. spin_unlock(vmf->ptl);
  1196. fallback:
  1197. __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
  1198. return VM_FAULT_FALLBACK;
  1199. }
  1200. /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
  1201. static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
  1202. struct vm_area_struct *vma,
  1203. unsigned int flags)
  1204. {
  1205. /* If the pmd is writable, we can write to the page. */
  1206. if (pmd_write(pmd))
  1207. return true;
  1208. /* Maybe FOLL_FORCE is set to override it? */
  1209. if (!(flags & FOLL_FORCE))
  1210. return false;
  1211. /* But FOLL_FORCE has no effect on shared mappings */
  1212. if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
  1213. return false;
  1214. /* ... or read-only private ones */
  1215. if (!(vma->vm_flags & VM_MAYWRITE))
  1216. return false;
  1217. /* ... or already writable ones that just need to take a write fault */
  1218. if (vma->vm_flags & VM_WRITE)
  1219. return false;
  1220. /*
  1221. * See can_change_pte_writable(): we broke COW and could map the page
  1222. * writable if we have an exclusive anonymous page ...
  1223. */
  1224. if (!page || !PageAnon(page) || !PageAnonExclusive(page))
  1225. return false;
  1226. /* ... and a write-fault isn't required for other reasons. */
  1227. if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
  1228. return false;
  1229. return !userfaultfd_huge_pmd_wp(vma, pmd);
  1230. }
  1231. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1232. unsigned long addr,
  1233. pmd_t *pmd,
  1234. unsigned int flags)
  1235. {
  1236. struct mm_struct *mm = vma->vm_mm;
  1237. struct page *page;
  1238. assert_spin_locked(pmd_lockptr(mm, pmd));
  1239. page = pmd_page(*pmd);
  1240. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1241. if ((flags & FOLL_WRITE) &&
  1242. !can_follow_write_pmd(*pmd, page, vma, flags))
  1243. return NULL;
  1244. /* Avoid dumping huge zero page */
  1245. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1246. return ERR_PTR(-EFAULT);
  1247. /* Full NUMA hinting faults to serialise migration in fault paths */
  1248. if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
  1249. return NULL;
  1250. if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
  1251. return ERR_PTR(-EMLINK);
  1252. VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
  1253. !PageAnonExclusive(page), page);
  1254. if (!try_grab_page(page, flags))
  1255. return ERR_PTR(-ENOMEM);
  1256. if (flags & FOLL_TOUCH)
  1257. touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
  1258. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1259. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1260. return page;
  1261. }
  1262. /* NUMA hinting page fault entry point for trans huge pmds */
  1263. vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
  1264. {
  1265. struct vm_area_struct *vma = vmf->vma;
  1266. pmd_t oldpmd = vmf->orig_pmd;
  1267. pmd_t pmd;
  1268. struct page *page;
  1269. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1270. int page_nid = NUMA_NO_NODE;
  1271. int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
  1272. bool migrated = false;
  1273. bool was_writable = pmd_savedwrite(oldpmd);
  1274. int flags = 0;
  1275. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1276. if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
  1277. spin_unlock(vmf->ptl);
  1278. goto out;
  1279. }
  1280. pmd = pmd_modify(oldpmd, vma->vm_page_prot);
  1281. page = vm_normal_page_pmd(vma, haddr, pmd);
  1282. if (!page)
  1283. goto out_map;
  1284. /* See similar comment in do_numa_page for explanation */
  1285. if (!was_writable)
  1286. flags |= TNF_NO_GROUP;
  1287. page_nid = page_to_nid(page);
  1288. /*
  1289. * For memory tiering mode, cpupid of slow memory page is used
  1290. * to record page access time. So use default value.
  1291. */
  1292. if (node_is_toptier(page_nid))
  1293. last_cpupid = page_cpupid_last(page);
  1294. target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
  1295. &flags);
  1296. if (target_nid == NUMA_NO_NODE) {
  1297. put_page(page);
  1298. goto out_map;
  1299. }
  1300. spin_unlock(vmf->ptl);
  1301. migrated = migrate_misplaced_page(page, vma, target_nid);
  1302. if (migrated) {
  1303. flags |= TNF_MIGRATED;
  1304. page_nid = target_nid;
  1305. } else {
  1306. flags |= TNF_MIGRATE_FAIL;
  1307. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1308. if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
  1309. spin_unlock(vmf->ptl);
  1310. goto out;
  1311. }
  1312. goto out_map;
  1313. }
  1314. out:
  1315. if (page_nid != NUMA_NO_NODE)
  1316. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1317. flags);
  1318. return 0;
  1319. out_map:
  1320. /* Restore the PMD */
  1321. pmd = pmd_modify(oldpmd, vma->vm_page_prot);
  1322. pmd = pmd_mkyoung(pmd);
  1323. if (was_writable)
  1324. pmd = pmd_mkwrite(pmd);
  1325. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1326. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1327. spin_unlock(vmf->ptl);
  1328. goto out;
  1329. }
  1330. /*
  1331. * Return true if we do MADV_FREE successfully on entire pmd page.
  1332. * Otherwise, return false.
  1333. */
  1334. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1335. pmd_t *pmd, unsigned long addr, unsigned long next)
  1336. {
  1337. spinlock_t *ptl;
  1338. pmd_t orig_pmd;
  1339. struct page *page;
  1340. struct mm_struct *mm = tlb->mm;
  1341. bool ret = false;
  1342. tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
  1343. ptl = pmd_trans_huge_lock(pmd, vma);
  1344. if (!ptl)
  1345. goto out_unlocked;
  1346. orig_pmd = *pmd;
  1347. if (is_huge_zero_pmd(orig_pmd))
  1348. goto out;
  1349. if (unlikely(!pmd_present(orig_pmd))) {
  1350. VM_BUG_ON(thp_migration_supported() &&
  1351. !is_pmd_migration_entry(orig_pmd));
  1352. goto out;
  1353. }
  1354. page = pmd_page(orig_pmd);
  1355. /*
  1356. * If other processes are mapping this page, we couldn't discard
  1357. * the page unless they all do MADV_FREE so let's skip the page.
  1358. */
  1359. if (total_mapcount(page) != 1)
  1360. goto out;
  1361. if (!trylock_page(page))
  1362. goto out;
  1363. /*
  1364. * If user want to discard part-pages of THP, split it so MADV_FREE
  1365. * will deactivate only them.
  1366. */
  1367. if (next - addr != HPAGE_PMD_SIZE) {
  1368. get_page(page);
  1369. spin_unlock(ptl);
  1370. split_huge_page(page);
  1371. unlock_page(page);
  1372. put_page(page);
  1373. goto out_unlocked;
  1374. }
  1375. if (PageDirty(page))
  1376. ClearPageDirty(page);
  1377. unlock_page(page);
  1378. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1379. pmdp_invalidate(vma, addr, pmd);
  1380. orig_pmd = pmd_mkold(orig_pmd);
  1381. orig_pmd = pmd_mkclean(orig_pmd);
  1382. set_pmd_at(mm, addr, pmd, orig_pmd);
  1383. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1384. }
  1385. mark_page_lazyfree(page);
  1386. ret = true;
  1387. out:
  1388. spin_unlock(ptl);
  1389. out_unlocked:
  1390. return ret;
  1391. }
  1392. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1393. {
  1394. pgtable_t pgtable;
  1395. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1396. pte_free(mm, pgtable);
  1397. mm_dec_nr_ptes(mm);
  1398. }
  1399. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1400. pmd_t *pmd, unsigned long addr)
  1401. {
  1402. pmd_t orig_pmd;
  1403. spinlock_t *ptl;
  1404. tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
  1405. ptl = __pmd_trans_huge_lock(pmd, vma);
  1406. if (!ptl)
  1407. return 0;
  1408. /*
  1409. * For architectures like ppc64 we look at deposited pgtable
  1410. * when calling pmdp_huge_get_and_clear. So do the
  1411. * pgtable_trans_huge_withdraw after finishing pmdp related
  1412. * operations.
  1413. */
  1414. orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
  1415. tlb->fullmm);
  1416. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1417. if (vma_is_special_huge(vma)) {
  1418. if (arch_needs_pgtable_deposit())
  1419. zap_deposited_table(tlb->mm, pmd);
  1420. spin_unlock(ptl);
  1421. } else if (is_huge_zero_pmd(orig_pmd)) {
  1422. zap_deposited_table(tlb->mm, pmd);
  1423. spin_unlock(ptl);
  1424. } else {
  1425. struct page *page = NULL;
  1426. int flush_needed = 1;
  1427. if (pmd_present(orig_pmd)) {
  1428. page = pmd_page(orig_pmd);
  1429. page_remove_rmap(page, vma, true);
  1430. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1431. VM_BUG_ON_PAGE(!PageHead(page), page);
  1432. } else if (thp_migration_supported()) {
  1433. swp_entry_t entry;
  1434. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1435. entry = pmd_to_swp_entry(orig_pmd);
  1436. page = pfn_swap_entry_to_page(entry);
  1437. flush_needed = 0;
  1438. } else
  1439. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1440. if (PageAnon(page)) {
  1441. zap_deposited_table(tlb->mm, pmd);
  1442. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1443. } else {
  1444. if (arch_needs_pgtable_deposit())
  1445. zap_deposited_table(tlb->mm, pmd);
  1446. add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1447. }
  1448. spin_unlock(ptl);
  1449. if (flush_needed)
  1450. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1451. }
  1452. return 1;
  1453. }
  1454. #ifndef pmd_move_must_withdraw
  1455. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1456. spinlock_t *old_pmd_ptl,
  1457. struct vm_area_struct *vma)
  1458. {
  1459. /*
  1460. * With split pmd lock we also need to move preallocated
  1461. * PTE page table if new_pmd is on different PMD page table.
  1462. *
  1463. * We also don't deposit and withdraw tables for file pages.
  1464. */
  1465. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1466. }
  1467. #endif
  1468. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1469. {
  1470. #ifdef CONFIG_MEM_SOFT_DIRTY
  1471. if (unlikely(is_pmd_migration_entry(pmd)))
  1472. pmd = pmd_swp_mksoft_dirty(pmd);
  1473. else if (pmd_present(pmd))
  1474. pmd = pmd_mksoft_dirty(pmd);
  1475. #endif
  1476. return pmd;
  1477. }
  1478. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1479. unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
  1480. {
  1481. spinlock_t *old_ptl, *new_ptl;
  1482. pmd_t pmd;
  1483. struct mm_struct *mm = vma->vm_mm;
  1484. bool force_flush = false;
  1485. /*
  1486. * The destination pmd shouldn't be established, free_pgtables()
  1487. * should have release it.
  1488. */
  1489. if (WARN_ON(!pmd_none(*new_pmd))) {
  1490. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1491. return false;
  1492. }
  1493. /*
  1494. * We don't have to worry about the ordering of src and dst
  1495. * ptlocks because exclusive mmap_lock prevents deadlock.
  1496. */
  1497. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1498. if (old_ptl) {
  1499. new_ptl = pmd_lockptr(mm, new_pmd);
  1500. if (new_ptl != old_ptl)
  1501. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1502. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1503. if (pmd_present(pmd))
  1504. force_flush = true;
  1505. VM_BUG_ON(!pmd_none(*new_pmd));
  1506. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1507. pgtable_t pgtable;
  1508. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1509. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1510. }
  1511. pmd = move_soft_dirty_pmd(pmd);
  1512. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1513. if (force_flush)
  1514. flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1515. if (new_ptl != old_ptl)
  1516. spin_unlock(new_ptl);
  1517. spin_unlock(old_ptl);
  1518. return true;
  1519. }
  1520. return false;
  1521. }
  1522. /*
  1523. * Returns
  1524. * - 0 if PMD could not be locked
  1525. * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
  1526. * or if prot_numa but THP migration is not supported
  1527. * - HPAGE_PMD_NR if protections changed and TLB flush necessary
  1528. */
  1529. int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1530. pmd_t *pmd, unsigned long addr, pgprot_t newprot,
  1531. unsigned long cp_flags)
  1532. {
  1533. struct mm_struct *mm = vma->vm_mm;
  1534. spinlock_t *ptl;
  1535. pmd_t oldpmd, entry;
  1536. bool preserve_write;
  1537. int ret;
  1538. bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
  1539. bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
  1540. bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
  1541. tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
  1542. if (prot_numa && !thp_migration_supported())
  1543. return 1;
  1544. ptl = __pmd_trans_huge_lock(pmd, vma);
  1545. if (!ptl)
  1546. return 0;
  1547. preserve_write = prot_numa && pmd_write(*pmd);
  1548. ret = 1;
  1549. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1550. if (is_swap_pmd(*pmd)) {
  1551. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1552. struct page *page = pfn_swap_entry_to_page(entry);
  1553. pmd_t newpmd;
  1554. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1555. if (is_writable_migration_entry(entry)) {
  1556. /*
  1557. * A protection check is difficult so
  1558. * just be safe and disable write
  1559. */
  1560. if (PageAnon(page))
  1561. entry = make_readable_exclusive_migration_entry(swp_offset(entry));
  1562. else
  1563. entry = make_readable_migration_entry(swp_offset(entry));
  1564. newpmd = swp_entry_to_pmd(entry);
  1565. if (pmd_swp_soft_dirty(*pmd))
  1566. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1567. if (pmd_swp_uffd_wp(*pmd))
  1568. newpmd = pmd_swp_mkuffd_wp(newpmd);
  1569. } else {
  1570. newpmd = *pmd;
  1571. }
  1572. if (uffd_wp)
  1573. newpmd = pmd_swp_mkuffd_wp(newpmd);
  1574. else if (uffd_wp_resolve)
  1575. newpmd = pmd_swp_clear_uffd_wp(newpmd);
  1576. if (!pmd_same(*pmd, newpmd))
  1577. set_pmd_at(mm, addr, pmd, newpmd);
  1578. goto unlock;
  1579. }
  1580. #endif
  1581. if (prot_numa) {
  1582. struct page *page;
  1583. bool toptier;
  1584. /*
  1585. * Avoid trapping faults against the zero page. The read-only
  1586. * data is likely to be read-cached on the local CPU and
  1587. * local/remote hits to the zero page are not interesting.
  1588. */
  1589. if (is_huge_zero_pmd(*pmd))
  1590. goto unlock;
  1591. if (pmd_protnone(*pmd))
  1592. goto unlock;
  1593. page = pmd_page(*pmd);
  1594. toptier = node_is_toptier(page_to_nid(page));
  1595. /*
  1596. * Skip scanning top tier node if normal numa
  1597. * balancing is disabled
  1598. */
  1599. if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
  1600. toptier)
  1601. goto unlock;
  1602. if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
  1603. !toptier)
  1604. xchg_page_access_time(page, jiffies_to_msecs(jiffies));
  1605. }
  1606. /*
  1607. * In case prot_numa, we are under mmap_read_lock(mm). It's critical
  1608. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1609. * which is also under mmap_read_lock(mm):
  1610. *
  1611. * CPU0: CPU1:
  1612. * change_huge_pmd(prot_numa=1)
  1613. * pmdp_huge_get_and_clear_notify()
  1614. * madvise_dontneed()
  1615. * zap_pmd_range()
  1616. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1617. * // skip the pmd
  1618. * set_pmd_at();
  1619. * // pmd is re-established
  1620. *
  1621. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1622. * which may break userspace.
  1623. *
  1624. * pmdp_invalidate_ad() is required to make sure we don't miss
  1625. * dirty/young flags set by hardware.
  1626. */
  1627. oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
  1628. entry = pmd_modify(oldpmd, newprot);
  1629. if (preserve_write)
  1630. entry = pmd_mk_savedwrite(entry);
  1631. if (uffd_wp) {
  1632. entry = pmd_wrprotect(entry);
  1633. entry = pmd_mkuffd_wp(entry);
  1634. } else if (uffd_wp_resolve) {
  1635. /*
  1636. * Leave the write bit to be handled by PF interrupt
  1637. * handler, then things like COW could be properly
  1638. * handled.
  1639. */
  1640. entry = pmd_clear_uffd_wp(entry);
  1641. }
  1642. ret = HPAGE_PMD_NR;
  1643. set_pmd_at(mm, addr, pmd, entry);
  1644. if (huge_pmd_needs_flush(oldpmd, entry))
  1645. tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
  1646. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1647. unlock:
  1648. spin_unlock(ptl);
  1649. return ret;
  1650. }
  1651. /*
  1652. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1653. *
  1654. * Note that if it returns page table lock pointer, this routine returns without
  1655. * unlocking page table lock. So callers must unlock it.
  1656. */
  1657. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1658. {
  1659. spinlock_t *ptl;
  1660. ptl = pmd_lock(vma->vm_mm, pmd);
  1661. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1662. pmd_devmap(*pmd)))
  1663. return ptl;
  1664. spin_unlock(ptl);
  1665. return NULL;
  1666. }
  1667. /*
  1668. * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
  1669. *
  1670. * Note that if it returns page table lock pointer, this routine returns without
  1671. * unlocking page table lock. So callers must unlock it.
  1672. */
  1673. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1674. {
  1675. spinlock_t *ptl;
  1676. ptl = pud_lock(vma->vm_mm, pud);
  1677. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1678. return ptl;
  1679. spin_unlock(ptl);
  1680. return NULL;
  1681. }
  1682. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1683. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1684. pud_t *pud, unsigned long addr)
  1685. {
  1686. spinlock_t *ptl;
  1687. ptl = __pud_trans_huge_lock(pud, vma);
  1688. if (!ptl)
  1689. return 0;
  1690. pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
  1691. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1692. if (vma_is_special_huge(vma)) {
  1693. spin_unlock(ptl);
  1694. /* No zero page support yet */
  1695. } else {
  1696. /* No support for anonymous PUD pages yet */
  1697. BUG();
  1698. }
  1699. return 1;
  1700. }
  1701. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1702. unsigned long haddr)
  1703. {
  1704. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1705. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1706. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1707. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1708. count_vm_event(THP_SPLIT_PUD);
  1709. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1710. }
  1711. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1712. unsigned long address)
  1713. {
  1714. spinlock_t *ptl;
  1715. struct mmu_notifier_range range;
  1716. mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
  1717. address & HPAGE_PUD_MASK,
  1718. (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
  1719. mmu_notifier_invalidate_range_start(&range);
  1720. ptl = pud_lock(vma->vm_mm, pud);
  1721. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1722. goto out;
  1723. __split_huge_pud_locked(vma, pud, range.start);
  1724. out:
  1725. spin_unlock(ptl);
  1726. /*
  1727. * No need to double call mmu_notifier->invalidate_range() callback as
  1728. * the above pudp_huge_clear_flush_notify() did already call it.
  1729. */
  1730. mmu_notifier_invalidate_range_only_end(&range);
  1731. }
  1732. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1733. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1734. unsigned long haddr, pmd_t *pmd)
  1735. {
  1736. struct mm_struct *mm = vma->vm_mm;
  1737. pgtable_t pgtable;
  1738. pmd_t _pmd, old_pmd;
  1739. int i;
  1740. /*
  1741. * Leave pmd empty until pte is filled note that it is fine to delay
  1742. * notification until mmu_notifier_invalidate_range_end() as we are
  1743. * replacing a zero pmd write protected page with a zero pte write
  1744. * protected page.
  1745. *
  1746. * See Documentation/mm/mmu_notifier.rst
  1747. */
  1748. old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
  1749. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1750. pmd_populate(mm, &_pmd, pgtable);
  1751. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1752. pte_t *pte, entry;
  1753. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1754. entry = pte_mkspecial(entry);
  1755. if (pmd_uffd_wp(old_pmd))
  1756. entry = pte_mkuffd_wp(entry);
  1757. pte = pte_offset_map(&_pmd, haddr);
  1758. VM_BUG_ON(!pte_none(*pte));
  1759. set_pte_at(mm, haddr, pte, entry);
  1760. pte_unmap(pte);
  1761. }
  1762. smp_wmb(); /* make pte visible before pmd */
  1763. pmd_populate(mm, pmd, pgtable);
  1764. }
  1765. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1766. unsigned long haddr, bool freeze)
  1767. {
  1768. struct mm_struct *mm = vma->vm_mm;
  1769. struct page *page;
  1770. pgtable_t pgtable;
  1771. pmd_t old_pmd, _pmd;
  1772. bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
  1773. bool anon_exclusive = false, dirty = false;
  1774. unsigned long addr;
  1775. int i;
  1776. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1777. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1778. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1779. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1780. && !pmd_devmap(*pmd));
  1781. count_vm_event(THP_SPLIT_PMD);
  1782. if (!vma_is_anonymous(vma)) {
  1783. old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1784. /*
  1785. * We are going to unmap this huge page. So
  1786. * just go ahead and zap it
  1787. */
  1788. if (arch_needs_pgtable_deposit())
  1789. zap_deposited_table(mm, pmd);
  1790. if (vma_is_special_huge(vma))
  1791. return;
  1792. if (unlikely(is_pmd_migration_entry(old_pmd))) {
  1793. swp_entry_t entry;
  1794. entry = pmd_to_swp_entry(old_pmd);
  1795. page = pfn_swap_entry_to_page(entry);
  1796. } else {
  1797. page = pmd_page(old_pmd);
  1798. if (!PageDirty(page) && pmd_dirty(old_pmd))
  1799. set_page_dirty(page);
  1800. if (!PageReferenced(page) && pmd_young(old_pmd))
  1801. SetPageReferenced(page);
  1802. page_remove_rmap(page, vma, true);
  1803. put_page(page);
  1804. }
  1805. add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1806. return;
  1807. }
  1808. if (is_huge_zero_pmd(*pmd)) {
  1809. /*
  1810. * FIXME: Do we want to invalidate secondary mmu by calling
  1811. * mmu_notifier_invalidate_range() see comments below inside
  1812. * __split_huge_pmd() ?
  1813. *
  1814. * We are going from a zero huge page write protected to zero
  1815. * small page also write protected so it does not seems useful
  1816. * to invalidate secondary mmu at this time.
  1817. */
  1818. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1819. }
  1820. /*
  1821. * Up to this point the pmd is present and huge and userland has the
  1822. * whole access to the hugepage during the split (which happens in
  1823. * place). If we overwrite the pmd with the not-huge version pointing
  1824. * to the pte here (which of course we could if all CPUs were bug
  1825. * free), userland could trigger a small page size TLB miss on the
  1826. * small sized TLB while the hugepage TLB entry is still established in
  1827. * the huge TLB. Some CPU doesn't like that.
  1828. * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
  1829. * 383 on page 105. Intel should be safe but is also warns that it's
  1830. * only safe if the permission and cache attributes of the two entries
  1831. * loaded in the two TLB is identical (which should be the case here).
  1832. * But it is generally safer to never allow small and huge TLB entries
  1833. * for the same virtual address to be loaded simultaneously. So instead
  1834. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1835. * current pmd notpresent (atomically because here the pmd_trans_huge
  1836. * must remain set at all times on the pmd until the split is complete
  1837. * for this pmd), then we flush the SMP TLB and finally we write the
  1838. * non-huge version of the pmd entry with pmd_populate.
  1839. */
  1840. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1841. pmd_migration = is_pmd_migration_entry(old_pmd);
  1842. if (unlikely(pmd_migration)) {
  1843. swp_entry_t entry;
  1844. entry = pmd_to_swp_entry(old_pmd);
  1845. page = pfn_swap_entry_to_page(entry);
  1846. write = is_writable_migration_entry(entry);
  1847. if (PageAnon(page))
  1848. anon_exclusive = is_readable_exclusive_migration_entry(entry);
  1849. young = is_migration_entry_young(entry);
  1850. dirty = is_migration_entry_dirty(entry);
  1851. soft_dirty = pmd_swp_soft_dirty(old_pmd);
  1852. uffd_wp = pmd_swp_uffd_wp(old_pmd);
  1853. } else {
  1854. page = pmd_page(old_pmd);
  1855. if (pmd_dirty(old_pmd)) {
  1856. dirty = true;
  1857. SetPageDirty(page);
  1858. }
  1859. write = pmd_write(old_pmd);
  1860. young = pmd_young(old_pmd);
  1861. soft_dirty = pmd_soft_dirty(old_pmd);
  1862. uffd_wp = pmd_uffd_wp(old_pmd);
  1863. VM_BUG_ON_PAGE(!page_count(page), page);
  1864. page_ref_add(page, HPAGE_PMD_NR - 1);
  1865. /*
  1866. * Without "freeze", we'll simply split the PMD, propagating the
  1867. * PageAnonExclusive() flag for each PTE by setting it for
  1868. * each subpage -- no need to (temporarily) clear.
  1869. *
  1870. * With "freeze" we want to replace mapped pages by
  1871. * migration entries right away. This is only possible if we
  1872. * managed to clear PageAnonExclusive() -- see
  1873. * set_pmd_migration_entry().
  1874. *
  1875. * In case we cannot clear PageAnonExclusive(), split the PMD
  1876. * only and let try_to_migrate_one() fail later.
  1877. *
  1878. * See page_try_share_anon_rmap(): invalidate PMD first.
  1879. */
  1880. anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
  1881. if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
  1882. freeze = false;
  1883. }
  1884. /*
  1885. * Withdraw the table only after we mark the pmd entry invalid.
  1886. * This's critical for some architectures (Power).
  1887. */
  1888. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1889. pmd_populate(mm, &_pmd, pgtable);
  1890. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1891. pte_t entry, *pte;
  1892. /*
  1893. * Note that NUMA hinting access restrictions are not
  1894. * transferred to avoid any possibility of altering
  1895. * permissions across VMAs.
  1896. */
  1897. if (freeze || pmd_migration) {
  1898. swp_entry_t swp_entry;
  1899. if (write)
  1900. swp_entry = make_writable_migration_entry(
  1901. page_to_pfn(page + i));
  1902. else if (anon_exclusive)
  1903. swp_entry = make_readable_exclusive_migration_entry(
  1904. page_to_pfn(page + i));
  1905. else
  1906. swp_entry = make_readable_migration_entry(
  1907. page_to_pfn(page + i));
  1908. if (young)
  1909. swp_entry = make_migration_entry_young(swp_entry);
  1910. if (dirty)
  1911. swp_entry = make_migration_entry_dirty(swp_entry);
  1912. entry = swp_entry_to_pte(swp_entry);
  1913. if (soft_dirty)
  1914. entry = pte_swp_mksoft_dirty(entry);
  1915. if (uffd_wp)
  1916. entry = pte_swp_mkuffd_wp(entry);
  1917. } else {
  1918. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1919. entry = maybe_mkwrite(entry, vma);
  1920. if (anon_exclusive)
  1921. SetPageAnonExclusive(page + i);
  1922. if (!write)
  1923. entry = pte_wrprotect(entry);
  1924. if (!young)
  1925. entry = pte_mkold(entry);
  1926. /*
  1927. * NOTE: we don't do pte_mkdirty when dirty==true
  1928. * because it breaks sparc64 which can sigsegv
  1929. * random process. Need to revisit when we figure
  1930. * out what is special with sparc64.
  1931. */
  1932. if (soft_dirty)
  1933. entry = pte_mksoft_dirty(entry);
  1934. if (uffd_wp)
  1935. entry = pte_mkuffd_wp(entry);
  1936. }
  1937. pte = pte_offset_map(&_pmd, addr);
  1938. BUG_ON(!pte_none(*pte));
  1939. set_pte_at(mm, addr, pte, entry);
  1940. if (!pmd_migration)
  1941. atomic_inc(&page[i]._mapcount);
  1942. pte_unmap(pte);
  1943. }
  1944. if (!pmd_migration) {
  1945. /*
  1946. * Set PG_double_map before dropping compound_mapcount to avoid
  1947. * false-negative page_mapped().
  1948. */
  1949. if (compound_mapcount(page) > 1 &&
  1950. !TestSetPageDoubleMap(page)) {
  1951. for (i = 0; i < HPAGE_PMD_NR; i++)
  1952. atomic_inc(&page[i]._mapcount);
  1953. }
  1954. lock_page_memcg(page);
  1955. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1956. /* Last compound_mapcount is gone. */
  1957. __mod_lruvec_page_state(page, NR_ANON_THPS,
  1958. -HPAGE_PMD_NR);
  1959. if (TestClearPageDoubleMap(page)) {
  1960. /* No need in mapcount reference anymore */
  1961. for (i = 0; i < HPAGE_PMD_NR; i++)
  1962. atomic_dec(&page[i]._mapcount);
  1963. }
  1964. }
  1965. unlock_page_memcg(page);
  1966. /* Above is effectively page_remove_rmap(page, vma, true) */
  1967. munlock_vma_page(page, vma, true);
  1968. }
  1969. smp_wmb(); /* make pte visible before pmd */
  1970. pmd_populate(mm, pmd, pgtable);
  1971. if (freeze) {
  1972. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1973. page_remove_rmap(page + i, vma, false);
  1974. put_page(page + i);
  1975. }
  1976. }
  1977. }
  1978. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1979. unsigned long address, bool freeze, struct folio *folio)
  1980. {
  1981. spinlock_t *ptl;
  1982. struct mmu_notifier_range range;
  1983. mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
  1984. address & HPAGE_PMD_MASK,
  1985. (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
  1986. mmu_notifier_invalidate_range_start(&range);
  1987. ptl = pmd_lock(vma->vm_mm, pmd);
  1988. /*
  1989. * If caller asks to setup a migration entry, we need a folio to check
  1990. * pmd against. Otherwise we can end up replacing wrong folio.
  1991. */
  1992. VM_BUG_ON(freeze && !folio);
  1993. VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
  1994. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
  1995. is_pmd_migration_entry(*pmd)) {
  1996. /*
  1997. * It's safe to call pmd_page when folio is set because it's
  1998. * guaranteed that pmd is present.
  1999. */
  2000. if (folio && folio != page_folio(pmd_page(*pmd)))
  2001. goto out;
  2002. __split_huge_pmd_locked(vma, pmd, range.start, freeze);
  2003. }
  2004. out:
  2005. spin_unlock(ptl);
  2006. /*
  2007. * No need to double call mmu_notifier->invalidate_range() callback.
  2008. * They are 3 cases to consider inside __split_huge_pmd_locked():
  2009. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  2010. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  2011. * fault will trigger a flush_notify before pointing to a new page
  2012. * (it is fine if the secondary mmu keeps pointing to the old zero
  2013. * page in the meantime)
  2014. * 3) Split a huge pmd into pte pointing to the same page. No need
  2015. * to invalidate secondary tlb entry they are all still valid.
  2016. * any further changes to individual pte will notify. So no need
  2017. * to call mmu_notifier->invalidate_range()
  2018. */
  2019. mmu_notifier_invalidate_range_only_end(&range);
  2020. }
  2021. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2022. bool freeze, struct folio *folio)
  2023. {
  2024. pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
  2025. if (!pmd)
  2026. return;
  2027. __split_huge_pmd(vma, pmd, address, freeze, folio);
  2028. }
  2029. static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
  2030. {
  2031. /*
  2032. * If the new address isn't hpage aligned and it could previously
  2033. * contain an hugepage: check if we need to split an huge pmd.
  2034. */
  2035. if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
  2036. range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
  2037. ALIGN(address, HPAGE_PMD_SIZE)))
  2038. split_huge_pmd_address(vma, address, false, NULL);
  2039. }
  2040. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2041. unsigned long start,
  2042. unsigned long end,
  2043. long adjust_next)
  2044. {
  2045. /* Check if we need to split start first. */
  2046. split_huge_pmd_if_needed(vma, start);
  2047. /* Check if we need to split end next. */
  2048. split_huge_pmd_if_needed(vma, end);
  2049. /*
  2050. * If we're also updating the next vma vm_start,
  2051. * check if we need to split it.
  2052. */
  2053. if (adjust_next > 0) {
  2054. struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
  2055. unsigned long nstart = next->vm_start;
  2056. nstart += adjust_next;
  2057. split_huge_pmd_if_needed(next, nstart);
  2058. }
  2059. }
  2060. static void unmap_folio(struct folio *folio)
  2061. {
  2062. enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
  2063. TTU_SYNC;
  2064. VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
  2065. /*
  2066. * Anon pages need migration entries to preserve them, but file
  2067. * pages can simply be left unmapped, then faulted back on demand.
  2068. * If that is ever changed (perhaps for mlock), update remap_page().
  2069. */
  2070. if (folio_test_anon(folio))
  2071. try_to_migrate(folio, ttu_flags);
  2072. else
  2073. try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
  2074. }
  2075. static void remap_page(struct folio *folio, unsigned long nr)
  2076. {
  2077. int i = 0;
  2078. /* If unmap_folio() uses try_to_migrate() on file, remove this check */
  2079. if (!folio_test_anon(folio))
  2080. return;
  2081. for (;;) {
  2082. remove_migration_ptes(folio, folio, true);
  2083. i += folio_nr_pages(folio);
  2084. if (i >= nr)
  2085. break;
  2086. folio = folio_next(folio);
  2087. }
  2088. }
  2089. static void lru_add_page_tail(struct page *head, struct page *tail,
  2090. struct lruvec *lruvec, struct list_head *list)
  2091. {
  2092. VM_BUG_ON_PAGE(!PageHead(head), head);
  2093. VM_BUG_ON_PAGE(PageCompound(tail), head);
  2094. VM_BUG_ON_PAGE(PageLRU(tail), head);
  2095. lockdep_assert_held(&lruvec->lru_lock);
  2096. if (list) {
  2097. /* page reclaim is reclaiming a huge page */
  2098. VM_WARN_ON(PageLRU(head));
  2099. get_page(tail);
  2100. list_add_tail(&tail->lru, list);
  2101. } else {
  2102. /* head is still on lru (and we have it frozen) */
  2103. VM_WARN_ON(!PageLRU(head));
  2104. if (PageUnevictable(tail))
  2105. tail->mlock_count = 0;
  2106. else
  2107. list_add_tail(&tail->lru, &head->lru);
  2108. SetPageLRU(tail);
  2109. }
  2110. }
  2111. static void __split_huge_page_tail(struct page *head, int tail,
  2112. struct lruvec *lruvec, struct list_head *list)
  2113. {
  2114. struct page *page_tail = head + tail;
  2115. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2116. /*
  2117. * Clone page flags before unfreezing refcount.
  2118. *
  2119. * After successful get_page_unless_zero() might follow flags change,
  2120. * for example lock_page() which set PG_waiters.
  2121. *
  2122. * Note that for mapped sub-pages of an anonymous THP,
  2123. * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
  2124. * the migration entry instead from where remap_page() will restore it.
  2125. * We can still have PG_anon_exclusive set on effectively unmapped and
  2126. * unreferenced sub-pages of an anonymous THP: we can simply drop
  2127. * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
  2128. */
  2129. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2130. page_tail->flags |= (head->flags &
  2131. ((1L << PG_referenced) |
  2132. (1L << PG_swapbacked) |
  2133. (1L << PG_swapcache) |
  2134. (1L << PG_mlocked) |
  2135. (1L << PG_uptodate) |
  2136. (1L << PG_active) |
  2137. (1L << PG_workingset) |
  2138. (1L << PG_locked) |
  2139. (1L << PG_unevictable) |
  2140. #ifdef CONFIG_64BIT
  2141. (1L << PG_arch_2) |
  2142. #endif
  2143. (1L << PG_dirty) |
  2144. LRU_GEN_MASK | LRU_REFS_MASK));
  2145. /* ->mapping in first tail page is compound_mapcount */
  2146. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2147. page_tail);
  2148. page_tail->mapping = head->mapping;
  2149. page_tail->index = head->index + tail;
  2150. /*
  2151. * page->private should not be set in tail pages with the exception
  2152. * of swap cache pages that store the swp_entry_t in tail pages.
  2153. * Fix up and warn once if private is unexpectedly set.
  2154. */
  2155. if (!folio_test_swapcache(page_folio(head))) {
  2156. VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
  2157. page_tail->private = 0;
  2158. }
  2159. /* Page flags must be visible before we make the page non-compound. */
  2160. smp_wmb();
  2161. /*
  2162. * Clear PageTail before unfreezing page refcount.
  2163. *
  2164. * After successful get_page_unless_zero() might follow put_page()
  2165. * which needs correct compound_head().
  2166. */
  2167. clear_compound_head(page_tail);
  2168. /* Finally unfreeze refcount. Additional reference from page cache. */
  2169. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2170. PageSwapCache(head)));
  2171. if (page_is_young(head))
  2172. set_page_young(page_tail);
  2173. if (page_is_idle(head))
  2174. set_page_idle(page_tail);
  2175. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2176. /*
  2177. * always add to the tail because some iterators expect new
  2178. * pages to show after the currently processed elements - e.g.
  2179. * migrate_pages
  2180. */
  2181. lru_add_page_tail(head, page_tail, lruvec, list);
  2182. }
  2183. static void __split_huge_page(struct page *page, struct list_head *list,
  2184. pgoff_t end)
  2185. {
  2186. struct folio *folio = page_folio(page);
  2187. struct page *head = &folio->page;
  2188. struct lruvec *lruvec;
  2189. struct address_space *swap_cache = NULL;
  2190. unsigned long offset = 0;
  2191. unsigned int nr = thp_nr_pages(head);
  2192. int i;
  2193. /* complete memcg works before add pages to LRU */
  2194. split_page_memcg(head, nr);
  2195. if (PageAnon(head) && PageSwapCache(head)) {
  2196. swp_entry_t entry = { .val = page_private(head) };
  2197. offset = swp_offset(entry);
  2198. swap_cache = swap_address_space(entry);
  2199. xa_lock(&swap_cache->i_pages);
  2200. }
  2201. /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
  2202. lruvec = folio_lruvec_lock(folio);
  2203. ClearPageHasHWPoisoned(head);
  2204. for (i = nr - 1; i >= 1; i--) {
  2205. __split_huge_page_tail(head, i, lruvec, list);
  2206. /* Some pages can be beyond EOF: drop them from page cache */
  2207. if (head[i].index >= end) {
  2208. struct folio *tail = page_folio(head + i);
  2209. if (shmem_mapping(head->mapping))
  2210. shmem_uncharge(head->mapping->host, 1);
  2211. else if (folio_test_clear_dirty(tail))
  2212. folio_account_cleaned(tail,
  2213. inode_to_wb(folio->mapping->host));
  2214. __filemap_remove_folio(tail, NULL);
  2215. folio_put(tail);
  2216. } else if (!PageAnon(page)) {
  2217. __xa_store(&head->mapping->i_pages, head[i].index,
  2218. head + i, 0);
  2219. } else if (swap_cache) {
  2220. __xa_store(&swap_cache->i_pages, offset + i,
  2221. head + i, 0);
  2222. }
  2223. }
  2224. ClearPageCompound(head);
  2225. unlock_page_lruvec(lruvec);
  2226. /* Caller disabled irqs, so they are still disabled here */
  2227. split_page_owner(head, nr);
  2228. /* See comment in __split_huge_page_tail() */
  2229. if (PageAnon(head)) {
  2230. /* Additional pin to swap cache */
  2231. if (PageSwapCache(head)) {
  2232. page_ref_add(head, 2);
  2233. xa_unlock(&swap_cache->i_pages);
  2234. } else {
  2235. page_ref_inc(head);
  2236. }
  2237. } else {
  2238. /* Additional pin to page cache */
  2239. page_ref_add(head, 2);
  2240. xa_unlock(&head->mapping->i_pages);
  2241. }
  2242. local_irq_enable();
  2243. remap_page(folio, nr);
  2244. if (PageSwapCache(head)) {
  2245. swp_entry_t entry = { .val = page_private(head) };
  2246. split_swap_cluster(entry);
  2247. }
  2248. for (i = 0; i < nr; i++) {
  2249. struct page *subpage = head + i;
  2250. if (subpage == page)
  2251. continue;
  2252. unlock_page(subpage);
  2253. /*
  2254. * Subpages may be freed if there wasn't any mapping
  2255. * like if add_to_swap() is running on a lru page that
  2256. * had its mapping zapped. And freeing these pages
  2257. * requires taking the lru_lock so we do the put_page
  2258. * of the tail pages after the split is complete.
  2259. */
  2260. free_page_and_swap_cache(subpage);
  2261. }
  2262. }
  2263. /* Racy check whether the huge page can be split */
  2264. bool can_split_folio(struct folio *folio, int *pextra_pins)
  2265. {
  2266. int extra_pins;
  2267. /* Additional pins from page cache */
  2268. if (folio_test_anon(folio))
  2269. extra_pins = folio_test_swapcache(folio) ?
  2270. folio_nr_pages(folio) : 0;
  2271. else
  2272. extra_pins = folio_nr_pages(folio);
  2273. if (pextra_pins)
  2274. *pextra_pins = extra_pins;
  2275. return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
  2276. }
  2277. /*
  2278. * This function splits huge page into normal pages. @page can point to any
  2279. * subpage of huge page to split. Split doesn't change the position of @page.
  2280. *
  2281. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2282. * The huge page must be locked.
  2283. *
  2284. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2285. *
  2286. * Both head page and tail pages will inherit mapping, flags, and so on from
  2287. * the hugepage.
  2288. *
  2289. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2290. * they are not mapped.
  2291. *
  2292. * Returns 0 if the hugepage is split successfully.
  2293. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2294. * us.
  2295. */
  2296. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2297. {
  2298. struct folio *folio = page_folio(page);
  2299. struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
  2300. XA_STATE(xas, &folio->mapping->i_pages, folio->index);
  2301. struct anon_vma *anon_vma = NULL;
  2302. struct address_space *mapping = NULL;
  2303. int extra_pins, ret;
  2304. pgoff_t end;
  2305. bool is_hzp;
  2306. VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
  2307. VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
  2308. is_hzp = is_huge_zero_page(&folio->page);
  2309. if (is_hzp) {
  2310. pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
  2311. return -EBUSY;
  2312. }
  2313. if (folio_test_writeback(folio))
  2314. return -EBUSY;
  2315. if (folio_test_anon(folio)) {
  2316. /*
  2317. * The caller does not necessarily hold an mmap_lock that would
  2318. * prevent the anon_vma disappearing so we first we take a
  2319. * reference to it and then lock the anon_vma for write. This
  2320. * is similar to folio_lock_anon_vma_read except the write lock
  2321. * is taken to serialise against parallel split or collapse
  2322. * operations.
  2323. */
  2324. anon_vma = folio_get_anon_vma(folio);
  2325. if (!anon_vma) {
  2326. ret = -EBUSY;
  2327. goto out;
  2328. }
  2329. end = -1;
  2330. mapping = NULL;
  2331. anon_vma_lock_write(anon_vma);
  2332. } else {
  2333. gfp_t gfp;
  2334. mapping = folio->mapping;
  2335. /* Truncated ? */
  2336. if (!mapping) {
  2337. ret = -EBUSY;
  2338. goto out;
  2339. }
  2340. gfp = current_gfp_context(mapping_gfp_mask(mapping) &
  2341. GFP_RECLAIM_MASK);
  2342. if (folio_test_private(folio) &&
  2343. !filemap_release_folio(folio, gfp)) {
  2344. ret = -EBUSY;
  2345. goto out;
  2346. }
  2347. xas_split_alloc(&xas, folio, folio_order(folio), gfp);
  2348. if (xas_error(&xas)) {
  2349. ret = xas_error(&xas);
  2350. goto out;
  2351. }
  2352. anon_vma = NULL;
  2353. i_mmap_lock_read(mapping);
  2354. /*
  2355. *__split_huge_page() may need to trim off pages beyond EOF:
  2356. * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
  2357. * which cannot be nested inside the page tree lock. So note
  2358. * end now: i_size itself may be changed at any moment, but
  2359. * folio lock is good enough to serialize the trimming.
  2360. */
  2361. end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
  2362. if (shmem_mapping(mapping))
  2363. end = shmem_fallocend(mapping->host, end);
  2364. }
  2365. /*
  2366. * Racy check if we can split the page, before unmap_folio() will
  2367. * split PMDs
  2368. */
  2369. if (!can_split_folio(folio, &extra_pins)) {
  2370. ret = -EBUSY;
  2371. goto out_unlock;
  2372. }
  2373. unmap_folio(folio);
  2374. /* block interrupt reentry in xa_lock and spinlock */
  2375. local_irq_disable();
  2376. if (mapping) {
  2377. /*
  2378. * Check if the folio is present in page cache.
  2379. * We assume all tail are present too, if folio is there.
  2380. */
  2381. xas_lock(&xas);
  2382. xas_reset(&xas);
  2383. if (xas_load(&xas) != folio)
  2384. goto fail;
  2385. }
  2386. /* Prevent deferred_split_scan() touching ->_refcount */
  2387. spin_lock(&ds_queue->split_queue_lock);
  2388. if (folio_ref_freeze(folio, 1 + extra_pins)) {
  2389. if (!list_empty(page_deferred_list(&folio->page))) {
  2390. ds_queue->split_queue_len--;
  2391. list_del(page_deferred_list(&folio->page));
  2392. }
  2393. spin_unlock(&ds_queue->split_queue_lock);
  2394. if (mapping) {
  2395. int nr = folio_nr_pages(folio);
  2396. xas_split(&xas, folio, folio_order(folio));
  2397. if (folio_test_pmd_mappable(folio)) {
  2398. if (folio_test_swapbacked(folio)) {
  2399. __lruvec_stat_mod_folio(folio,
  2400. NR_SHMEM_THPS, -nr);
  2401. } else {
  2402. __lruvec_stat_mod_folio(folio,
  2403. NR_FILE_THPS, -nr);
  2404. filemap_nr_thps_dec(mapping);
  2405. }
  2406. }
  2407. }
  2408. __split_huge_page(page, list, end);
  2409. ret = 0;
  2410. } else {
  2411. spin_unlock(&ds_queue->split_queue_lock);
  2412. fail:
  2413. if (mapping)
  2414. xas_unlock(&xas);
  2415. local_irq_enable();
  2416. remap_page(folio, folio_nr_pages(folio));
  2417. ret = -EBUSY;
  2418. }
  2419. out_unlock:
  2420. if (anon_vma) {
  2421. anon_vma_unlock_write(anon_vma);
  2422. put_anon_vma(anon_vma);
  2423. }
  2424. if (mapping)
  2425. i_mmap_unlock_read(mapping);
  2426. out:
  2427. xas_destroy(&xas);
  2428. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2429. return ret;
  2430. }
  2431. void free_transhuge_page(struct page *page)
  2432. {
  2433. struct deferred_split *ds_queue = get_deferred_split_queue(page);
  2434. unsigned long flags;
  2435. spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
  2436. if (!list_empty(page_deferred_list(page))) {
  2437. ds_queue->split_queue_len--;
  2438. list_del(page_deferred_list(page));
  2439. }
  2440. spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
  2441. free_compound_page(page);
  2442. }
  2443. void deferred_split_huge_page(struct page *page)
  2444. {
  2445. struct deferred_split *ds_queue = get_deferred_split_queue(page);
  2446. #ifdef CONFIG_MEMCG
  2447. struct mem_cgroup *memcg = page_memcg(compound_head(page));
  2448. #endif
  2449. unsigned long flags;
  2450. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2451. /*
  2452. * The try_to_unmap() in page reclaim path might reach here too,
  2453. * this may cause a race condition to corrupt deferred split queue.
  2454. * And, if page reclaim is already handling the same page, it is
  2455. * unnecessary to handle it again in shrinker.
  2456. *
  2457. * Check PageSwapCache to determine if the page is being
  2458. * handled by page reclaim since THP swap would add the page into
  2459. * swap cache before calling try_to_unmap().
  2460. */
  2461. if (PageSwapCache(page))
  2462. return;
  2463. if (!list_empty(page_deferred_list(page)))
  2464. return;
  2465. spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
  2466. if (list_empty(page_deferred_list(page))) {
  2467. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2468. list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
  2469. ds_queue->split_queue_len++;
  2470. #ifdef CONFIG_MEMCG
  2471. if (memcg)
  2472. set_shrinker_bit(memcg, page_to_nid(page),
  2473. deferred_split_shrinker.id);
  2474. #endif
  2475. }
  2476. spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
  2477. }
  2478. static unsigned long deferred_split_count(struct shrinker *shrink,
  2479. struct shrink_control *sc)
  2480. {
  2481. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2482. struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
  2483. #ifdef CONFIG_MEMCG
  2484. if (sc->memcg)
  2485. ds_queue = &sc->memcg->deferred_split_queue;
  2486. #endif
  2487. return READ_ONCE(ds_queue->split_queue_len);
  2488. }
  2489. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2490. struct shrink_control *sc)
  2491. {
  2492. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2493. struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
  2494. unsigned long flags;
  2495. LIST_HEAD(list), *pos, *next;
  2496. struct page *page;
  2497. int split = 0;
  2498. #ifdef CONFIG_MEMCG
  2499. if (sc->memcg)
  2500. ds_queue = &sc->memcg->deferred_split_queue;
  2501. #endif
  2502. spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
  2503. /* Take pin on all head pages to avoid freeing them under us */
  2504. list_for_each_safe(pos, next, &ds_queue->split_queue) {
  2505. page = list_entry((void *)pos, struct page, deferred_list);
  2506. page = compound_head(page);
  2507. if (get_page_unless_zero(page)) {
  2508. list_move(page_deferred_list(page), &list);
  2509. } else {
  2510. /* We lost race with put_compound_page() */
  2511. list_del_init(page_deferred_list(page));
  2512. ds_queue->split_queue_len--;
  2513. }
  2514. if (!--sc->nr_to_scan)
  2515. break;
  2516. }
  2517. spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
  2518. list_for_each_safe(pos, next, &list) {
  2519. page = list_entry((void *)pos, struct page, deferred_list);
  2520. if (!trylock_page(page))
  2521. goto next;
  2522. /* split_huge_page() removes page from list on success */
  2523. if (!split_huge_page(page))
  2524. split++;
  2525. unlock_page(page);
  2526. next:
  2527. put_page(page);
  2528. }
  2529. spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
  2530. list_splice_tail(&list, &ds_queue->split_queue);
  2531. spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
  2532. /*
  2533. * Stop shrinker if we didn't split any page, but the queue is empty.
  2534. * This can happen if pages were freed under us.
  2535. */
  2536. if (!split && list_empty(&ds_queue->split_queue))
  2537. return SHRINK_STOP;
  2538. return split;
  2539. }
  2540. static struct shrinker deferred_split_shrinker = {
  2541. .count_objects = deferred_split_count,
  2542. .scan_objects = deferred_split_scan,
  2543. .seeks = DEFAULT_SEEKS,
  2544. .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
  2545. SHRINKER_NONSLAB,
  2546. };
  2547. #ifdef CONFIG_DEBUG_FS
  2548. static void split_huge_pages_all(void)
  2549. {
  2550. struct zone *zone;
  2551. struct page *page;
  2552. unsigned long pfn, max_zone_pfn;
  2553. unsigned long total = 0, split = 0;
  2554. pr_debug("Split all THPs\n");
  2555. for_each_zone(zone) {
  2556. if (!managed_zone(zone))
  2557. continue;
  2558. max_zone_pfn = zone_end_pfn(zone);
  2559. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2560. int nr_pages;
  2561. page = pfn_to_online_page(pfn);
  2562. if (!page || !get_page_unless_zero(page))
  2563. continue;
  2564. if (zone != page_zone(page))
  2565. goto next;
  2566. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2567. goto next;
  2568. total++;
  2569. lock_page(page);
  2570. nr_pages = thp_nr_pages(page);
  2571. if (!split_huge_page(page))
  2572. split++;
  2573. pfn += nr_pages - 1;
  2574. unlock_page(page);
  2575. next:
  2576. put_page(page);
  2577. cond_resched();
  2578. }
  2579. }
  2580. pr_debug("%lu of %lu THP split\n", split, total);
  2581. }
  2582. static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
  2583. {
  2584. return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
  2585. is_vm_hugetlb_page(vma);
  2586. }
  2587. static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
  2588. unsigned long vaddr_end)
  2589. {
  2590. int ret = 0;
  2591. struct task_struct *task;
  2592. struct mm_struct *mm;
  2593. unsigned long total = 0, split = 0;
  2594. unsigned long addr;
  2595. vaddr_start &= PAGE_MASK;
  2596. vaddr_end &= PAGE_MASK;
  2597. /* Find the task_struct from pid */
  2598. rcu_read_lock();
  2599. task = find_task_by_vpid(pid);
  2600. if (!task) {
  2601. rcu_read_unlock();
  2602. ret = -ESRCH;
  2603. goto out;
  2604. }
  2605. get_task_struct(task);
  2606. rcu_read_unlock();
  2607. /* Find the mm_struct */
  2608. mm = get_task_mm(task);
  2609. put_task_struct(task);
  2610. if (!mm) {
  2611. ret = -EINVAL;
  2612. goto out;
  2613. }
  2614. pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
  2615. pid, vaddr_start, vaddr_end);
  2616. mmap_read_lock(mm);
  2617. /*
  2618. * always increase addr by PAGE_SIZE, since we could have a PTE page
  2619. * table filled with PTE-mapped THPs, each of which is distinct.
  2620. */
  2621. for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
  2622. struct vm_area_struct *vma = vma_lookup(mm, addr);
  2623. struct page *page;
  2624. if (!vma)
  2625. break;
  2626. /* skip special VMA and hugetlb VMA */
  2627. if (vma_not_suitable_for_thp_split(vma)) {
  2628. addr = vma->vm_end;
  2629. continue;
  2630. }
  2631. /* FOLL_DUMP to ignore special (like zero) pages */
  2632. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  2633. if (IS_ERR_OR_NULL(page))
  2634. continue;
  2635. if (!is_transparent_hugepage(page))
  2636. goto next;
  2637. total++;
  2638. if (!can_split_folio(page_folio(page), NULL))
  2639. goto next;
  2640. if (!trylock_page(page))
  2641. goto next;
  2642. if (!split_huge_page(page))
  2643. split++;
  2644. unlock_page(page);
  2645. next:
  2646. put_page(page);
  2647. cond_resched();
  2648. }
  2649. mmap_read_unlock(mm);
  2650. mmput(mm);
  2651. pr_debug("%lu of %lu THP split\n", split, total);
  2652. out:
  2653. return ret;
  2654. }
  2655. static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
  2656. pgoff_t off_end)
  2657. {
  2658. struct filename *file;
  2659. struct file *candidate;
  2660. struct address_space *mapping;
  2661. int ret = -EINVAL;
  2662. pgoff_t index;
  2663. int nr_pages = 1;
  2664. unsigned long total = 0, split = 0;
  2665. file = getname_kernel(file_path);
  2666. if (IS_ERR(file))
  2667. return ret;
  2668. candidate = file_open_name(file, O_RDONLY, 0);
  2669. if (IS_ERR(candidate))
  2670. goto out;
  2671. pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
  2672. file_path, off_start, off_end);
  2673. mapping = candidate->f_mapping;
  2674. for (index = off_start; index < off_end; index += nr_pages) {
  2675. struct page *fpage = pagecache_get_page(mapping, index,
  2676. FGP_ENTRY | FGP_HEAD, 0);
  2677. nr_pages = 1;
  2678. if (xa_is_value(fpage) || !fpage)
  2679. continue;
  2680. if (!is_transparent_hugepage(fpage))
  2681. goto next;
  2682. total++;
  2683. nr_pages = thp_nr_pages(fpage);
  2684. if (!trylock_page(fpage))
  2685. goto next;
  2686. if (!split_huge_page(fpage))
  2687. split++;
  2688. unlock_page(fpage);
  2689. next:
  2690. put_page(fpage);
  2691. cond_resched();
  2692. }
  2693. filp_close(candidate, NULL);
  2694. ret = 0;
  2695. pr_debug("%lu of %lu file-backed THP split\n", split, total);
  2696. out:
  2697. putname(file);
  2698. return ret;
  2699. }
  2700. #define MAX_INPUT_BUF_SZ 255
  2701. static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
  2702. size_t count, loff_t *ppops)
  2703. {
  2704. static DEFINE_MUTEX(split_debug_mutex);
  2705. ssize_t ret;
  2706. /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
  2707. char input_buf[MAX_INPUT_BUF_SZ];
  2708. int pid;
  2709. unsigned long vaddr_start, vaddr_end;
  2710. ret = mutex_lock_interruptible(&split_debug_mutex);
  2711. if (ret)
  2712. return ret;
  2713. ret = -EFAULT;
  2714. memset(input_buf, 0, MAX_INPUT_BUF_SZ);
  2715. if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
  2716. goto out;
  2717. input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
  2718. if (input_buf[0] == '/') {
  2719. char *tok;
  2720. char *buf = input_buf;
  2721. char file_path[MAX_INPUT_BUF_SZ];
  2722. pgoff_t off_start = 0, off_end = 0;
  2723. size_t input_len = strlen(input_buf);
  2724. tok = strsep(&buf, ",");
  2725. if (tok) {
  2726. strcpy(file_path, tok);
  2727. } else {
  2728. ret = -EINVAL;
  2729. goto out;
  2730. }
  2731. ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
  2732. if (ret != 2) {
  2733. ret = -EINVAL;
  2734. goto out;
  2735. }
  2736. ret = split_huge_pages_in_file(file_path, off_start, off_end);
  2737. if (!ret)
  2738. ret = input_len;
  2739. goto out;
  2740. }
  2741. ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
  2742. if (ret == 1 && pid == 1) {
  2743. split_huge_pages_all();
  2744. ret = strlen(input_buf);
  2745. goto out;
  2746. } else if (ret != 3) {
  2747. ret = -EINVAL;
  2748. goto out;
  2749. }
  2750. ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
  2751. if (!ret)
  2752. ret = strlen(input_buf);
  2753. out:
  2754. mutex_unlock(&split_debug_mutex);
  2755. return ret;
  2756. }
  2757. static const struct file_operations split_huge_pages_fops = {
  2758. .owner = THIS_MODULE,
  2759. .write = split_huge_pages_write,
  2760. .llseek = no_llseek,
  2761. };
  2762. static int __init split_huge_pages_debugfs(void)
  2763. {
  2764. debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2765. &split_huge_pages_fops);
  2766. return 0;
  2767. }
  2768. late_initcall(split_huge_pages_debugfs);
  2769. #endif
  2770. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2771. int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2772. struct page *page)
  2773. {
  2774. struct vm_area_struct *vma = pvmw->vma;
  2775. struct mm_struct *mm = vma->vm_mm;
  2776. unsigned long address = pvmw->address;
  2777. bool anon_exclusive;
  2778. pmd_t pmdval;
  2779. swp_entry_t entry;
  2780. pmd_t pmdswp;
  2781. if (!(pvmw->pmd && !pvmw->pte))
  2782. return 0;
  2783. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2784. pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
  2785. /* See page_try_share_anon_rmap(): invalidate PMD first. */
  2786. anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
  2787. if (anon_exclusive && page_try_share_anon_rmap(page)) {
  2788. set_pmd_at(mm, address, pvmw->pmd, pmdval);
  2789. return -EBUSY;
  2790. }
  2791. if (pmd_dirty(pmdval))
  2792. set_page_dirty(page);
  2793. if (pmd_write(pmdval))
  2794. entry = make_writable_migration_entry(page_to_pfn(page));
  2795. else if (anon_exclusive)
  2796. entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
  2797. else
  2798. entry = make_readable_migration_entry(page_to_pfn(page));
  2799. if (pmd_young(pmdval))
  2800. entry = make_migration_entry_young(entry);
  2801. if (pmd_dirty(pmdval))
  2802. entry = make_migration_entry_dirty(entry);
  2803. pmdswp = swp_entry_to_pmd(entry);
  2804. if (pmd_soft_dirty(pmdval))
  2805. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2806. if (pmd_uffd_wp(pmdval))
  2807. pmdswp = pmd_swp_mkuffd_wp(pmdswp);
  2808. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2809. page_remove_rmap(page, vma, true);
  2810. put_page(page);
  2811. trace_set_migration_pmd(address, pmd_val(pmdswp));
  2812. return 0;
  2813. }
  2814. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2815. {
  2816. struct vm_area_struct *vma = pvmw->vma;
  2817. struct mm_struct *mm = vma->vm_mm;
  2818. unsigned long address = pvmw->address;
  2819. unsigned long haddr = address & HPAGE_PMD_MASK;
  2820. pmd_t pmde;
  2821. swp_entry_t entry;
  2822. if (!(pvmw->pmd && !pvmw->pte))
  2823. return;
  2824. entry = pmd_to_swp_entry(*pvmw->pmd);
  2825. get_page(new);
  2826. pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
  2827. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2828. pmde = pmd_mksoft_dirty(pmde);
  2829. if (pmd_swp_uffd_wp(*pvmw->pmd))
  2830. pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
  2831. if (!is_migration_entry_young(entry))
  2832. pmde = pmd_mkold(pmde);
  2833. /* NOTE: this may contain setting soft-dirty on some archs */
  2834. if (PageDirty(new) && is_migration_entry_dirty(entry))
  2835. pmde = pmd_mkdirty(pmde);
  2836. if (is_writable_migration_entry(entry))
  2837. pmde = maybe_pmd_mkwrite(pmde, vma);
  2838. else
  2839. pmde = pmd_wrprotect(pmde);
  2840. if (PageAnon(new)) {
  2841. rmap_t rmap_flags = RMAP_COMPOUND;
  2842. if (!is_readable_migration_entry(entry))
  2843. rmap_flags |= RMAP_EXCLUSIVE;
  2844. page_add_anon_rmap(new, vma, haddr, rmap_flags);
  2845. } else {
  2846. page_add_file_rmap(new, vma, true);
  2847. }
  2848. VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
  2849. set_pmd_at(mm, haddr, pvmw->pmd, pmde);
  2850. /* No need to invalidate - it was non-present before */
  2851. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2852. trace_remove_migration_pmd(address, pmd_val(pmde));
  2853. }
  2854. #endif