123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * SHA1 routine optimized to do word accesses rather than byte accesses,
- * and to avoid unnecessary copies into the context array.
- *
- * This was based on the git SHA1 implementation.
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/module.h>
- #include <linux/bitops.h>
- #include <linux/string.h>
- #include <crypto/sha1.h>
- #include <asm/unaligned.h>
- /*
- * If you have 32 registers or more, the compiler can (and should)
- * try to change the array[] accesses into registers. However, on
- * machines with less than ~25 registers, that won't really work,
- * and at least gcc will make an unholy mess of it.
- *
- * So to avoid that mess which just slows things down, we force
- * the stores to memory to actually happen (we might be better off
- * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
- * suggested by Artur Skawina - that will also make gcc unable to
- * try to do the silly "optimize away loads" part because it won't
- * see what the value will be).
- *
- * Ben Herrenschmidt reports that on PPC, the C version comes close
- * to the optimized asm with this (ie on PPC you don't want that
- * 'volatile', since there are lots of registers).
- *
- * On ARM we get the best code generation by forcing a full memory barrier
- * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
- * the stack frame size simply explode and performance goes down the drain.
- */
- #ifdef CONFIG_X86
- #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
- #elif defined(CONFIG_ARM)
- #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
- #else
- #define setW(x, val) (W(x) = (val))
- #endif
- /* This "rolls" over the 512-bit array */
- #define W(x) (array[(x)&15])
- /*
- * Where do we get the source from? The first 16 iterations get it from
- * the input data, the next mix it from the 512-bit array.
- */
- #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
- #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
- #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
- __u32 TEMP = input(t); setW(t, TEMP); \
- E += TEMP + rol32(A,5) + (fn) + (constant); \
- B = ror32(B, 2); \
- TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
- #define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
- #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
- #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
- #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
- #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
- /**
- * sha1_transform - single block SHA1 transform (deprecated)
- *
- * @digest: 160 bit digest to update
- * @data: 512 bits of data to hash
- * @array: 16 words of workspace (see note)
- *
- * This function executes SHA-1's internal compression function. It updates the
- * 160-bit internal state (@digest) with a single 512-bit data block (@data).
- *
- * Don't use this function. SHA-1 is no longer considered secure. And even if
- * you do have to use SHA-1, this isn't the correct way to hash something with
- * SHA-1 as this doesn't handle padding and finalization.
- *
- * Note: If the hash is security sensitive, the caller should be sure
- * to clear the workspace. This is left to the caller to avoid
- * unnecessary clears between chained hashing operations.
- */
- void sha1_transform(__u32 *digest, const char *data, __u32 *array)
- {
- __u32 A, B, C, D, E;
- unsigned int i = 0;
- A = digest[0];
- B = digest[1];
- C = digest[2];
- D = digest[3];
- E = digest[4];
- /* Round 1 - iterations 0-16 take their input from 'data' */
- for (; i < 16; ++i)
- T_0_15(i, A, B, C, D, E);
- /* Round 1 - tail. Input from 512-bit mixing array */
- for (; i < 20; ++i)
- T_16_19(i, A, B, C, D, E);
- /* Round 2 */
- for (; i < 40; ++i)
- T_20_39(i, A, B, C, D, E);
- /* Round 3 */
- for (; i < 60; ++i)
- T_40_59(i, A, B, C, D, E);
- /* Round 4 */
- for (; i < 80; ++i)
- T_60_79(i, A, B, C, D, E);
- digest[0] += A;
- digest[1] += B;
- digest[2] += C;
- digest[3] += D;
- digest[4] += E;
- }
- EXPORT_SYMBOL(sha1_transform);
- /**
- * sha1_init - initialize the vectors for a SHA1 digest
- * @buf: vector to initialize
- */
- void sha1_init(__u32 *buf)
- {
- buf[0] = 0x67452301;
- buf[1] = 0xefcdab89;
- buf[2] = 0x98badcfe;
- buf[3] = 0x10325476;
- buf[4] = 0xc3d2e1f0;
- }
- EXPORT_SYMBOL(sha1_init);
- MODULE_LICENSE("GPL");
|