vcpu.h 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. /* SPDX-License-Identifier: MIT */
  2. /******************************************************************************
  3. * vcpu.h
  4. *
  5. * VCPU initialisation, query, and hotplug.
  6. *
  7. * Copyright (c) 2005, Keir Fraser <[email protected]>
  8. */
  9. #ifndef __XEN_PUBLIC_VCPU_H__
  10. #define __XEN_PUBLIC_VCPU_H__
  11. /*
  12. * Prototype for this hypercall is:
  13. * int vcpu_op(int cmd, int vcpuid, void *extra_args)
  14. * @cmd == VCPUOP_??? (VCPU operation).
  15. * @vcpuid == VCPU to operate on.
  16. * @extra_args == Operation-specific extra arguments (NULL if none).
  17. */
  18. /*
  19. * Initialise a VCPU. Each VCPU can be initialised only once. A
  20. * newly-initialised VCPU will not run until it is brought up by VCPUOP_up.
  21. *
  22. * @extra_arg == pointer to vcpu_guest_context structure containing initial
  23. * state for the VCPU.
  24. */
  25. #define VCPUOP_initialise 0
  26. /*
  27. * Bring up a VCPU. This makes the VCPU runnable. This operation will fail
  28. * if the VCPU has not been initialised (VCPUOP_initialise).
  29. */
  30. #define VCPUOP_up 1
  31. /*
  32. * Bring down a VCPU (i.e., make it non-runnable).
  33. * There are a few caveats that callers should observe:
  34. * 1. This operation may return, and VCPU_is_up may return false, before the
  35. * VCPU stops running (i.e., the command is asynchronous). It is a good
  36. * idea to ensure that the VCPU has entered a non-critical loop before
  37. * bringing it down. Alternatively, this operation is guaranteed
  38. * synchronous if invoked by the VCPU itself.
  39. * 2. After a VCPU is initialised, there is currently no way to drop all its
  40. * references to domain memory. Even a VCPU that is down still holds
  41. * memory references via its pagetable base pointer and GDT. It is good
  42. * practise to move a VCPU onto an 'idle' or default page table, LDT and
  43. * GDT before bringing it down.
  44. */
  45. #define VCPUOP_down 2
  46. /* Returns 1 if the given VCPU is up. */
  47. #define VCPUOP_is_up 3
  48. /*
  49. * Return information about the state and running time of a VCPU.
  50. * @extra_arg == pointer to vcpu_runstate_info structure.
  51. */
  52. #define VCPUOP_get_runstate_info 4
  53. struct vcpu_runstate_info {
  54. /* VCPU's current state (RUNSTATE_*). */
  55. int state;
  56. /* When was current state entered (system time, ns)? */
  57. uint64_t state_entry_time;
  58. /*
  59. * Update indicator set in state_entry_time:
  60. * When activated via VMASST_TYPE_runstate_update_flag, set during
  61. * updates in guest memory mapped copy of vcpu_runstate_info.
  62. */
  63. #define XEN_RUNSTATE_UPDATE (1ULL << 63)
  64. /*
  65. * Time spent in each RUNSTATE_* (ns). The sum of these times is
  66. * guaranteed not to drift from system time.
  67. */
  68. uint64_t time[4];
  69. };
  70. DEFINE_GUEST_HANDLE_STRUCT(vcpu_runstate_info);
  71. /* VCPU is currently running on a physical CPU. */
  72. #define RUNSTATE_running 0
  73. /* VCPU is runnable, but not currently scheduled on any physical CPU. */
  74. #define RUNSTATE_runnable 1
  75. /* VCPU is blocked (a.k.a. idle). It is therefore not runnable. */
  76. #define RUNSTATE_blocked 2
  77. /*
  78. * VCPU is not runnable, but it is not blocked.
  79. * This is a 'catch all' state for things like hotplug and pauses by the
  80. * system administrator (or for critical sections in the hypervisor).
  81. * RUNSTATE_blocked dominates this state (it is the preferred state).
  82. */
  83. #define RUNSTATE_offline 3
  84. /*
  85. * Register a shared memory area from which the guest may obtain its own
  86. * runstate information without needing to execute a hypercall.
  87. * Notes:
  88. * 1. The registered address may be virtual or physical, depending on the
  89. * platform. The virtual address should be registered on x86 systems.
  90. * 2. Only one shared area may be registered per VCPU. The shared area is
  91. * updated by the hypervisor each time the VCPU is scheduled. Thus
  92. * runstate.state will always be RUNSTATE_running and
  93. * runstate.state_entry_time will indicate the system time at which the
  94. * VCPU was last scheduled to run.
  95. * @extra_arg == pointer to vcpu_register_runstate_memory_area structure.
  96. */
  97. #define VCPUOP_register_runstate_memory_area 5
  98. struct vcpu_register_runstate_memory_area {
  99. union {
  100. GUEST_HANDLE(vcpu_runstate_info) h;
  101. struct vcpu_runstate_info *v;
  102. uint64_t p;
  103. } addr;
  104. };
  105. /*
  106. * Set or stop a VCPU's periodic timer. Every VCPU has one periodic timer
  107. * which can be set via these commands. Periods smaller than one millisecond
  108. * may not be supported.
  109. */
  110. #define VCPUOP_set_periodic_timer 6 /* arg == vcpu_set_periodic_timer_t */
  111. #define VCPUOP_stop_periodic_timer 7 /* arg == NULL */
  112. struct vcpu_set_periodic_timer {
  113. uint64_t period_ns;
  114. };
  115. DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_periodic_timer);
  116. /*
  117. * Set or stop a VCPU's single-shot timer. Every VCPU has one single-shot
  118. * timer which can be set via these commands.
  119. */
  120. #define VCPUOP_set_singleshot_timer 8 /* arg == vcpu_set_singleshot_timer_t */
  121. #define VCPUOP_stop_singleshot_timer 9 /* arg == NULL */
  122. struct vcpu_set_singleshot_timer {
  123. uint64_t timeout_abs_ns;
  124. uint32_t flags; /* VCPU_SSHOTTMR_??? */
  125. };
  126. DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_singleshot_timer);
  127. /* Flags to VCPUOP_set_singleshot_timer. */
  128. /* Require the timeout to be in the future (return -ETIME if it's passed). */
  129. #define _VCPU_SSHOTTMR_future (0)
  130. #define VCPU_SSHOTTMR_future (1U << _VCPU_SSHOTTMR_future)
  131. /*
  132. * Register a memory location in the guest address space for the
  133. * vcpu_info structure. This allows the guest to place the vcpu_info
  134. * structure in a convenient place, such as in a per-cpu data area.
  135. * The pointer need not be page aligned, but the structure must not
  136. * cross a page boundary.
  137. */
  138. #define VCPUOP_register_vcpu_info 10 /* arg == struct vcpu_info */
  139. struct vcpu_register_vcpu_info {
  140. uint64_t mfn; /* mfn of page to place vcpu_info */
  141. uint32_t offset; /* offset within page */
  142. uint32_t rsvd; /* unused */
  143. };
  144. DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_vcpu_info);
  145. /* Send an NMI to the specified VCPU. @extra_arg == NULL. */
  146. #define VCPUOP_send_nmi 11
  147. /*
  148. * Get the physical ID information for a pinned vcpu's underlying physical
  149. * processor. The physical ID informmation is architecture-specific.
  150. * On x86: id[31:0]=apic_id, id[63:32]=acpi_id.
  151. * This command returns -EINVAL if it is not a valid operation for this VCPU.
  152. */
  153. #define VCPUOP_get_physid 12 /* arg == vcpu_get_physid_t */
  154. struct vcpu_get_physid {
  155. uint64_t phys_id;
  156. };
  157. DEFINE_GUEST_HANDLE_STRUCT(vcpu_get_physid);
  158. #define xen_vcpu_physid_to_x86_apicid(physid) ((uint32_t)(physid))
  159. #define xen_vcpu_physid_to_x86_acpiid(physid) ((uint32_t)((physid) >> 32))
  160. /*
  161. * Register a memory location to get a secondary copy of the vcpu time
  162. * parameters. The master copy still exists as part of the vcpu shared
  163. * memory area, and this secondary copy is updated whenever the master copy
  164. * is updated (and using the same versioning scheme for synchronisation).
  165. *
  166. * The intent is that this copy may be mapped (RO) into userspace so
  167. * that usermode can compute system time using the time info and the
  168. * tsc. Usermode will see an array of vcpu_time_info structures, one
  169. * for each vcpu, and choose the right one by an existing mechanism
  170. * which allows it to get the current vcpu number (such as via a
  171. * segment limit). It can then apply the normal algorithm to compute
  172. * system time from the tsc.
  173. *
  174. * @extra_arg == pointer to vcpu_register_time_info_memory_area structure.
  175. */
  176. #define VCPUOP_register_vcpu_time_memory_area 13
  177. DEFINE_GUEST_HANDLE_STRUCT(vcpu_time_info);
  178. struct vcpu_register_time_memory_area {
  179. union {
  180. GUEST_HANDLE(vcpu_time_info) h;
  181. struct pvclock_vcpu_time_info *v;
  182. uint64_t p;
  183. } addr;
  184. };
  185. DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_time_memory_area);
  186. #endif /* __XEN_PUBLIC_VCPU_H__ */