1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Kernel timekeeping code and accessor functions. Based on code from
- * timer.c, moved in commit 8524070b7982.
- */
- #include <linux/timekeeper_internal.h>
- #include <linux/module.h>
- #include <linux/interrupt.h>
- #include <linux/percpu.h>
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/nmi.h>
- #include <linux/sched.h>
- #include <linux/sched/loadavg.h>
- #include <linux/sched/clock.h>
- #include <linux/syscore_ops.h>
- #include <linux/clocksource.h>
- #include <linux/jiffies.h>
- #include <linux/time.h>
- #include <linux/timex.h>
- #include <linux/tick.h>
- #include <linux/stop_machine.h>
- #include <linux/pvclock_gtod.h>
- #include <linux/compiler.h>
- #include <linux/audit.h>
- #include <linux/random.h>
- #include "tick-internal.h"
- #include "ntp_internal.h"
- #include "timekeeping_internal.h"
- #define TK_CLEAR_NTP (1 << 0)
- #define TK_MIRROR (1 << 1)
- #define TK_CLOCK_WAS_SET (1 << 2)
- enum timekeeping_adv_mode {
- /* Update timekeeper when a tick has passed */
- TK_ADV_TICK,
- /* Update timekeeper on a direct frequency change */
- TK_ADV_FREQ
- };
- DEFINE_RAW_SPINLOCK(timekeeper_lock);
- /*
- * The most important data for readout fits into a single 64 byte
- * cache line.
- */
- static struct {
- seqcount_raw_spinlock_t seq;
- struct timekeeper timekeeper;
- } tk_core ____cacheline_aligned = {
- .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
- };
- static struct timekeeper shadow_timekeeper;
- /* flag for if timekeeping is suspended */
- int __read_mostly timekeeping_suspended;
- /**
- * struct tk_fast - NMI safe timekeeper
- * @seq: Sequence counter for protecting updates. The lowest bit
- * is the index for the tk_read_base array
- * @base: tk_read_base array. Access is indexed by the lowest bit of
- * @seq.
- *
- * See @update_fast_timekeeper() below.
- */
- struct tk_fast {
- seqcount_latch_t seq;
- struct tk_read_base base[2];
- };
- /* Suspend-time cycles value for halted fast timekeeper. */
- static u64 cycles_at_suspend;
- static u64 dummy_clock_read(struct clocksource *cs)
- {
- if (timekeeping_suspended)
- return cycles_at_suspend;
- return local_clock();
- }
- static struct clocksource dummy_clock = {
- .read = dummy_clock_read,
- };
- /*
- * Boot time initialization which allows local_clock() to be utilized
- * during early boot when clocksources are not available. local_clock()
- * returns nanoseconds already so no conversion is required, hence mult=1
- * and shift=0. When the first proper clocksource is installed then
- * the fast time keepers are updated with the correct values.
- */
- #define FAST_TK_INIT \
- { \
- .clock = &dummy_clock, \
- .mask = CLOCKSOURCE_MASK(64), \
- .mult = 1, \
- .shift = 0, \
- }
- static struct tk_fast tk_fast_mono ____cacheline_aligned = {
- .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
- .base[0] = FAST_TK_INIT,
- .base[1] = FAST_TK_INIT,
- };
- static struct tk_fast tk_fast_raw ____cacheline_aligned = {
- .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
- .base[0] = FAST_TK_INIT,
- .base[1] = FAST_TK_INIT,
- };
- static inline void tk_normalize_xtime(struct timekeeper *tk)
- {
- while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
- tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
- tk->xtime_sec++;
- }
- while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
- tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
- tk->raw_sec++;
- }
- }
- static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
- {
- struct timespec64 ts;
- ts.tv_sec = tk->xtime_sec;
- ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
- return ts;
- }
- static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
- {
- tk->xtime_sec = ts->tv_sec;
- tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
- }
- static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
- {
- tk->xtime_sec += ts->tv_sec;
- tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
- tk_normalize_xtime(tk);
- }
- static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
- {
- struct timespec64 tmp;
- /*
- * Verify consistency of: offset_real = -wall_to_monotonic
- * before modifying anything
- */
- set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
- -tk->wall_to_monotonic.tv_nsec);
- WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
- tk->wall_to_monotonic = wtm;
- set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
- tk->offs_real = timespec64_to_ktime(tmp);
- tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
- }
- static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
- {
- tk->offs_boot = ktime_add(tk->offs_boot, delta);
- /*
- * Timespec representation for VDSO update to avoid 64bit division
- * on every update.
- */
- tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
- }
- /*
- * tk_clock_read - atomic clocksource read() helper
- *
- * This helper is necessary to use in the read paths because, while the
- * seqcount ensures we don't return a bad value while structures are updated,
- * it doesn't protect from potential crashes. There is the possibility that
- * the tkr's clocksource may change between the read reference, and the
- * clock reference passed to the read function. This can cause crashes if
- * the wrong clocksource is passed to the wrong read function.
- * This isn't necessary to use when holding the timekeeper_lock or doing
- * a read of the fast-timekeeper tkrs (which is protected by its own locking
- * and update logic).
- */
- static inline u64 tk_clock_read(const struct tk_read_base *tkr)
- {
- struct clocksource *clock = READ_ONCE(tkr->clock);
- return clock->read(clock);
- }
- #ifdef CONFIG_DEBUG_TIMEKEEPING
- #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
- static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
- {
- u64 max_cycles = tk->tkr_mono.clock->max_cycles;
- const char *name = tk->tkr_mono.clock->name;
- if (offset > max_cycles) {
- printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
- offset, name, max_cycles);
- printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
- } else {
- if (offset > (max_cycles >> 1)) {
- printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
- offset, name, max_cycles >> 1);
- printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
- }
- }
- if (tk->underflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->underflow_seen = 0;
- }
- if (tk->overflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->overflow_seen = 0;
- }
- }
- static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- u64 now, last, mask, max, delta;
- unsigned int seq;
- /*
- * Since we're called holding a seqcount, the data may shift
- * under us while we're doing the calculation. This can cause
- * false positives, since we'd note a problem but throw the
- * results away. So nest another seqcount here to atomically
- * grab the points we are checking with.
- */
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- now = tk_clock_read(tkr);
- last = tkr->cycle_last;
- mask = tkr->mask;
- max = tkr->clock->max_cycles;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- delta = clocksource_delta(now, last, mask);
- /*
- * Try to catch underflows by checking if we are seeing small
- * mask-relative negative values.
- */
- if (unlikely((~delta & mask) < (mask >> 3))) {
- tk->underflow_seen = 1;
- delta = 0;
- }
- /* Cap delta value to the max_cycles values to avoid mult overflows */
- if (unlikely(delta > max)) {
- tk->overflow_seen = 1;
- delta = tkr->clock->max_cycles;
- }
- return delta;
- }
- #else
- static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
- {
- }
- static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
- {
- u64 cycle_now, delta;
- /* read clocksource */
- cycle_now = tk_clock_read(tkr);
- /* calculate the delta since the last update_wall_time */
- delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
- return delta;
- }
- #endif
- /**
- * tk_setup_internals - Set up internals to use clocksource clock.
- *
- * @tk: The target timekeeper to setup.
- * @clock: Pointer to clocksource.
- *
- * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
- * pair and interval request.
- *
- * Unless you're the timekeeping code, you should not be using this!
- */
- static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
- {
- u64 interval;
- u64 tmp, ntpinterval;
- struct clocksource *old_clock;
- ++tk->cs_was_changed_seq;
- old_clock = tk->tkr_mono.clock;
- tk->tkr_mono.clock = clock;
- tk->tkr_mono.mask = clock->mask;
- tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
- tk->tkr_raw.clock = clock;
- tk->tkr_raw.mask = clock->mask;
- tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
- /* Do the ns -> cycle conversion first, using original mult */
- tmp = NTP_INTERVAL_LENGTH;
- tmp <<= clock->shift;
- ntpinterval = tmp;
- tmp += clock->mult/2;
- do_div(tmp, clock->mult);
- if (tmp == 0)
- tmp = 1;
- interval = (u64) tmp;
- tk->cycle_interval = interval;
- /* Go back from cycles -> shifted ns */
- tk->xtime_interval = interval * clock->mult;
- tk->xtime_remainder = ntpinterval - tk->xtime_interval;
- tk->raw_interval = interval * clock->mult;
- /* if changing clocks, convert xtime_nsec shift units */
- if (old_clock) {
- int shift_change = clock->shift - old_clock->shift;
- if (shift_change < 0) {
- tk->tkr_mono.xtime_nsec >>= -shift_change;
- tk->tkr_raw.xtime_nsec >>= -shift_change;
- } else {
- tk->tkr_mono.xtime_nsec <<= shift_change;
- tk->tkr_raw.xtime_nsec <<= shift_change;
- }
- }
- tk->tkr_mono.shift = clock->shift;
- tk->tkr_raw.shift = clock->shift;
- tk->ntp_error = 0;
- tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
- tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
- /*
- * The timekeeper keeps its own mult values for the currently
- * active clocksource. These value will be adjusted via NTP
- * to counteract clock drifting.
- */
- tk->tkr_mono.mult = clock->mult;
- tk->tkr_raw.mult = clock->mult;
- tk->ntp_err_mult = 0;
- tk->skip_second_overflow = 0;
- }
- /* Timekeeper helper functions. */
- static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
- {
- u64 nsec;
- nsec = delta * tkr->mult + tkr->xtime_nsec;
- nsec >>= tkr->shift;
- return nsec;
- }
- static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
- {
- u64 delta;
- delta = timekeeping_get_delta(tkr);
- return timekeeping_delta_to_ns(tkr, delta);
- }
- static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
- {
- u64 delta;
- /* calculate the delta since the last update_wall_time */
- delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
- return timekeeping_delta_to_ns(tkr, delta);
- }
- /**
- * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
- * @tkr: Timekeeping readout base from which we take the update
- * @tkf: Pointer to NMI safe timekeeper
- *
- * We want to use this from any context including NMI and tracing /
- * instrumenting the timekeeping code itself.
- *
- * Employ the latch technique; see @raw_write_seqcount_latch.
- *
- * So if a NMI hits the update of base[0] then it will use base[1]
- * which is still consistent. In the worst case this can result is a
- * slightly wrong timestamp (a few nanoseconds). See
- * @ktime_get_mono_fast_ns.
- */
- static void update_fast_timekeeper(const struct tk_read_base *tkr,
- struct tk_fast *tkf)
- {
- struct tk_read_base *base = tkf->base;
- /* Force readers off to base[1] */
- raw_write_seqcount_latch(&tkf->seq);
- /* Update base[0] */
- memcpy(base, tkr, sizeof(*base));
- /* Force readers back to base[0] */
- raw_write_seqcount_latch(&tkf->seq);
- /* Update base[1] */
- memcpy(base + 1, base, sizeof(*base));
- }
- static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
- {
- u64 delta, cycles = tk_clock_read(tkr);
- delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
- return timekeeping_delta_to_ns(tkr, delta);
- }
- static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
- {
- struct tk_read_base *tkr;
- unsigned int seq;
- u64 now;
- do {
- seq = raw_read_seqcount_latch(&tkf->seq);
- tkr = tkf->base + (seq & 0x01);
- now = ktime_to_ns(tkr->base);
- now += fast_tk_get_delta_ns(tkr);
- } while (read_seqcount_latch_retry(&tkf->seq, seq));
- return now;
- }
- /**
- * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
- *
- * This timestamp is not guaranteed to be monotonic across an update.
- * The timestamp is calculated by:
- *
- * now = base_mono + clock_delta * slope
- *
- * So if the update lowers the slope, readers who are forced to the
- * not yet updated second array are still using the old steeper slope.
- *
- * tmono
- * ^
- * | o n
- * | o n
- * | u
- * | o
- * |o
- * |12345678---> reader order
- *
- * o = old slope
- * u = update
- * n = new slope
- *
- * So reader 6 will observe time going backwards versus reader 5.
- *
- * While other CPUs are likely to be able to observe that, the only way
- * for a CPU local observation is when an NMI hits in the middle of
- * the update. Timestamps taken from that NMI context might be ahead
- * of the following timestamps. Callers need to be aware of that and
- * deal with it.
- */
- u64 notrace ktime_get_mono_fast_ns(void)
- {
- return __ktime_get_fast_ns(&tk_fast_mono);
- }
- EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
- /**
- * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
- *
- * Contrary to ktime_get_mono_fast_ns() this is always correct because the
- * conversion factor is not affected by NTP/PTP correction.
- */
- u64 notrace ktime_get_raw_fast_ns(void)
- {
- return __ktime_get_fast_ns(&tk_fast_raw);
- }
- EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
- /**
- * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
- *
- * To keep it NMI safe since we're accessing from tracing, we're not using a
- * separate timekeeper with updates to monotonic clock and boot offset
- * protected with seqcounts. This has the following minor side effects:
- *
- * (1) Its possible that a timestamp be taken after the boot offset is updated
- * but before the timekeeper is updated. If this happens, the new boot offset
- * is added to the old timekeeping making the clock appear to update slightly
- * earlier:
- * CPU 0 CPU 1
- * timekeeping_inject_sleeptime64()
- * __timekeeping_inject_sleeptime(tk, delta);
- * timestamp();
- * timekeeping_update(tk, TK_CLEAR_NTP...);
- *
- * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
- * partially updated. Since the tk->offs_boot update is a rare event, this
- * should be a rare occurrence which postprocessing should be able to handle.
- *
- * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
- * apply as well.
- */
- u64 notrace ktime_get_boot_fast_ns(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
- }
- EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
- /**
- * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
- *
- * The same limitations as described for ktime_get_boot_fast_ns() apply. The
- * mono time and the TAI offset are not read atomically which may yield wrong
- * readouts. However, an update of the TAI offset is an rare event e.g., caused
- * by settime or adjtimex with an offset. The user of this function has to deal
- * with the possibility of wrong timestamps in post processing.
- */
- u64 notrace ktime_get_tai_fast_ns(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
- }
- EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
- static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
- {
- struct tk_read_base *tkr;
- u64 basem, baser, delta;
- unsigned int seq;
- do {
- seq = raw_read_seqcount_latch(&tkf->seq);
- tkr = tkf->base + (seq & 0x01);
- basem = ktime_to_ns(tkr->base);
- baser = ktime_to_ns(tkr->base_real);
- delta = fast_tk_get_delta_ns(tkr);
- } while (read_seqcount_latch_retry(&tkf->seq, seq));
- if (mono)
- *mono = basem + delta;
- return baser + delta;
- }
- /**
- * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
- *
- * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
- */
- u64 ktime_get_real_fast_ns(void)
- {
- return __ktime_get_real_fast(&tk_fast_mono, NULL);
- }
- EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
- /**
- * ktime_get_fast_timestamps: - NMI safe timestamps
- * @snapshot: Pointer to timestamp storage
- *
- * Stores clock monotonic, boottime and realtime timestamps.
- *
- * Boot time is a racy access on 32bit systems if the sleep time injection
- * happens late during resume and not in timekeeping_resume(). That could
- * be avoided by expanding struct tk_read_base with boot offset for 32bit
- * and adding more overhead to the update. As this is a hard to observe
- * once per resume event which can be filtered with reasonable effort using
- * the accurate mono/real timestamps, it's probably not worth the trouble.
- *
- * Aside of that it might be possible on 32 and 64 bit to observe the
- * following when the sleep time injection happens late:
- *
- * CPU 0 CPU 1
- * timekeeping_resume()
- * ktime_get_fast_timestamps()
- * mono, real = __ktime_get_real_fast()
- * inject_sleep_time()
- * update boot offset
- * boot = mono + bootoffset;
- *
- * That means that boot time already has the sleep time adjustment, but
- * real time does not. On the next readout both are in sync again.
- *
- * Preventing this for 64bit is not really feasible without destroying the
- * careful cache layout of the timekeeper because the sequence count and
- * struct tk_read_base would then need two cache lines instead of one.
- *
- * Access to the time keeper clock source is disabled across the innermost
- * steps of suspend/resume. The accessors still work, but the timestamps
- * are frozen until time keeping is resumed which happens very early.
- *
- * For regular suspend/resume there is no observable difference vs. sched
- * clock, but it might affect some of the nasty low level debug printks.
- *
- * OTOH, access to sched clock is not guaranteed across suspend/resume on
- * all systems either so it depends on the hardware in use.
- *
- * If that turns out to be a real problem then this could be mitigated by
- * using sched clock in a similar way as during early boot. But it's not as
- * trivial as on early boot because it needs some careful protection
- * against the clock monotonic timestamp jumping backwards on resume.
- */
- void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
- snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
- }
- /**
- * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
- * @tk: Timekeeper to snapshot.
- *
- * It generally is unsafe to access the clocksource after timekeeping has been
- * suspended, so take a snapshot of the readout base of @tk and use it as the
- * fast timekeeper's readout base while suspended. It will return the same
- * number of cycles every time until timekeeping is resumed at which time the
- * proper readout base for the fast timekeeper will be restored automatically.
- */
- static void halt_fast_timekeeper(const struct timekeeper *tk)
- {
- static struct tk_read_base tkr_dummy;
- const struct tk_read_base *tkr = &tk->tkr_mono;
- memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
- cycles_at_suspend = tk_clock_read(tkr);
- tkr_dummy.clock = &dummy_clock;
- tkr_dummy.base_real = tkr->base + tk->offs_real;
- update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
- tkr = &tk->tkr_raw;
- memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
- tkr_dummy.clock = &dummy_clock;
- update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
- }
- static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
- static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
- {
- raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
- }
- /**
- * pvclock_gtod_register_notifier - register a pvclock timedata update listener
- * @nb: Pointer to the notifier block to register
- */
- int pvclock_gtod_register_notifier(struct notifier_block *nb)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- int ret;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
- update_pvclock_gtod(tk, true);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- return ret;
- }
- EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
- /**
- * pvclock_gtod_unregister_notifier - unregister a pvclock
- * timedata update listener
- * @nb: Pointer to the notifier block to unregister
- */
- int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
- {
- unsigned long flags;
- int ret;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- return ret;
- }
- EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
- /*
- * tk_update_leap_state - helper to update the next_leap_ktime
- */
- static inline void tk_update_leap_state(struct timekeeper *tk)
- {
- tk->next_leap_ktime = ntp_get_next_leap();
- if (tk->next_leap_ktime != KTIME_MAX)
- /* Convert to monotonic time */
- tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
- }
- /*
- * Update the ktime_t based scalar nsec members of the timekeeper
- */
- static inline void tk_update_ktime_data(struct timekeeper *tk)
- {
- u64 seconds;
- u32 nsec;
- /*
- * The xtime based monotonic readout is:
- * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
- * The ktime based monotonic readout is:
- * nsec = base_mono + now();
- * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
- */
- seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
- nsec = (u32) tk->wall_to_monotonic.tv_nsec;
- tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
- /*
- * The sum of the nanoseconds portions of xtime and
- * wall_to_monotonic can be greater/equal one second. Take
- * this into account before updating tk->ktime_sec.
- */
- nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
- if (nsec >= NSEC_PER_SEC)
- seconds++;
- tk->ktime_sec = seconds;
- /* Update the monotonic raw base */
- tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
- }
- /* must hold timekeeper_lock */
- static void timekeeping_update(struct timekeeper *tk, unsigned int action)
- {
- if (action & TK_CLEAR_NTP) {
- tk->ntp_error = 0;
- ntp_clear();
- }
- tk_update_leap_state(tk);
- tk_update_ktime_data(tk);
- update_vsyscall(tk);
- update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
- tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
- update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
- update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
- if (action & TK_CLOCK_WAS_SET)
- tk->clock_was_set_seq++;
- /*
- * The mirroring of the data to the shadow-timekeeper needs
- * to happen last here to ensure we don't over-write the
- * timekeeper structure on the next update with stale data
- */
- if (action & TK_MIRROR)
- memcpy(&shadow_timekeeper, &tk_core.timekeeper,
- sizeof(tk_core.timekeeper));
- }
- /**
- * timekeeping_forward_now - update clock to the current time
- * @tk: Pointer to the timekeeper to update
- *
- * Forward the current clock to update its state since the last call to
- * update_wall_time(). This is useful before significant clock changes,
- * as it avoids having to deal with this time offset explicitly.
- */
- static void timekeeping_forward_now(struct timekeeper *tk)
- {
- u64 cycle_now, delta;
- cycle_now = tk_clock_read(&tk->tkr_mono);
- delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
- tk->tkr_mono.cycle_last = cycle_now;
- tk->tkr_raw.cycle_last = cycle_now;
- tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
- tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
- tk_normalize_xtime(tk);
- }
- /**
- * ktime_get_real_ts64 - Returns the time of day in a timespec64.
- * @ts: pointer to the timespec to be set
- *
- * Returns the time of day in a timespec64 (WARN if suspended).
- */
- void ktime_get_real_ts64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- u64 nsecs;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- ts->tv_sec = tk->xtime_sec;
- nsecs = timekeeping_get_ns(&tk->tkr_mono);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- ts->tv_nsec = 0;
- timespec64_add_ns(ts, nsecs);
- }
- EXPORT_SYMBOL(ktime_get_real_ts64);
- ktime_t ktime_get(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- ktime_t base;
- u64 nsecs;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr_mono.base;
- nsecs = timekeeping_get_ns(&tk->tkr_mono);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ktime_add_ns(base, nsecs);
- }
- EXPORT_SYMBOL_GPL(ktime_get);
- u32 ktime_get_resolution_ns(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- u32 nsecs;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return nsecs;
- }
- EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
- static ktime_t *offsets[TK_OFFS_MAX] = {
- [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
- [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
- [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
- };
- ktime_t ktime_get_with_offset(enum tk_offsets offs)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- ktime_t base, *offset = offsets[offs];
- u64 nsecs;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- base = ktime_add(tk->tkr_mono.base, *offset);
- nsecs = timekeeping_get_ns(&tk->tkr_mono);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ktime_add_ns(base, nsecs);
- }
- EXPORT_SYMBOL_GPL(ktime_get_with_offset);
- ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- ktime_t base, *offset = offsets[offs];
- u64 nsecs;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- base = ktime_add(tk->tkr_mono.base, *offset);
- nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ktime_add_ns(base, nsecs);
- }
- EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
- /**
- * ktime_mono_to_any() - convert monotonic time to any other time
- * @tmono: time to convert.
- * @offs: which offset to use
- */
- ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
- {
- ktime_t *offset = offsets[offs];
- unsigned int seq;
- ktime_t tconv;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- tconv = ktime_add(tmono, *offset);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return tconv;
- }
- EXPORT_SYMBOL_GPL(ktime_mono_to_any);
- /**
- * ktime_get_raw - Returns the raw monotonic time in ktime_t format
- */
- ktime_t ktime_get_raw(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- ktime_t base;
- u64 nsecs;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr_raw.base;
- nsecs = timekeeping_get_ns(&tk->tkr_raw);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ktime_add_ns(base, nsecs);
- }
- EXPORT_SYMBOL_GPL(ktime_get_raw);
- /**
- * ktime_get_ts64 - get the monotonic clock in timespec64 format
- * @ts: pointer to timespec variable
- *
- * The function calculates the monotonic clock from the realtime
- * clock and the wall_to_monotonic offset and stores the result
- * in normalized timespec64 format in the variable pointed to by @ts.
- */
- void ktime_get_ts64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct timespec64 tomono;
- unsigned int seq;
- u64 nsec;
- WARN_ON(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- ts->tv_sec = tk->xtime_sec;
- nsec = timekeeping_get_ns(&tk->tkr_mono);
- tomono = tk->wall_to_monotonic;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- ts->tv_sec += tomono.tv_sec;
- ts->tv_nsec = 0;
- timespec64_add_ns(ts, nsec + tomono.tv_nsec);
- }
- EXPORT_SYMBOL_GPL(ktime_get_ts64);
- /**
- * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
- *
- * Returns the seconds portion of CLOCK_MONOTONIC with a single non
- * serialized read. tk->ktime_sec is of type 'unsigned long' so this
- * works on both 32 and 64 bit systems. On 32 bit systems the readout
- * covers ~136 years of uptime which should be enough to prevent
- * premature wrap arounds.
- */
- time64_t ktime_get_seconds(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- WARN_ON(timekeeping_suspended);
- return tk->ktime_sec;
- }
- EXPORT_SYMBOL_GPL(ktime_get_seconds);
- /**
- * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
- *
- * Returns the wall clock seconds since 1970.
- *
- * For 64bit systems the fast access to tk->xtime_sec is preserved. On
- * 32bit systems the access must be protected with the sequence
- * counter to provide "atomic" access to the 64bit tk->xtime_sec
- * value.
- */
- time64_t ktime_get_real_seconds(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- time64_t seconds;
- unsigned int seq;
- if (IS_ENABLED(CONFIG_64BIT))
- return tk->xtime_sec;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- seconds = tk->xtime_sec;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return seconds;
- }
- EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
- /**
- * __ktime_get_real_seconds - The same as ktime_get_real_seconds
- * but without the sequence counter protect. This internal function
- * is called just when timekeeping lock is already held.
- */
- noinstr time64_t __ktime_get_real_seconds(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- return tk->xtime_sec;
- }
- /**
- * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
- * @systime_snapshot: pointer to struct receiving the system time snapshot
- */
- void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- u32 mono_mult, mono_shift;
- unsigned int seq;
- ktime_t base_raw;
- ktime_t base_real;
- ktime_t base_boot;
- u64 nsec_raw;
- u64 nsec_real;
- u64 now;
- WARN_ON_ONCE(timekeeping_suspended);
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- now = tk_clock_read(&tk->tkr_mono);
- systime_snapshot->cs_id = tk->tkr_mono.clock->id;
- systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
- systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
- base_real = ktime_add(tk->tkr_mono.base,
- tk_core.timekeeper.offs_real);
- base_boot = ktime_add(tk->tkr_mono.base,
- tk_core.timekeeper.offs_boot);
- base_raw = tk->tkr_raw.base;
- nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
- nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
- mono_mult = tk->tkr_mono.mult;
- mono_shift = tk->tkr_mono.shift;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- systime_snapshot->cycles = now;
- systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
- systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
- systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
- systime_snapshot->mono_shift = mono_shift;
- systime_snapshot->mono_mult = mono_mult;
- }
- EXPORT_SYMBOL_GPL(ktime_get_snapshot);
- /* Scale base by mult/div checking for overflow */
- static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
- {
- u64 tmp, rem;
- tmp = div64_u64_rem(*base, div, &rem);
- if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
- ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
- return -EOVERFLOW;
- tmp *= mult;
- rem = div64_u64(rem * mult, div);
- *base = tmp + rem;
- return 0;
- }
- /**
- * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
- * @history: Snapshot representing start of history
- * @partial_history_cycles: Cycle offset into history (fractional part)
- * @total_history_cycles: Total history length in cycles
- * @discontinuity: True indicates clock was set on history period
- * @ts: Cross timestamp that should be adjusted using
- * partial/total ratio
- *
- * Helper function used by get_device_system_crosststamp() to correct the
- * crosstimestamp corresponding to the start of the current interval to the
- * system counter value (timestamp point) provided by the driver. The
- * total_history_* quantities are the total history starting at the provided
- * reference point and ending at the start of the current interval. The cycle
- * count between the driver timestamp point and the start of the current
- * interval is partial_history_cycles.
- */
- static int adjust_historical_crosststamp(struct system_time_snapshot *history,
- u64 partial_history_cycles,
- u64 total_history_cycles,
- bool discontinuity,
- struct system_device_crosststamp *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- u64 corr_raw, corr_real;
- bool interp_forward;
- int ret;
- if (total_history_cycles == 0 || partial_history_cycles == 0)
- return 0;
- /* Interpolate shortest distance from beginning or end of history */
- interp_forward = partial_history_cycles > total_history_cycles / 2;
- partial_history_cycles = interp_forward ?
- total_history_cycles - partial_history_cycles :
- partial_history_cycles;
- /*
- * Scale the monotonic raw time delta by:
- * partial_history_cycles / total_history_cycles
- */
- corr_raw = (u64)ktime_to_ns(
- ktime_sub(ts->sys_monoraw, history->raw));
- ret = scale64_check_overflow(partial_history_cycles,
- total_history_cycles, &corr_raw);
- if (ret)
- return ret;
- /*
- * If there is a discontinuity in the history, scale monotonic raw
- * correction by:
- * mult(real)/mult(raw) yielding the realtime correction
- * Otherwise, calculate the realtime correction similar to monotonic
- * raw calculation
- */
- if (discontinuity) {
- corr_real = mul_u64_u32_div
- (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
- } else {
- corr_real = (u64)ktime_to_ns(
- ktime_sub(ts->sys_realtime, history->real));
- ret = scale64_check_overflow(partial_history_cycles,
- total_history_cycles, &corr_real);
- if (ret)
- return ret;
- }
- /* Fixup monotonic raw and real time time values */
- if (interp_forward) {
- ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
- ts->sys_realtime = ktime_add_ns(history->real, corr_real);
- } else {
- ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
- ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
- }
- return 0;
- }
- /*
- * cycle_between - true if test occurs chronologically between before and after
- */
- static bool cycle_between(u64 before, u64 test, u64 after)
- {
- if (test > before && test < after)
- return true;
- if (test < before && before > after)
- return true;
- return false;
- }
- /**
- * get_device_system_crosststamp - Synchronously capture system/device timestamp
- * @get_time_fn: Callback to get simultaneous device time and
- * system counter from the device driver
- * @ctx: Context passed to get_time_fn()
- * @history_begin: Historical reference point used to interpolate system
- * time when counter provided by the driver is before the current interval
- * @xtstamp: Receives simultaneously captured system and device time
- *
- * Reads a timestamp from a device and correlates it to system time
- */
- int get_device_system_crosststamp(int (*get_time_fn)
- (ktime_t *device_time,
- struct system_counterval_t *sys_counterval,
- void *ctx),
- void *ctx,
- struct system_time_snapshot *history_begin,
- struct system_device_crosststamp *xtstamp)
- {
- struct system_counterval_t system_counterval;
- struct timekeeper *tk = &tk_core.timekeeper;
- u64 cycles, now, interval_start;
- unsigned int clock_was_set_seq = 0;
- ktime_t base_real, base_raw;
- u64 nsec_real, nsec_raw;
- u8 cs_was_changed_seq;
- unsigned int seq;
- bool do_interp;
- int ret;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- /*
- * Try to synchronously capture device time and a system
- * counter value calling back into the device driver
- */
- ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
- if (ret)
- return ret;
- /*
- * Verify that the clocksource associated with the captured
- * system counter value is the same as the currently installed
- * timekeeper clocksource
- */
- if (tk->tkr_mono.clock != system_counterval.cs)
- return -ENODEV;
- cycles = system_counterval.cycles;
- /*
- * Check whether the system counter value provided by the
- * device driver is on the current timekeeping interval.
- */
- now = tk_clock_read(&tk->tkr_mono);
- interval_start = tk->tkr_mono.cycle_last;
- if (!cycle_between(interval_start, cycles, now)) {
- clock_was_set_seq = tk->clock_was_set_seq;
- cs_was_changed_seq = tk->cs_was_changed_seq;
- cycles = interval_start;
- do_interp = true;
- } else {
- do_interp = false;
- }
- base_real = ktime_add(tk->tkr_mono.base,
- tk_core.timekeeper.offs_real);
- base_raw = tk->tkr_raw.base;
- nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
- system_counterval.cycles);
- nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
- system_counterval.cycles);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
- xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
- /*
- * Interpolate if necessary, adjusting back from the start of the
- * current interval
- */
- if (do_interp) {
- u64 partial_history_cycles, total_history_cycles;
- bool discontinuity;
- /*
- * Check that the counter value occurs after the provided
- * history reference and that the history doesn't cross a
- * clocksource change
- */
- if (!history_begin ||
- !cycle_between(history_begin->cycles,
- system_counterval.cycles, cycles) ||
- history_begin->cs_was_changed_seq != cs_was_changed_seq)
- return -EINVAL;
- partial_history_cycles = cycles - system_counterval.cycles;
- total_history_cycles = cycles - history_begin->cycles;
- discontinuity =
- history_begin->clock_was_set_seq != clock_was_set_seq;
- ret = adjust_historical_crosststamp(history_begin,
- partial_history_cycles,
- total_history_cycles,
- discontinuity, xtstamp);
- if (ret)
- return ret;
- }
- return 0;
- }
- EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
- /**
- * do_settimeofday64 - Sets the time of day.
- * @ts: pointer to the timespec64 variable containing the new time
- *
- * Sets the time of day to the new time and update NTP and notify hrtimers
- */
- int do_settimeofday64(const struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct timespec64 ts_delta, xt;
- unsigned long flags;
- int ret = 0;
- if (!timespec64_valid_settod(ts))
- return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
- xt = tk_xtime(tk);
- ts_delta = timespec64_sub(*ts, xt);
- if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
- ret = -EINVAL;
- goto out;
- }
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
- tk_set_xtime(tk, ts);
- out:
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* Signal hrtimers about time change */
- clock_was_set(CLOCK_SET_WALL);
- if (!ret) {
- audit_tk_injoffset(ts_delta);
- add_device_randomness(ts, sizeof(*ts));
- }
- return ret;
- }
- EXPORT_SYMBOL(do_settimeofday64);
- /**
- * timekeeping_inject_offset - Adds or subtracts from the current time.
- * @ts: Pointer to the timespec variable containing the offset
- *
- * Adds or subtracts an offset value from the current time.
- */
- static int timekeeping_inject_offset(const struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 tmp;
- int ret = 0;
- if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
- return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
- /* Make sure the proposed value is valid */
- tmp = timespec64_add(tk_xtime(tk), *ts);
- if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
- !timespec64_valid_settod(&tmp)) {
- ret = -EINVAL;
- goto error;
- }
- tk_xtime_add(tk, ts);
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
- error: /* even if we error out, we forwarded the time, so call update */
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* Signal hrtimers about time change */
- clock_was_set(CLOCK_SET_WALL);
- return ret;
- }
- /*
- * Indicates if there is an offset between the system clock and the hardware
- * clock/persistent clock/rtc.
- */
- int persistent_clock_is_local;
- /*
- * Adjust the time obtained from the CMOS to be UTC time instead of
- * local time.
- *
- * This is ugly, but preferable to the alternatives. Otherwise we
- * would either need to write a program to do it in /etc/rc (and risk
- * confusion if the program gets run more than once; it would also be
- * hard to make the program warp the clock precisely n hours) or
- * compile in the timezone information into the kernel. Bad, bad....
- *
- * - TYT, 1992-01-01
- *
- * The best thing to do is to keep the CMOS clock in universal time (UTC)
- * as real UNIX machines always do it. This avoids all headaches about
- * daylight saving times and warping kernel clocks.
- */
- void timekeeping_warp_clock(void)
- {
- if (sys_tz.tz_minuteswest != 0) {
- struct timespec64 adjust;
- persistent_clock_is_local = 1;
- adjust.tv_sec = sys_tz.tz_minuteswest * 60;
- adjust.tv_nsec = 0;
- timekeeping_inject_offset(&adjust);
- }
- }
- /*
- * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
- */
- static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
- {
- tk->tai_offset = tai_offset;
- tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
- }
- /*
- * change_clocksource - Swaps clocksources if a new one is available
- *
- * Accumulates current time interval and initializes new clocksource
- */
- static int change_clocksource(void *data)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *new, *old = NULL;
- unsigned long flags;
- bool change = false;
- new = (struct clocksource *) data;
- /*
- * If the cs is in module, get a module reference. Succeeds
- * for built-in code (owner == NULL) as well.
- */
- if (try_module_get(new->owner)) {
- if (!new->enable || new->enable(new) == 0)
- change = true;
- else
- module_put(new->owner);
- }
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
- if (change) {
- old = tk->tkr_mono.clock;
- tk_setup_internals(tk, new);
- }
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- if (old) {
- if (old->disable)
- old->disable(old);
- module_put(old->owner);
- }
- return 0;
- }
- /**
- * timekeeping_notify - Install a new clock source
- * @clock: pointer to the clock source
- *
- * This function is called from clocksource.c after a new, better clock
- * source has been registered. The caller holds the clocksource_mutex.
- */
- int timekeeping_notify(struct clocksource *clock)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- if (tk->tkr_mono.clock == clock)
- return 0;
- stop_machine(change_clocksource, clock, NULL);
- tick_clock_notify();
- return tk->tkr_mono.clock == clock ? 0 : -1;
- }
- /**
- * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
- * @ts: pointer to the timespec64 to be set
- *
- * Returns the raw monotonic time (completely un-modified by ntp)
- */
- void ktime_get_raw_ts64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- u64 nsecs;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- ts->tv_sec = tk->raw_sec;
- nsecs = timekeeping_get_ns(&tk->tkr_raw);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- ts->tv_nsec = 0;
- timespec64_add_ns(ts, nsecs);
- }
- EXPORT_SYMBOL(ktime_get_raw_ts64);
- /**
- * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
- */
- int timekeeping_valid_for_hres(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- int ret;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ret;
- }
- /**
- * timekeeping_max_deferment - Returns max time the clocksource can be deferred
- */
- u64 timekeeping_max_deferment(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- u64 ret;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- ret = tk->tkr_mono.clock->max_idle_ns;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return ret;
- }
- /**
- * read_persistent_clock64 - Return time from the persistent clock.
- * @ts: Pointer to the storage for the readout value
- *
- * Weak dummy function for arches that do not yet support it.
- * Reads the time from the battery backed persistent clock.
- * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
- *
- * XXX - Do be sure to remove it once all arches implement it.
- */
- void __weak read_persistent_clock64(struct timespec64 *ts)
- {
- ts->tv_sec = 0;
- ts->tv_nsec = 0;
- }
- /**
- * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
- * from the boot.
- *
- * Weak dummy function for arches that do not yet support it.
- * @wall_time: - current time as returned by persistent clock
- * @boot_offset: - offset that is defined as wall_time - boot_time
- *
- * The default function calculates offset based on the current value of
- * local_clock(). This way architectures that support sched_clock() but don't
- * support dedicated boot time clock will provide the best estimate of the
- * boot time.
- */
- void __weak __init
- read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
- struct timespec64 *boot_offset)
- {
- read_persistent_clock64(wall_time);
- *boot_offset = ns_to_timespec64(local_clock());
- }
- /*
- * Flag reflecting whether timekeeping_resume() has injected sleeptime.
- *
- * The flag starts of false and is only set when a suspend reaches
- * timekeeping_suspend(), timekeeping_resume() sets it to false when the
- * timekeeper clocksource is not stopping across suspend and has been
- * used to update sleep time. If the timekeeper clocksource has stopped
- * then the flag stays true and is used by the RTC resume code to decide
- * whether sleeptime must be injected and if so the flag gets false then.
- *
- * If a suspend fails before reaching timekeeping_resume() then the flag
- * stays false and prevents erroneous sleeptime injection.
- */
- static bool suspend_timing_needed;
- /* Flag for if there is a persistent clock on this platform */
- static bool persistent_clock_exists;
- /*
- * timekeeping_init - Initializes the clocksource and common timekeeping values
- */
- void __init timekeeping_init(void)
- {
- struct timespec64 wall_time, boot_offset, wall_to_mono;
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *clock;
- unsigned long flags;
- read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
- if (timespec64_valid_settod(&wall_time) &&
- timespec64_to_ns(&wall_time) > 0) {
- persistent_clock_exists = true;
- } else if (timespec64_to_ns(&wall_time) != 0) {
- pr_warn("Persistent clock returned invalid value");
- wall_time = (struct timespec64){0};
- }
- if (timespec64_compare(&wall_time, &boot_offset) < 0)
- boot_offset = (struct timespec64){0};
- /*
- * We want set wall_to_mono, so the following is true:
- * wall time + wall_to_mono = boot time
- */
- wall_to_mono = timespec64_sub(boot_offset, wall_time);
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- ntp_init();
- clock = clocksource_default_clock();
- if (clock->enable)
- clock->enable(clock);
- tk_setup_internals(tk, clock);
- tk_set_xtime(tk, &wall_time);
- tk->raw_sec = 0;
- tk_set_wall_to_mono(tk, wall_to_mono);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- }
- /* time in seconds when suspend began for persistent clock */
- static struct timespec64 timekeeping_suspend_time;
- /**
- * __timekeeping_inject_sleeptime - Internal function to add sleep interval
- * @tk: Pointer to the timekeeper to be updated
- * @delta: Pointer to the delta value in timespec64 format
- *
- * Takes a timespec offset measuring a suspend interval and properly
- * adds the sleep offset to the timekeeping variables.
- */
- static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
- const struct timespec64 *delta)
- {
- if (!timespec64_valid_strict(delta)) {
- printk_deferred(KERN_WARNING
- "__timekeeping_inject_sleeptime: Invalid "
- "sleep delta value!\n");
- return;
- }
- tk_xtime_add(tk, delta);
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
- tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
- tk_debug_account_sleep_time(delta);
- }
- #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
- /**
- * We have three kinds of time sources to use for sleep time
- * injection, the preference order is:
- * 1) non-stop clocksource
- * 2) persistent clock (ie: RTC accessible when irqs are off)
- * 3) RTC
- *
- * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
- * If system has neither 1) nor 2), 3) will be used finally.
- *
- *
- * If timekeeping has injected sleeptime via either 1) or 2),
- * 3) becomes needless, so in this case we don't need to call
- * rtc_resume(), and this is what timekeeping_rtc_skipresume()
- * means.
- */
- bool timekeeping_rtc_skipresume(void)
- {
- return !suspend_timing_needed;
- }
- /**
- * 1) can be determined whether to use or not only when doing
- * timekeeping_resume() which is invoked after rtc_suspend(),
- * so we can't skip rtc_suspend() surely if system has 1).
- *
- * But if system has 2), 2) will definitely be used, so in this
- * case we don't need to call rtc_suspend(), and this is what
- * timekeeping_rtc_skipsuspend() means.
- */
- bool timekeeping_rtc_skipsuspend(void)
- {
- return persistent_clock_exists;
- }
- /**
- * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
- * @delta: pointer to a timespec64 delta value
- *
- * This hook is for architectures that cannot support read_persistent_clock64
- * because their RTC/persistent clock is only accessible when irqs are enabled.
- * and also don't have an effective nonstop clocksource.
- *
- * This function should only be called by rtc_resume(), and allows
- * a suspend offset to be injected into the timekeeping values.
- */
- void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- suspend_timing_needed = false;
- timekeeping_forward_now(tk);
- __timekeeping_inject_sleeptime(tk, delta);
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* Signal hrtimers about time change */
- clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
- }
- #endif
- /**
- * timekeeping_resume - Resumes the generic timekeeping subsystem.
- */
- void timekeeping_resume(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *clock = tk->tkr_mono.clock;
- unsigned long flags;
- struct timespec64 ts_new, ts_delta;
- u64 cycle_now, nsec;
- bool inject_sleeptime = false;
- read_persistent_clock64(&ts_new);
- clockevents_resume();
- clocksource_resume();
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- /*
- * After system resumes, we need to calculate the suspended time and
- * compensate it for the OS time. There are 3 sources that could be
- * used: Nonstop clocksource during suspend, persistent clock and rtc
- * device.
- *
- * One specific platform may have 1 or 2 or all of them, and the
- * preference will be:
- * suspend-nonstop clocksource -> persistent clock -> rtc
- * The less preferred source will only be tried if there is no better
- * usable source. The rtc part is handled separately in rtc core code.
- */
- cycle_now = tk_clock_read(&tk->tkr_mono);
- nsec = clocksource_stop_suspend_timing(clock, cycle_now);
- if (nsec > 0) {
- ts_delta = ns_to_timespec64(nsec);
- inject_sleeptime = true;
- } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
- ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
- inject_sleeptime = true;
- }
- if (inject_sleeptime) {
- suspend_timing_needed = false;
- __timekeeping_inject_sleeptime(tk, &ts_delta);
- }
- /* Re-base the last cycle value */
- tk->tkr_mono.cycle_last = cycle_now;
- tk->tkr_raw.cycle_last = cycle_now;
- tk->ntp_error = 0;
- timekeeping_suspended = 0;
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- touch_softlockup_watchdog();
- /* Resume the clockevent device(s) and hrtimers */
- tick_resume();
- /* Notify timerfd as resume is equivalent to clock_was_set() */
- timerfd_resume();
- }
- int timekeeping_suspend(void)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 delta, delta_delta;
- static struct timespec64 old_delta;
- struct clocksource *curr_clock;
- u64 cycle_now;
- read_persistent_clock64(&timekeeping_suspend_time);
- /*
- * On some systems the persistent_clock can not be detected at
- * timekeeping_init by its return value, so if we see a valid
- * value returned, update the persistent_clock_exists flag.
- */
- if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
- persistent_clock_exists = true;
- suspend_timing_needed = true;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
- timekeeping_suspended = 1;
- /*
- * Since we've called forward_now, cycle_last stores the value
- * just read from the current clocksource. Save this to potentially
- * use in suspend timing.
- */
- curr_clock = tk->tkr_mono.clock;
- cycle_now = tk->tkr_mono.cycle_last;
- clocksource_start_suspend_timing(curr_clock, cycle_now);
- if (persistent_clock_exists) {
- /*
- * To avoid drift caused by repeated suspend/resumes,
- * which each can add ~1 second drift error,
- * try to compensate so the difference in system time
- * and persistent_clock time stays close to constant.
- */
- delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
- delta_delta = timespec64_sub(delta, old_delta);
- if (abs(delta_delta.tv_sec) >= 2) {
- /*
- * if delta_delta is too large, assume time correction
- * has occurred and set old_delta to the current delta.
- */
- old_delta = delta;
- } else {
- /* Otherwise try to adjust old_system to compensate */
- timekeeping_suspend_time =
- timespec64_add(timekeeping_suspend_time, delta_delta);
- }
- }
- timekeeping_update(tk, TK_MIRROR);
- halt_fast_timekeeper(tk);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- tick_suspend();
- clocksource_suspend();
- clockevents_suspend();
- return 0;
- }
- /* sysfs resume/suspend bits for timekeeping */
- static struct syscore_ops timekeeping_syscore_ops = {
- .resume = timekeeping_resume,
- .suspend = timekeeping_suspend,
- };
- static int __init timekeeping_init_ops(void)
- {
- register_syscore_ops(&timekeeping_syscore_ops);
- return 0;
- }
- device_initcall(timekeeping_init_ops);
- /*
- * Apply a multiplier adjustment to the timekeeper
- */
- static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
- s64 offset,
- s32 mult_adj)
- {
- s64 interval = tk->cycle_interval;
- if (mult_adj == 0) {
- return;
- } else if (mult_adj == -1) {
- interval = -interval;
- offset = -offset;
- } else if (mult_adj != 1) {
- interval *= mult_adj;
- offset *= mult_adj;
- }
- /*
- * So the following can be confusing.
- *
- * To keep things simple, lets assume mult_adj == 1 for now.
- *
- * When mult_adj != 1, remember that the interval and offset values
- * have been appropriately scaled so the math is the same.
- *
- * The basic idea here is that we're increasing the multiplier
- * by one, this causes the xtime_interval to be incremented by
- * one cycle_interval. This is because:
- * xtime_interval = cycle_interval * mult
- * So if mult is being incremented by one:
- * xtime_interval = cycle_interval * (mult + 1)
- * Its the same as:
- * xtime_interval = (cycle_interval * mult) + cycle_interval
- * Which can be shortened to:
- * xtime_interval += cycle_interval
- *
- * So offset stores the non-accumulated cycles. Thus the current
- * time (in shifted nanoseconds) is:
- * now = (offset * adj) + xtime_nsec
- * Now, even though we're adjusting the clock frequency, we have
- * to keep time consistent. In other words, we can't jump back
- * in time, and we also want to avoid jumping forward in time.
- *
- * So given the same offset value, we need the time to be the same
- * both before and after the freq adjustment.
- * now = (offset * adj_1) + xtime_nsec_1
- * now = (offset * adj_2) + xtime_nsec_2
- * So:
- * (offset * adj_1) + xtime_nsec_1 =
- * (offset * adj_2) + xtime_nsec_2
- * And we know:
- * adj_2 = adj_1 + 1
- * So:
- * (offset * adj_1) + xtime_nsec_1 =
- * (offset * (adj_1+1)) + xtime_nsec_2
- * (offset * adj_1) + xtime_nsec_1 =
- * (offset * adj_1) + offset + xtime_nsec_2
- * Canceling the sides:
- * xtime_nsec_1 = offset + xtime_nsec_2
- * Which gives us:
- * xtime_nsec_2 = xtime_nsec_1 - offset
- * Which simplifies to:
- * xtime_nsec -= offset
- */
- if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
- /* NTP adjustment caused clocksource mult overflow */
- WARN_ON_ONCE(1);
- return;
- }
- tk->tkr_mono.mult += mult_adj;
- tk->xtime_interval += interval;
- tk->tkr_mono.xtime_nsec -= offset;
- }
- /*
- * Adjust the timekeeper's multiplier to the correct frequency
- * and also to reduce the accumulated error value.
- */
- static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
- {
- u32 mult;
- /*
- * Determine the multiplier from the current NTP tick length.
- * Avoid expensive division when the tick length doesn't change.
- */
- if (likely(tk->ntp_tick == ntp_tick_length())) {
- mult = tk->tkr_mono.mult - tk->ntp_err_mult;
- } else {
- tk->ntp_tick = ntp_tick_length();
- mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
- tk->xtime_remainder, tk->cycle_interval);
- }
- /*
- * If the clock is behind the NTP time, increase the multiplier by 1
- * to catch up with it. If it's ahead and there was a remainder in the
- * tick division, the clock will slow down. Otherwise it will stay
- * ahead until the tick length changes to a non-divisible value.
- */
- tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
- mult += tk->ntp_err_mult;
- timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
- if (unlikely(tk->tkr_mono.clock->maxadj &&
- (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
- > tk->tkr_mono.clock->maxadj))) {
- printk_once(KERN_WARNING
- "Adjusting %s more than 11%% (%ld vs %ld)\n",
- tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
- (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
- }
- /*
- * It may be possible that when we entered this function, xtime_nsec
- * was very small. Further, if we're slightly speeding the clocksource
- * in the code above, its possible the required corrective factor to
- * xtime_nsec could cause it to underflow.
- *
- * Now, since we have already accumulated the second and the NTP
- * subsystem has been notified via second_overflow(), we need to skip
- * the next update.
- */
- if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
- tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
- tk->tkr_mono.shift;
- tk->xtime_sec--;
- tk->skip_second_overflow = 1;
- }
- }
- /*
- * accumulate_nsecs_to_secs - Accumulates nsecs into secs
- *
- * Helper function that accumulates the nsecs greater than a second
- * from the xtime_nsec field to the xtime_secs field.
- * It also calls into the NTP code to handle leapsecond processing.
- */
- static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
- {
- u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
- unsigned int clock_set = 0;
- while (tk->tkr_mono.xtime_nsec >= nsecps) {
- int leap;
- tk->tkr_mono.xtime_nsec -= nsecps;
- tk->xtime_sec++;
- /*
- * Skip NTP update if this second was accumulated before,
- * i.e. xtime_nsec underflowed in timekeeping_adjust()
- */
- if (unlikely(tk->skip_second_overflow)) {
- tk->skip_second_overflow = 0;
- continue;
- }
- /* Figure out if its a leap sec and apply if needed */
- leap = second_overflow(tk->xtime_sec);
- if (unlikely(leap)) {
- struct timespec64 ts;
- tk->xtime_sec += leap;
- ts.tv_sec = leap;
- ts.tv_nsec = 0;
- tk_set_wall_to_mono(tk,
- timespec64_sub(tk->wall_to_monotonic, ts));
- __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
- clock_set = TK_CLOCK_WAS_SET;
- }
- }
- return clock_set;
- }
- /*
- * logarithmic_accumulation - shifted accumulation of cycles
- *
- * This functions accumulates a shifted interval of cycles into
- * a shifted interval nanoseconds. Allows for O(log) accumulation
- * loop.
- *
- * Returns the unconsumed cycles.
- */
- static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
- u32 shift, unsigned int *clock_set)
- {
- u64 interval = tk->cycle_interval << shift;
- u64 snsec_per_sec;
- /* If the offset is smaller than a shifted interval, do nothing */
- if (offset < interval)
- return offset;
- /* Accumulate one shifted interval */
- offset -= interval;
- tk->tkr_mono.cycle_last += interval;
- tk->tkr_raw.cycle_last += interval;
- tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
- *clock_set |= accumulate_nsecs_to_secs(tk);
- /* Accumulate raw time */
- tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
- snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
- while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
- tk->tkr_raw.xtime_nsec -= snsec_per_sec;
- tk->raw_sec++;
- }
- /* Accumulate error between NTP and clock interval */
- tk->ntp_error += tk->ntp_tick << shift;
- tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
- (tk->ntp_error_shift + shift);
- return offset;
- }
- /*
- * timekeeping_advance - Updates the timekeeper to the current time and
- * current NTP tick length
- */
- static bool timekeeping_advance(enum timekeeping_adv_mode mode)
- {
- struct timekeeper *real_tk = &tk_core.timekeeper;
- struct timekeeper *tk = &shadow_timekeeper;
- u64 offset;
- int shift = 0, maxshift;
- unsigned int clock_set = 0;
- unsigned long flags;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- /* Make sure we're fully resumed: */
- if (unlikely(timekeeping_suspended))
- goto out;
- offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
- tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
- /* Check if there's really nothing to do */
- if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
- goto out;
- /* Do some additional sanity checking */
- timekeeping_check_update(tk, offset);
- /*
- * With NO_HZ we may have to accumulate many cycle_intervals
- * (think "ticks") worth of time at once. To do this efficiently,
- * we calculate the largest doubling multiple of cycle_intervals
- * that is smaller than the offset. We then accumulate that
- * chunk in one go, and then try to consume the next smaller
- * doubled multiple.
- */
- shift = ilog2(offset) - ilog2(tk->cycle_interval);
- shift = max(0, shift);
- /* Bound shift to one less than what overflows tick_length */
- maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
- shift = min(shift, maxshift);
- while (offset >= tk->cycle_interval) {
- offset = logarithmic_accumulation(tk, offset, shift,
- &clock_set);
- if (offset < tk->cycle_interval<<shift)
- shift--;
- }
- /* Adjust the multiplier to correct NTP error */
- timekeeping_adjust(tk, offset);
- /*
- * Finally, make sure that after the rounding
- * xtime_nsec isn't larger than NSEC_PER_SEC
- */
- clock_set |= accumulate_nsecs_to_secs(tk);
- write_seqcount_begin(&tk_core.seq);
- /*
- * Update the real timekeeper.
- *
- * We could avoid this memcpy by switching pointers, but that
- * requires changes to all other timekeeper usage sites as
- * well, i.e. move the timekeeper pointer getter into the
- * spinlocked/seqcount protected sections. And we trade this
- * memcpy under the tk_core.seq against one before we start
- * updating.
- */
- timekeeping_update(tk, clock_set);
- memcpy(real_tk, tk, sizeof(*tk));
- /* The memcpy must come last. Do not put anything here! */
- write_seqcount_end(&tk_core.seq);
- out:
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- return !!clock_set;
- }
- /**
- * update_wall_time - Uses the current clocksource to increment the wall time
- *
- */
- void update_wall_time(void)
- {
- if (timekeeping_advance(TK_ADV_TICK))
- clock_was_set_delayed();
- }
- /**
- * getboottime64 - Return the real time of system boot.
- * @ts: pointer to the timespec64 to be set
- *
- * Returns the wall-time of boot in a timespec64.
- *
- * This is based on the wall_to_monotonic offset and the total suspend
- * time. Calls to settimeofday will affect the value returned (which
- * basically means that however wrong your real time clock is at boot time,
- * you get the right time here).
- */
- void getboottime64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
- *ts = ktime_to_timespec64(t);
- }
- EXPORT_SYMBOL_GPL(getboottime64);
- void ktime_get_coarse_real_ts64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- *ts = tk_xtime(tk);
- } while (read_seqcount_retry(&tk_core.seq, seq));
- }
- EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
- void ktime_get_coarse_ts64(struct timespec64 *ts)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct timespec64 now, mono;
- unsigned int seq;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- now = tk_xtime(tk);
- mono = tk->wall_to_monotonic;
- } while (read_seqcount_retry(&tk_core.seq, seq));
- set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
- now.tv_nsec + mono.tv_nsec);
- }
- EXPORT_SYMBOL(ktime_get_coarse_ts64);
- /*
- * Must hold jiffies_lock
- */
- void do_timer(unsigned long ticks)
- {
- jiffies_64 += ticks;
- calc_global_load();
- }
- /**
- * ktime_get_update_offsets_now - hrtimer helper
- * @cwsseq: pointer to check and store the clock was set sequence number
- * @offs_real: pointer to storage for monotonic -> realtime offset
- * @offs_boot: pointer to storage for monotonic -> boottime offset
- * @offs_tai: pointer to storage for monotonic -> clock tai offset
- *
- * Returns current monotonic time and updates the offsets if the
- * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
- * different.
- *
- * Called from hrtimer_interrupt() or retrigger_next_event()
- */
- ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
- ktime_t *offs_boot, ktime_t *offs_tai)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned int seq;
- ktime_t base;
- u64 nsecs;
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr_mono.base;
- nsecs = timekeeping_get_ns(&tk->tkr_mono);
- base = ktime_add_ns(base, nsecs);
- if (*cwsseq != tk->clock_was_set_seq) {
- *cwsseq = tk->clock_was_set_seq;
- *offs_real = tk->offs_real;
- *offs_boot = tk->offs_boot;
- *offs_tai = tk->offs_tai;
- }
- /* Handle leapsecond insertion adjustments */
- if (unlikely(base >= tk->next_leap_ktime))
- *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
- } while (read_seqcount_retry(&tk_core.seq, seq));
- return base;
- }
- /*
- * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
- */
- static int timekeeping_validate_timex(const struct __kernel_timex *txc)
- {
- if (txc->modes & ADJ_ADJTIME) {
- /* singleshot must not be used with any other mode bits */
- if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
- return -EINVAL;
- if (!(txc->modes & ADJ_OFFSET_READONLY) &&
- !capable(CAP_SYS_TIME))
- return -EPERM;
- } else {
- /* In order to modify anything, you gotta be super-user! */
- if (txc->modes && !capable(CAP_SYS_TIME))
- return -EPERM;
- /*
- * if the quartz is off by more than 10% then
- * something is VERY wrong!
- */
- if (txc->modes & ADJ_TICK &&
- (txc->tick < 900000/USER_HZ ||
- txc->tick > 1100000/USER_HZ))
- return -EINVAL;
- }
- if (txc->modes & ADJ_SETOFFSET) {
- /* In order to inject time, you gotta be super-user! */
- if (!capable(CAP_SYS_TIME))
- return -EPERM;
- /*
- * Validate if a timespec/timeval used to inject a time
- * offset is valid. Offsets can be positive or negative, so
- * we don't check tv_sec. The value of the timeval/timespec
- * is the sum of its fields,but *NOTE*:
- * The field tv_usec/tv_nsec must always be non-negative and
- * we can't have more nanoseconds/microseconds than a second.
- */
- if (txc->time.tv_usec < 0)
- return -EINVAL;
- if (txc->modes & ADJ_NANO) {
- if (txc->time.tv_usec >= NSEC_PER_SEC)
- return -EINVAL;
- } else {
- if (txc->time.tv_usec >= USEC_PER_SEC)
- return -EINVAL;
- }
- }
- /*
- * Check for potential multiplication overflows that can
- * only happen on 64-bit systems:
- */
- if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
- if (LLONG_MIN / PPM_SCALE > txc->freq)
- return -EINVAL;
- if (LLONG_MAX / PPM_SCALE < txc->freq)
- return -EINVAL;
- }
- return 0;
- }
- /**
- * random_get_entropy_fallback - Returns the raw clock source value,
- * used by random.c for platforms with no valid random_get_entropy().
- */
- unsigned long random_get_entropy_fallback(void)
- {
- struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
- struct clocksource *clock = READ_ONCE(tkr->clock);
- if (unlikely(timekeeping_suspended || !clock))
- return 0;
- return clock->read(clock);
- }
- EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
- /**
- * do_adjtimex() - Accessor function to NTP __do_adjtimex function
- */
- int do_adjtimex(struct __kernel_timex *txc)
- {
- struct timekeeper *tk = &tk_core.timekeeper;
- struct audit_ntp_data ad;
- bool clock_set = false;
- struct timespec64 ts;
- unsigned long flags;
- s32 orig_tai, tai;
- int ret;
- /* Validate the data before disabling interrupts */
- ret = timekeeping_validate_timex(txc);
- if (ret)
- return ret;
- add_device_randomness(txc, sizeof(*txc));
- if (txc->modes & ADJ_SETOFFSET) {
- struct timespec64 delta;
- delta.tv_sec = txc->time.tv_sec;
- delta.tv_nsec = txc->time.tv_usec;
- if (!(txc->modes & ADJ_NANO))
- delta.tv_nsec *= 1000;
- ret = timekeeping_inject_offset(&delta);
- if (ret)
- return ret;
- audit_tk_injoffset(delta);
- }
- audit_ntp_init(&ad);
- ktime_get_real_ts64(&ts);
- add_device_randomness(&ts, sizeof(ts));
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- orig_tai = tai = tk->tai_offset;
- ret = __do_adjtimex(txc, &ts, &tai, &ad);
- if (tai != orig_tai) {
- __timekeeping_set_tai_offset(tk, tai);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- clock_set = true;
- }
- tk_update_leap_state(tk);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- audit_ntp_log(&ad);
- /* Update the multiplier immediately if frequency was set directly */
- if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
- clock_set |= timekeeping_advance(TK_ADV_FREQ);
- if (clock_set)
- clock_was_set(CLOCK_REALTIME);
- ntp_notify_cmos_timer();
- return ret;
- }
- #ifdef CONFIG_NTP_PPS
- /**
- * hardpps() - Accessor function to NTP __hardpps function
- */
- void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
- {
- unsigned long flags;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- __hardpps(phase_ts, raw_ts);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- }
- EXPORT_SYMBOL(hardpps);
- #endif /* CONFIG_NTP_PPS */
|