red.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef __NET_SCHED_RED_H
  3. #define __NET_SCHED_RED_H
  4. #include <linux/types.h>
  5. #include <linux/bug.h>
  6. #include <net/pkt_sched.h>
  7. #include <net/inet_ecn.h>
  8. #include <net/dsfield.h>
  9. #include <linux/reciprocal_div.h>
  10. /* Random Early Detection (RED) algorithm.
  11. =======================================
  12. Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
  13. for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
  14. This file codes a "divisionless" version of RED algorithm
  15. as written down in Fig.17 of the paper.
  16. Short description.
  17. ------------------
  18. When a new packet arrives we calculate the average queue length:
  19. avg = (1-W)*avg + W*current_queue_len,
  20. W is the filter time constant (chosen as 2^(-Wlog)), it controls
  21. the inertia of the algorithm. To allow larger bursts, W should be
  22. decreased.
  23. if (avg > th_max) -> packet marked (dropped).
  24. if (avg < th_min) -> packet passes.
  25. if (th_min < avg < th_max) we calculate probability:
  26. Pb = max_P * (avg - th_min)/(th_max-th_min)
  27. and mark (drop) packet with this probability.
  28. Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
  29. max_P should be small (not 1), usually 0.01..0.02 is good value.
  30. max_P is chosen as a number, so that max_P/(th_max-th_min)
  31. is a negative power of two in order arithmetics to contain
  32. only shifts.
  33. Parameters, settable by user:
  34. -----------------------------
  35. qth_min - bytes (should be < qth_max/2)
  36. qth_max - bytes (should be at least 2*qth_min and less limit)
  37. Wlog - bits (<32) log(1/W).
  38. Plog - bits (<32)
  39. Plog is related to max_P by formula:
  40. max_P = (qth_max-qth_min)/2^Plog;
  41. F.e. if qth_max=128K and qth_min=32K, then Plog=22
  42. corresponds to max_P=0.02
  43. Scell_log
  44. Stab
  45. Lookup table for log((1-W)^(t/t_ave).
  46. NOTES:
  47. Upper bound on W.
  48. -----------------
  49. If you want to allow bursts of L packets of size S,
  50. you should choose W:
  51. L + 1 - th_min/S < (1-(1-W)^L)/W
  52. th_min/S = 32 th_min/S = 4
  53. log(W) L
  54. -1 33
  55. -2 35
  56. -3 39
  57. -4 46
  58. -5 57
  59. -6 75
  60. -7 101
  61. -8 135
  62. -9 190
  63. etc.
  64. */
  65. /*
  66. * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
  67. * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
  68. *
  69. * Every 500 ms:
  70. * if (avg > target and max_p <= 0.5)
  71. * increase max_p : max_p += alpha;
  72. * else if (avg < target and max_p >= 0.01)
  73. * decrease max_p : max_p *= beta;
  74. *
  75. * target :[qth_min + 0.4*(qth_min - qth_max),
  76. * qth_min + 0.6*(qth_min - qth_max)].
  77. * alpha : min(0.01, max_p / 4)
  78. * beta : 0.9
  79. * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
  80. * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
  81. */
  82. #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
  83. #define MAX_P_MIN (1 * RED_ONE_PERCENT)
  84. #define MAX_P_MAX (50 * RED_ONE_PERCENT)
  85. #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
  86. #define RED_STAB_SIZE 256
  87. #define RED_STAB_MASK (RED_STAB_SIZE - 1)
  88. struct red_stats {
  89. u32 prob_drop; /* Early probability drops */
  90. u32 prob_mark; /* Early probability marks */
  91. u32 forced_drop; /* Forced drops, qavg > max_thresh */
  92. u32 forced_mark; /* Forced marks, qavg > max_thresh */
  93. u32 pdrop; /* Drops due to queue limits */
  94. };
  95. struct red_parms {
  96. /* Parameters */
  97. u32 qth_min; /* Min avg length threshold: Wlog scaled */
  98. u32 qth_max; /* Max avg length threshold: Wlog scaled */
  99. u32 Scell_max;
  100. u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
  101. /* reciprocal_value(max_P / qth_delta) */
  102. struct reciprocal_value max_P_reciprocal;
  103. u32 qth_delta; /* max_th - min_th */
  104. u32 target_min; /* min_th + 0.4*(max_th - min_th) */
  105. u32 target_max; /* min_th + 0.6*(max_th - min_th) */
  106. u8 Scell_log;
  107. u8 Wlog; /* log(W) */
  108. u8 Plog; /* random number bits */
  109. u8 Stab[RED_STAB_SIZE];
  110. };
  111. struct red_vars {
  112. /* Variables */
  113. int qcount; /* Number of packets since last random
  114. number generation */
  115. u32 qR; /* Cached random number */
  116. unsigned long qavg; /* Average queue length: Wlog scaled */
  117. ktime_t qidlestart; /* Start of current idle period */
  118. };
  119. static inline u32 red_maxp(u8 Plog)
  120. {
  121. return Plog < 32 ? (~0U >> Plog) : ~0U;
  122. }
  123. static inline void red_set_vars(struct red_vars *v)
  124. {
  125. /* Reset average queue length, the value is strictly bound
  126. * to the parameters below, reseting hurts a bit but leaving
  127. * it might result in an unreasonable qavg for a while. --TGR
  128. */
  129. v->qavg = 0;
  130. v->qcount = -1;
  131. }
  132. static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
  133. u8 Scell_log, u8 *stab)
  134. {
  135. if (fls(qth_min) + Wlog >= 32)
  136. return false;
  137. if (fls(qth_max) + Wlog >= 32)
  138. return false;
  139. if (Scell_log >= 32)
  140. return false;
  141. if (qth_max < qth_min)
  142. return false;
  143. if (stab) {
  144. int i;
  145. for (i = 0; i < RED_STAB_SIZE; i++)
  146. if (stab[i] >= 32)
  147. return false;
  148. }
  149. return true;
  150. }
  151. static inline int red_get_flags(unsigned char qopt_flags,
  152. unsigned char historic_mask,
  153. struct nlattr *flags_attr,
  154. unsigned char supported_mask,
  155. struct nla_bitfield32 *p_flags,
  156. unsigned char *p_userbits,
  157. struct netlink_ext_ack *extack)
  158. {
  159. struct nla_bitfield32 flags;
  160. if (qopt_flags && flags_attr) {
  161. NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
  162. return -EINVAL;
  163. }
  164. if (flags_attr) {
  165. flags = nla_get_bitfield32(flags_attr);
  166. } else {
  167. flags.selector = historic_mask;
  168. flags.value = qopt_flags & historic_mask;
  169. }
  170. *p_flags = flags;
  171. *p_userbits = qopt_flags & ~historic_mask;
  172. return 0;
  173. }
  174. static inline int red_validate_flags(unsigned char flags,
  175. struct netlink_ext_ack *extack)
  176. {
  177. if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
  178. NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
  179. return -EINVAL;
  180. }
  181. return 0;
  182. }
  183. static inline void red_set_parms(struct red_parms *p,
  184. u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
  185. u8 Scell_log, u8 *stab, u32 max_P)
  186. {
  187. int delta = qth_max - qth_min;
  188. u32 max_p_delta;
  189. p->qth_min = qth_min << Wlog;
  190. p->qth_max = qth_max << Wlog;
  191. p->Wlog = Wlog;
  192. p->Plog = Plog;
  193. if (delta <= 0)
  194. delta = 1;
  195. p->qth_delta = delta;
  196. if (!max_P) {
  197. max_P = red_maxp(Plog);
  198. max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
  199. }
  200. p->max_P = max_P;
  201. max_p_delta = max_P / delta;
  202. max_p_delta = max(max_p_delta, 1U);
  203. p->max_P_reciprocal = reciprocal_value(max_p_delta);
  204. /* RED Adaptative target :
  205. * [min_th + 0.4*(min_th - max_th),
  206. * min_th + 0.6*(min_th - max_th)].
  207. */
  208. delta /= 5;
  209. p->target_min = qth_min + 2*delta;
  210. p->target_max = qth_min + 3*delta;
  211. p->Scell_log = Scell_log;
  212. p->Scell_max = (255 << Scell_log);
  213. if (stab)
  214. memcpy(p->Stab, stab, sizeof(p->Stab));
  215. }
  216. static inline int red_is_idling(const struct red_vars *v)
  217. {
  218. return v->qidlestart != 0;
  219. }
  220. static inline void red_start_of_idle_period(struct red_vars *v)
  221. {
  222. v->qidlestart = ktime_get();
  223. }
  224. static inline void red_end_of_idle_period(struct red_vars *v)
  225. {
  226. v->qidlestart = 0;
  227. }
  228. static inline void red_restart(struct red_vars *v)
  229. {
  230. red_end_of_idle_period(v);
  231. v->qavg = 0;
  232. v->qcount = -1;
  233. }
  234. static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
  235. const struct red_vars *v)
  236. {
  237. s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
  238. long us_idle = min_t(s64, delta, p->Scell_max);
  239. int shift;
  240. /*
  241. * The problem: ideally, average length queue recalculation should
  242. * be done over constant clock intervals. This is too expensive, so
  243. * that the calculation is driven by outgoing packets.
  244. * When the queue is idle we have to model this clock by hand.
  245. *
  246. * SF+VJ proposed to "generate":
  247. *
  248. * m = idletime / (average_pkt_size / bandwidth)
  249. *
  250. * dummy packets as a burst after idle time, i.e.
  251. *
  252. * v->qavg *= (1-W)^m
  253. *
  254. * This is an apparently overcomplicated solution (f.e. we have to
  255. * precompute a table to make this calculation in reasonable time)
  256. * I believe that a simpler model may be used here,
  257. * but it is field for experiments.
  258. */
  259. shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
  260. if (shift)
  261. return v->qavg >> shift;
  262. else {
  263. /* Approximate initial part of exponent with linear function:
  264. *
  265. * (1-W)^m ~= 1-mW + ...
  266. *
  267. * Seems, it is the best solution to
  268. * problem of too coarse exponent tabulation.
  269. */
  270. us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
  271. if (us_idle < (v->qavg >> 1))
  272. return v->qavg - us_idle;
  273. else
  274. return v->qavg >> 1;
  275. }
  276. }
  277. static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
  278. const struct red_vars *v,
  279. unsigned int backlog)
  280. {
  281. /*
  282. * NOTE: v->qavg is fixed point number with point at Wlog.
  283. * The formula below is equvalent to floating point
  284. * version:
  285. *
  286. * qavg = qavg*(1-W) + backlog*W;
  287. *
  288. * --ANK (980924)
  289. */
  290. return v->qavg + (backlog - (v->qavg >> p->Wlog));
  291. }
  292. static inline unsigned long red_calc_qavg(const struct red_parms *p,
  293. const struct red_vars *v,
  294. unsigned int backlog)
  295. {
  296. if (!red_is_idling(v))
  297. return red_calc_qavg_no_idle_time(p, v, backlog);
  298. else
  299. return red_calc_qavg_from_idle_time(p, v);
  300. }
  301. static inline u32 red_random(const struct red_parms *p)
  302. {
  303. return reciprocal_divide(get_random_u32(), p->max_P_reciprocal);
  304. }
  305. static inline int red_mark_probability(const struct red_parms *p,
  306. const struct red_vars *v,
  307. unsigned long qavg)
  308. {
  309. /* The formula used below causes questions.
  310. OK. qR is random number in the interval
  311. (0..1/max_P)*(qth_max-qth_min)
  312. i.e. 0..(2^Plog). If we used floating point
  313. arithmetics, it would be: (2^Plog)*rnd_num,
  314. where rnd_num is less 1.
  315. Taking into account, that qavg have fixed
  316. point at Wlog, two lines
  317. below have the following floating point equivalent:
  318. max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
  319. Any questions? --ANK (980924)
  320. */
  321. return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
  322. }
  323. enum {
  324. RED_BELOW_MIN_THRESH,
  325. RED_BETWEEN_TRESH,
  326. RED_ABOVE_MAX_TRESH,
  327. };
  328. static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
  329. {
  330. if (qavg < p->qth_min)
  331. return RED_BELOW_MIN_THRESH;
  332. else if (qavg >= p->qth_max)
  333. return RED_ABOVE_MAX_TRESH;
  334. else
  335. return RED_BETWEEN_TRESH;
  336. }
  337. enum {
  338. RED_DONT_MARK,
  339. RED_PROB_MARK,
  340. RED_HARD_MARK,
  341. };
  342. static inline int red_action(const struct red_parms *p,
  343. struct red_vars *v,
  344. unsigned long qavg)
  345. {
  346. switch (red_cmp_thresh(p, qavg)) {
  347. case RED_BELOW_MIN_THRESH:
  348. v->qcount = -1;
  349. return RED_DONT_MARK;
  350. case RED_BETWEEN_TRESH:
  351. if (++v->qcount) {
  352. if (red_mark_probability(p, v, qavg)) {
  353. v->qcount = 0;
  354. v->qR = red_random(p);
  355. return RED_PROB_MARK;
  356. }
  357. } else
  358. v->qR = red_random(p);
  359. return RED_DONT_MARK;
  360. case RED_ABOVE_MAX_TRESH:
  361. v->qcount = -1;
  362. return RED_HARD_MARK;
  363. }
  364. BUG();
  365. return RED_DONT_MARK;
  366. }
  367. static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
  368. {
  369. unsigned long qavg;
  370. u32 max_p_delta;
  371. qavg = v->qavg;
  372. if (red_is_idling(v))
  373. qavg = red_calc_qavg_from_idle_time(p, v);
  374. /* v->qavg is fixed point number with point at Wlog */
  375. qavg >>= p->Wlog;
  376. if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
  377. p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
  378. else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
  379. p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
  380. max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
  381. max_p_delta = max(max_p_delta, 1U);
  382. p->max_P_reciprocal = reciprocal_value(max_p_delta);
  383. }
  384. #endif