ipv6.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <[email protected]>
  7. */
  8. #ifndef _NET_IPV6_H
  9. #define _NET_IPV6_H
  10. #include <linux/ipv6.h>
  11. #include <linux/hardirq.h>
  12. #include <linux/jhash.h>
  13. #include <linux/refcount.h>
  14. #include <linux/jump_label_ratelimit.h>
  15. #include <net/if_inet6.h>
  16. #include <net/flow.h>
  17. #include <net/flow_dissector.h>
  18. #include <net/inet_dscp.h>
  19. #include <net/snmp.h>
  20. #include <net/netns/hash.h>
  21. struct ip_tunnel_info;
  22. #define SIN6_LEN_RFC2133 24
  23. #define IPV6_MAXPLEN 65535
  24. /*
  25. * NextHeader field of IPv6 header
  26. */
  27. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  28. #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
  29. #define NEXTHDR_TCP 6 /* TCP segment. */
  30. #define NEXTHDR_UDP 17 /* UDP message. */
  31. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  32. #define NEXTHDR_ROUTING 43 /* Routing header. */
  33. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  34. #define NEXTHDR_GRE 47 /* GRE header. */
  35. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  36. #define NEXTHDR_AUTH 51 /* Authentication header. */
  37. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  38. #define NEXTHDR_NONE 59 /* No next header */
  39. #define NEXTHDR_DEST 60 /* Destination options header. */
  40. #define NEXTHDR_SCTP 132 /* SCTP message. */
  41. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  42. #define NEXTHDR_MAX 255
  43. #define IPV6_DEFAULT_HOPLIMIT 64
  44. #define IPV6_DEFAULT_MCASTHOPS 1
  45. /* Limits on Hop-by-Hop and Destination options.
  46. *
  47. * Per RFC8200 there is no limit on the maximum number or lengths of options in
  48. * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
  49. * We allow configurable limits in order to mitigate potential denial of
  50. * service attacks.
  51. *
  52. * There are three limits that may be set:
  53. * - Limit the number of options in a Hop-by-Hop or Destination options
  54. * extension header
  55. * - Limit the byte length of a Hop-by-Hop or Destination options extension
  56. * header
  57. * - Disallow unknown options
  58. *
  59. * The limits are expressed in corresponding sysctls:
  60. *
  61. * ipv6.sysctl.max_dst_opts_cnt
  62. * ipv6.sysctl.max_hbh_opts_cnt
  63. * ipv6.sysctl.max_dst_opts_len
  64. * ipv6.sysctl.max_hbh_opts_len
  65. *
  66. * max_*_opts_cnt is the number of TLVs that are allowed for Destination
  67. * options or Hop-by-Hop options. If the number is less than zero then unknown
  68. * TLVs are disallowed and the number of known options that are allowed is the
  69. * absolute value. Setting the value to INT_MAX indicates no limit.
  70. *
  71. * max_*_opts_len is the length limit in bytes of a Destination or
  72. * Hop-by-Hop options extension header. Setting the value to INT_MAX
  73. * indicates no length limit.
  74. *
  75. * If a limit is exceeded when processing an extension header the packet is
  76. * silently discarded.
  77. */
  78. /* Default limits for Hop-by-Hop and Destination options */
  79. #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
  80. #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
  81. #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
  82. #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
  83. /*
  84. * Addr type
  85. *
  86. * type - unicast | multicast
  87. * scope - local | site | global
  88. * v4 - compat
  89. * v4mapped
  90. * any
  91. * loopback
  92. */
  93. #define IPV6_ADDR_ANY 0x0000U
  94. #define IPV6_ADDR_UNICAST 0x0001U
  95. #define IPV6_ADDR_MULTICAST 0x0002U
  96. #define IPV6_ADDR_LOOPBACK 0x0010U
  97. #define IPV6_ADDR_LINKLOCAL 0x0020U
  98. #define IPV6_ADDR_SITELOCAL 0x0040U
  99. #define IPV6_ADDR_COMPATv4 0x0080U
  100. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  101. #define IPV6_ADDR_MAPPED 0x1000U
  102. /*
  103. * Addr scopes
  104. */
  105. #define IPV6_ADDR_MC_SCOPE(a) \
  106. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  107. #define __IPV6_ADDR_SCOPE_INVALID -1
  108. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  109. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  110. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  111. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  112. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  113. /*
  114. * Addr flags
  115. */
  116. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  117. ((a)->s6_addr[1] & 0x10)
  118. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  119. ((a)->s6_addr[1] & 0x20)
  120. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  121. ((a)->s6_addr[1] & 0x40)
  122. /*
  123. * fragmentation header
  124. */
  125. struct frag_hdr {
  126. __u8 nexthdr;
  127. __u8 reserved;
  128. __be16 frag_off;
  129. __be32 identification;
  130. };
  131. /*
  132. * Jumbo payload option, as described in RFC 2675 2.
  133. */
  134. struct hop_jumbo_hdr {
  135. u8 nexthdr;
  136. u8 hdrlen;
  137. u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */
  138. u8 tlv_len; /* 4 */
  139. __be32 jumbo_payload_len;
  140. };
  141. #define IP6_MF 0x0001
  142. #define IP6_OFFSET 0xFFF8
  143. struct ip6_fraglist_iter {
  144. struct ipv6hdr *tmp_hdr;
  145. struct sk_buff *frag;
  146. int offset;
  147. unsigned int hlen;
  148. __be32 frag_id;
  149. u8 nexthdr;
  150. };
  151. int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
  152. u8 nexthdr, __be32 frag_id,
  153. struct ip6_fraglist_iter *iter);
  154. void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
  155. static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
  156. {
  157. struct sk_buff *skb = iter->frag;
  158. iter->frag = skb->next;
  159. skb_mark_not_on_list(skb);
  160. return skb;
  161. }
  162. struct ip6_frag_state {
  163. u8 *prevhdr;
  164. unsigned int hlen;
  165. unsigned int mtu;
  166. unsigned int left;
  167. int offset;
  168. int ptr;
  169. int hroom;
  170. int troom;
  171. __be32 frag_id;
  172. u8 nexthdr;
  173. };
  174. void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
  175. unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
  176. u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
  177. struct sk_buff *ip6_frag_next(struct sk_buff *skb,
  178. struct ip6_frag_state *state);
  179. #define IP6_REPLY_MARK(net, mark) \
  180. ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
  181. #include <net/sock.h>
  182. /* sysctls */
  183. extern int sysctl_mld_max_msf;
  184. extern int sysctl_mld_qrv;
  185. #define _DEVINC(net, statname, mod, idev, field) \
  186. ({ \
  187. struct inet6_dev *_idev = (idev); \
  188. if (likely(_idev != NULL)) \
  189. mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
  190. mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
  191. })
  192. /* per device counters are atomic_long_t */
  193. #define _DEVINCATOMIC(net, statname, mod, idev, field) \
  194. ({ \
  195. struct inet6_dev *_idev = (idev); \
  196. if (likely(_idev != NULL)) \
  197. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  198. mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
  199. })
  200. /* per device and per net counters are atomic_long_t */
  201. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  202. ({ \
  203. struct inet6_dev *_idev = (idev); \
  204. if (likely(_idev != NULL)) \
  205. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  206. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  207. })
  208. #define _DEVADD(net, statname, mod, idev, field, val) \
  209. ({ \
  210. struct inet6_dev *_idev = (idev); \
  211. if (likely(_idev != NULL)) \
  212. mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
  213. mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
  214. })
  215. #define _DEVUPD(net, statname, mod, idev, field, val) \
  216. ({ \
  217. struct inet6_dev *_idev = (idev); \
  218. if (likely(_idev != NULL)) \
  219. mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
  220. mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
  221. })
  222. /* MIBs */
  223. #define IP6_INC_STATS(net, idev,field) \
  224. _DEVINC(net, ipv6, , idev, field)
  225. #define __IP6_INC_STATS(net, idev,field) \
  226. _DEVINC(net, ipv6, __, idev, field)
  227. #define IP6_ADD_STATS(net, idev,field,val) \
  228. _DEVADD(net, ipv6, , idev, field, val)
  229. #define __IP6_ADD_STATS(net, idev,field,val) \
  230. _DEVADD(net, ipv6, __, idev, field, val)
  231. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  232. _DEVUPD(net, ipv6, , idev, field, val)
  233. #define __IP6_UPD_PO_STATS(net, idev,field,val) \
  234. _DEVUPD(net, ipv6, __, idev, field, val)
  235. #define ICMP6_INC_STATS(net, idev, field) \
  236. _DEVINCATOMIC(net, icmpv6, , idev, field)
  237. #define __ICMP6_INC_STATS(net, idev, field) \
  238. _DEVINCATOMIC(net, icmpv6, __, idev, field)
  239. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  240. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  241. #define ICMP6MSGIN_INC_STATS(net, idev, field) \
  242. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  243. struct ip6_ra_chain {
  244. struct ip6_ra_chain *next;
  245. struct sock *sk;
  246. int sel;
  247. void (*destructor)(struct sock *);
  248. };
  249. extern struct ip6_ra_chain *ip6_ra_chain;
  250. extern rwlock_t ip6_ra_lock;
  251. /*
  252. This structure is prepared by protocol, when parsing
  253. ancillary data and passed to IPv6.
  254. */
  255. struct ipv6_txoptions {
  256. refcount_t refcnt;
  257. /* Length of this structure */
  258. int tot_len;
  259. /* length of extension headers */
  260. __u16 opt_flen; /* after fragment hdr */
  261. __u16 opt_nflen; /* before fragment hdr */
  262. struct ipv6_opt_hdr *hopopt;
  263. struct ipv6_opt_hdr *dst0opt;
  264. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  265. struct ipv6_opt_hdr *dst1opt;
  266. struct rcu_head rcu;
  267. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  268. };
  269. /* flowlabel_reflect sysctl values */
  270. enum flowlabel_reflect {
  271. FLOWLABEL_REFLECT_ESTABLISHED = 1,
  272. FLOWLABEL_REFLECT_TCP_RESET = 2,
  273. FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
  274. };
  275. struct ip6_flowlabel {
  276. struct ip6_flowlabel __rcu *next;
  277. __be32 label;
  278. atomic_t users;
  279. struct in6_addr dst;
  280. struct ipv6_txoptions *opt;
  281. unsigned long linger;
  282. struct rcu_head rcu;
  283. u8 share;
  284. union {
  285. struct pid *pid;
  286. kuid_t uid;
  287. } owner;
  288. unsigned long lastuse;
  289. unsigned long expires;
  290. struct net *fl_net;
  291. };
  292. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  293. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  294. #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
  295. #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
  296. #define IPV6_TCLASS_SHIFT 20
  297. struct ipv6_fl_socklist {
  298. struct ipv6_fl_socklist __rcu *next;
  299. struct ip6_flowlabel *fl;
  300. struct rcu_head rcu;
  301. };
  302. struct ipcm6_cookie {
  303. struct sockcm_cookie sockc;
  304. __s16 hlimit;
  305. __s16 tclass;
  306. __u16 gso_size;
  307. __s8 dontfrag;
  308. struct ipv6_txoptions *opt;
  309. };
  310. static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
  311. {
  312. *ipc6 = (struct ipcm6_cookie) {
  313. .hlimit = -1,
  314. .tclass = -1,
  315. .dontfrag = -1,
  316. };
  317. }
  318. static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
  319. const struct ipv6_pinfo *np)
  320. {
  321. *ipc6 = (struct ipcm6_cookie) {
  322. .hlimit = -1,
  323. .tclass = np->tclass,
  324. .dontfrag = np->dontfrag,
  325. };
  326. }
  327. static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
  328. {
  329. struct ipv6_txoptions *opt;
  330. rcu_read_lock();
  331. opt = rcu_dereference(np->opt);
  332. if (opt) {
  333. if (!refcount_inc_not_zero(&opt->refcnt))
  334. opt = NULL;
  335. else
  336. opt = rcu_pointer_handoff(opt);
  337. }
  338. rcu_read_unlock();
  339. return opt;
  340. }
  341. static inline void txopt_put(struct ipv6_txoptions *opt)
  342. {
  343. if (opt && refcount_dec_and_test(&opt->refcnt))
  344. kfree_rcu(opt, rcu);
  345. }
  346. #if IS_ENABLED(CONFIG_IPV6)
  347. struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
  348. extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
  349. static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
  350. __be32 label)
  351. {
  352. if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
  353. READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
  354. return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
  355. return NULL;
  356. }
  357. #endif
  358. struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
  359. struct ip6_flowlabel *fl,
  360. struct ipv6_txoptions *fopt);
  361. void fl6_free_socklist(struct sock *sk);
  362. int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
  363. int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
  364. int flags);
  365. int ip6_flowlabel_init(void);
  366. void ip6_flowlabel_cleanup(void);
  367. bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
  368. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  369. {
  370. if (fl)
  371. atomic_dec(&fl->users);
  372. }
  373. void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  374. void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
  375. struct icmp6hdr *thdr, int len);
  376. int ip6_ra_control(struct sock *sk, int sel);
  377. int ipv6_parse_hopopts(struct sk_buff *skb);
  378. struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
  379. struct ipv6_txoptions *opt);
  380. struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
  381. struct ipv6_txoptions *opt,
  382. int newtype,
  383. struct ipv6_opt_hdr *newopt);
  384. struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  385. struct ipv6_txoptions *opt);
  386. static inline struct ipv6_txoptions *
  387. ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
  388. {
  389. if (!opt)
  390. return NULL;
  391. return __ipv6_fixup_options(opt_space, opt);
  392. }
  393. bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
  394. const struct inet6_skb_parm *opt);
  395. struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
  396. struct ipv6_txoptions *opt);
  397. /* This helper is specialized for BIG TCP needs.
  398. * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
  399. * It assumes headers are already in skb->head.
  400. * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
  401. */
  402. static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
  403. {
  404. const struct hop_jumbo_hdr *jhdr;
  405. const struct ipv6hdr *nhdr;
  406. if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
  407. return 0;
  408. if (skb->protocol != htons(ETH_P_IPV6))
  409. return 0;
  410. if (skb_network_offset(skb) +
  411. sizeof(struct ipv6hdr) +
  412. sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
  413. return 0;
  414. nhdr = ipv6_hdr(skb);
  415. if (nhdr->nexthdr != NEXTHDR_HOP)
  416. return 0;
  417. jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
  418. if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
  419. jhdr->nexthdr != IPPROTO_TCP)
  420. return 0;
  421. return jhdr->nexthdr;
  422. }
  423. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  424. {
  425. /* If forwarding is enabled, RA are not accepted unless the special
  426. * hybrid mode (accept_ra=2) is enabled.
  427. */
  428. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  429. idev->cnf.accept_ra;
  430. }
  431. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  432. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  433. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  434. int __ipv6_addr_type(const struct in6_addr *addr);
  435. static inline int ipv6_addr_type(const struct in6_addr *addr)
  436. {
  437. return __ipv6_addr_type(addr) & 0xffff;
  438. }
  439. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  440. {
  441. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  442. }
  443. static inline int __ipv6_addr_src_scope(int type)
  444. {
  445. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  446. }
  447. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  448. {
  449. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  450. }
  451. static inline bool __ipv6_addr_needs_scope_id(int type)
  452. {
  453. return type & IPV6_ADDR_LINKLOCAL ||
  454. (type & IPV6_ADDR_MULTICAST &&
  455. (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
  456. }
  457. static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
  458. {
  459. return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
  460. }
  461. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  462. {
  463. return memcmp(a1, a2, sizeof(struct in6_addr));
  464. }
  465. static inline bool
  466. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  467. const struct in6_addr *a2)
  468. {
  469. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  470. const unsigned long *ul1 = (const unsigned long *)a1;
  471. const unsigned long *ulm = (const unsigned long *)m;
  472. const unsigned long *ul2 = (const unsigned long *)a2;
  473. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  474. ((ul1[1] ^ ul2[1]) & ulm[1]));
  475. #else
  476. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  477. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  478. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  479. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  480. #endif
  481. }
  482. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  483. const struct in6_addr *addr,
  484. int plen)
  485. {
  486. /* caller must guarantee 0 <= plen <= 128 */
  487. int o = plen >> 3,
  488. b = plen & 0x7;
  489. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  490. memcpy(pfx->s6_addr, addr, o);
  491. if (b != 0)
  492. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  493. }
  494. static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
  495. const struct in6_addr *pfx,
  496. int plen)
  497. {
  498. /* caller must guarantee 0 <= plen <= 128 */
  499. int o = plen >> 3,
  500. b = plen & 0x7;
  501. memcpy(addr->s6_addr, pfx, o);
  502. if (b != 0) {
  503. addr->s6_addr[o] &= ~(0xff00 >> b);
  504. addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
  505. }
  506. }
  507. static inline void __ipv6_addr_set_half(__be32 *addr,
  508. __be32 wh, __be32 wl)
  509. {
  510. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  511. #if defined(__BIG_ENDIAN)
  512. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  513. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  514. return;
  515. }
  516. #elif defined(__LITTLE_ENDIAN)
  517. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  518. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  519. return;
  520. }
  521. #endif
  522. #endif
  523. addr[0] = wh;
  524. addr[1] = wl;
  525. }
  526. static inline void ipv6_addr_set(struct in6_addr *addr,
  527. __be32 w1, __be32 w2,
  528. __be32 w3, __be32 w4)
  529. {
  530. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  531. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  532. }
  533. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  534. const struct in6_addr *a2)
  535. {
  536. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  537. const unsigned long *ul1 = (const unsigned long *)a1;
  538. const unsigned long *ul2 = (const unsigned long *)a2;
  539. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  540. #else
  541. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  542. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  543. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  544. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  545. #endif
  546. }
  547. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  548. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  549. const __be64 *a2,
  550. unsigned int len)
  551. {
  552. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  553. return false;
  554. return true;
  555. }
  556. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  557. const struct in6_addr *addr2,
  558. unsigned int prefixlen)
  559. {
  560. const __be64 *a1 = (const __be64 *)addr1;
  561. const __be64 *a2 = (const __be64 *)addr2;
  562. if (prefixlen >= 64) {
  563. if (a1[0] ^ a2[0])
  564. return false;
  565. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  566. }
  567. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  568. }
  569. #else
  570. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  571. const struct in6_addr *addr2,
  572. unsigned int prefixlen)
  573. {
  574. const __be32 *a1 = addr1->s6_addr32;
  575. const __be32 *a2 = addr2->s6_addr32;
  576. unsigned int pdw, pbi;
  577. /* check complete u32 in prefix */
  578. pdw = prefixlen >> 5;
  579. if (pdw && memcmp(a1, a2, pdw << 2))
  580. return false;
  581. /* check incomplete u32 in prefix */
  582. pbi = prefixlen & 0x1f;
  583. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  584. return false;
  585. return true;
  586. }
  587. #endif
  588. static inline bool ipv6_addr_any(const struct in6_addr *a)
  589. {
  590. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  591. const unsigned long *ul = (const unsigned long *)a;
  592. return (ul[0] | ul[1]) == 0UL;
  593. #else
  594. return (a->s6_addr32[0] | a->s6_addr32[1] |
  595. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  596. #endif
  597. }
  598. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  599. {
  600. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  601. const unsigned long *ul = (const unsigned long *)a;
  602. unsigned long x = ul[0] ^ ul[1];
  603. return (u32)(x ^ (x >> 32));
  604. #else
  605. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  606. a->s6_addr32[2] ^ a->s6_addr32[3]);
  607. #endif
  608. }
  609. /* more secured version of ipv6_addr_hash() */
  610. static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
  611. {
  612. return jhash2((__force const u32 *)a->s6_addr32,
  613. ARRAY_SIZE(a->s6_addr32), initval);
  614. }
  615. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  616. {
  617. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  618. const __be64 *be = (const __be64 *)a;
  619. return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
  620. #else
  621. return (a->s6_addr32[0] | a->s6_addr32[1] |
  622. a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
  623. #endif
  624. }
  625. /*
  626. * Note that we must __force cast these to unsigned long to make sparse happy,
  627. * since all of the endian-annotated types are fixed size regardless of arch.
  628. */
  629. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  630. {
  631. return (
  632. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  633. *(unsigned long *)a |
  634. #else
  635. (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
  636. #endif
  637. (__force unsigned long)(a->s6_addr32[2] ^
  638. cpu_to_be32(0x0000ffff))) == 0UL;
  639. }
  640. static inline bool ipv6_addr_v4mapped_any(const struct in6_addr *a)
  641. {
  642. return ipv6_addr_v4mapped(a) && ipv4_is_zeronet(a->s6_addr32[3]);
  643. }
  644. static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
  645. {
  646. return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
  647. }
  648. static inline u32 ipv6_portaddr_hash(const struct net *net,
  649. const struct in6_addr *addr6,
  650. unsigned int port)
  651. {
  652. unsigned int hash, mix = net_hash_mix(net);
  653. if (ipv6_addr_any(addr6))
  654. hash = jhash_1word(0, mix);
  655. else if (ipv6_addr_v4mapped(addr6))
  656. hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
  657. else
  658. hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
  659. return hash ^ port;
  660. }
  661. /*
  662. * Check for a RFC 4843 ORCHID address
  663. * (Overlay Routable Cryptographic Hash Identifiers)
  664. */
  665. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  666. {
  667. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  668. }
  669. static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
  670. {
  671. return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
  672. }
  673. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  674. struct in6_addr *v4mapped)
  675. {
  676. ipv6_addr_set(v4mapped,
  677. 0, 0,
  678. htonl(0x0000FFFF),
  679. addr);
  680. }
  681. /*
  682. * find the first different bit between two addresses
  683. * length of address must be a multiple of 32bits
  684. */
  685. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  686. {
  687. const __be32 *a1 = token1, *a2 = token2;
  688. int i;
  689. addrlen >>= 2;
  690. for (i = 0; i < addrlen; i++) {
  691. __be32 xb = a1[i] ^ a2[i];
  692. if (xb)
  693. return i * 32 + 31 - __fls(ntohl(xb));
  694. }
  695. /*
  696. * we should *never* get to this point since that
  697. * would mean the addrs are equal
  698. *
  699. * However, we do get to it 8) And exacly, when
  700. * addresses are equal 8)
  701. *
  702. * ip route add 1111::/128 via ...
  703. * ip route add 1111::/64 via ...
  704. * and we are here.
  705. *
  706. * Ideally, this function should stop comparison
  707. * at prefix length. It does not, but it is still OK,
  708. * if returned value is greater than prefix length.
  709. * --ANK (980803)
  710. */
  711. return addrlen << 5;
  712. }
  713. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  714. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  715. {
  716. const __be64 *a1 = token1, *a2 = token2;
  717. int i;
  718. addrlen >>= 3;
  719. for (i = 0; i < addrlen; i++) {
  720. __be64 xb = a1[i] ^ a2[i];
  721. if (xb)
  722. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  723. }
  724. return addrlen << 6;
  725. }
  726. #endif
  727. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  728. {
  729. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  730. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  731. return __ipv6_addr_diff64(token1, token2, addrlen);
  732. #endif
  733. return __ipv6_addr_diff32(token1, token2, addrlen);
  734. }
  735. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  736. {
  737. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  738. }
  739. __be32 ipv6_select_ident(struct net *net,
  740. const struct in6_addr *daddr,
  741. const struct in6_addr *saddr);
  742. __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
  743. int ip6_dst_hoplimit(struct dst_entry *dst);
  744. static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
  745. struct dst_entry *dst)
  746. {
  747. int hlimit;
  748. if (ipv6_addr_is_multicast(&fl6->daddr))
  749. hlimit = np->mcast_hops;
  750. else
  751. hlimit = np->hop_limit;
  752. if (hlimit < 0)
  753. hlimit = ip6_dst_hoplimit(dst);
  754. return hlimit;
  755. }
  756. /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
  757. * Equivalent to : flow->v6addrs.src = iph->saddr;
  758. * flow->v6addrs.dst = iph->daddr;
  759. */
  760. static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
  761. const struct ipv6hdr *iph)
  762. {
  763. BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
  764. offsetof(typeof(flow->addrs), v6addrs.src) +
  765. sizeof(flow->addrs.v6addrs.src));
  766. memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
  767. flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  768. }
  769. #if IS_ENABLED(CONFIG_IPV6)
  770. static inline bool ipv6_can_nonlocal_bind(struct net *net,
  771. struct inet_sock *inet)
  772. {
  773. return net->ipv6.sysctl.ip_nonlocal_bind ||
  774. inet->freebind || inet->transparent;
  775. }
  776. /* Sysctl settings for net ipv6.auto_flowlabels */
  777. #define IP6_AUTO_FLOW_LABEL_OFF 0
  778. #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
  779. #define IP6_AUTO_FLOW_LABEL_OPTIN 2
  780. #define IP6_AUTO_FLOW_LABEL_FORCED 3
  781. #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
  782. #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
  783. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  784. __be32 flowlabel, bool autolabel,
  785. struct flowi6 *fl6)
  786. {
  787. u32 hash;
  788. /* @flowlabel may include more than a flow label, eg, the traffic class.
  789. * Here we want only the flow label value.
  790. */
  791. flowlabel &= IPV6_FLOWLABEL_MASK;
  792. if (flowlabel ||
  793. net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
  794. (!autolabel &&
  795. net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
  796. return flowlabel;
  797. hash = skb_get_hash_flowi6(skb, fl6);
  798. /* Since this is being sent on the wire obfuscate hash a bit
  799. * to minimize possbility that any useful information to an
  800. * attacker is leaked. Only lower 20 bits are relevant.
  801. */
  802. hash = rol32(hash, 16);
  803. flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
  804. if (net->ipv6.sysctl.flowlabel_state_ranges)
  805. flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
  806. return flowlabel;
  807. }
  808. static inline int ip6_default_np_autolabel(struct net *net)
  809. {
  810. switch (net->ipv6.sysctl.auto_flowlabels) {
  811. case IP6_AUTO_FLOW_LABEL_OFF:
  812. case IP6_AUTO_FLOW_LABEL_OPTIN:
  813. default:
  814. return 0;
  815. case IP6_AUTO_FLOW_LABEL_OPTOUT:
  816. case IP6_AUTO_FLOW_LABEL_FORCED:
  817. return 1;
  818. }
  819. }
  820. #else
  821. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  822. __be32 flowlabel, bool autolabel,
  823. struct flowi6 *fl6)
  824. {
  825. return flowlabel;
  826. }
  827. static inline int ip6_default_np_autolabel(struct net *net)
  828. {
  829. return 0;
  830. }
  831. #endif
  832. #if IS_ENABLED(CONFIG_IPV6)
  833. static inline int ip6_multipath_hash_policy(const struct net *net)
  834. {
  835. return net->ipv6.sysctl.multipath_hash_policy;
  836. }
  837. static inline u32 ip6_multipath_hash_fields(const struct net *net)
  838. {
  839. return net->ipv6.sysctl.multipath_hash_fields;
  840. }
  841. #else
  842. static inline int ip6_multipath_hash_policy(const struct net *net)
  843. {
  844. return 0;
  845. }
  846. static inline u32 ip6_multipath_hash_fields(const struct net *net)
  847. {
  848. return 0;
  849. }
  850. #endif
  851. /*
  852. * Header manipulation
  853. */
  854. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  855. __be32 flowlabel)
  856. {
  857. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  858. }
  859. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  860. {
  861. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  862. }
  863. static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
  864. {
  865. return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
  866. }
  867. static inline u8 ip6_tclass(__be32 flowinfo)
  868. {
  869. return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
  870. }
  871. static inline dscp_t ip6_dscp(__be32 flowinfo)
  872. {
  873. return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
  874. }
  875. static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
  876. {
  877. return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
  878. }
  879. static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
  880. {
  881. return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
  882. }
  883. /*
  884. * Prototypes exported by ipv6
  885. */
  886. /*
  887. * rcv function (called from netdevice level)
  888. */
  889. int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
  890. struct packet_type *pt, struct net_device *orig_dev);
  891. void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
  892. struct net_device *orig_dev);
  893. int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
  894. /*
  895. * upper-layer output functions
  896. */
  897. int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
  898. __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
  899. int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  900. int ip6_append_data(struct sock *sk,
  901. int getfrag(void *from, char *to, int offset, int len,
  902. int odd, struct sk_buff *skb),
  903. void *from, size_t length, int transhdrlen,
  904. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  905. struct rt6_info *rt, unsigned int flags);
  906. int ip6_push_pending_frames(struct sock *sk);
  907. void ip6_flush_pending_frames(struct sock *sk);
  908. int ip6_send_skb(struct sk_buff *skb);
  909. struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
  910. struct inet_cork_full *cork,
  911. struct inet6_cork *v6_cork);
  912. struct sk_buff *ip6_make_skb(struct sock *sk,
  913. int getfrag(void *from, char *to, int offset,
  914. int len, int odd, struct sk_buff *skb),
  915. void *from, size_t length, int transhdrlen,
  916. struct ipcm6_cookie *ipc6,
  917. struct rt6_info *rt, unsigned int flags,
  918. struct inet_cork_full *cork);
  919. static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
  920. {
  921. return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
  922. &inet6_sk(sk)->cork);
  923. }
  924. int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
  925. struct flowi6 *fl6);
  926. struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
  927. const struct in6_addr *final_dst);
  928. struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  929. const struct in6_addr *final_dst,
  930. bool connected);
  931. struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
  932. struct net_device *dev,
  933. struct net *net, struct socket *sock,
  934. struct in6_addr *saddr,
  935. const struct ip_tunnel_info *info,
  936. u8 protocol, bool use_cache);
  937. struct dst_entry *ip6_blackhole_route(struct net *net,
  938. struct dst_entry *orig_dst);
  939. /*
  940. * skb processing functions
  941. */
  942. int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
  943. int ip6_forward(struct sk_buff *skb);
  944. int ip6_input(struct sk_buff *skb);
  945. int ip6_mc_input(struct sk_buff *skb);
  946. void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
  947. bool have_final);
  948. int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  949. int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  950. /*
  951. * Extension header (options) processing
  952. */
  953. void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  954. u8 *proto, struct in6_addr **daddr_p,
  955. struct in6_addr *saddr);
  956. void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  957. u8 *proto);
  958. int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
  959. __be16 *frag_offp);
  960. bool ipv6_ext_hdr(u8 nexthdr);
  961. enum {
  962. IP6_FH_F_FRAG = (1 << 0),
  963. IP6_FH_F_AUTH = (1 << 1),
  964. IP6_FH_F_SKIP_RH = (1 << 2),
  965. };
  966. /* find specified header and get offset to it */
  967. int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
  968. unsigned short *fragoff, int *fragflg);
  969. int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
  970. struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  971. const struct ipv6_txoptions *opt,
  972. struct in6_addr *orig);
  973. /*
  974. * socket options (ipv6_sockglue.c)
  975. */
  976. DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
  977. int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
  978. unsigned int optlen);
  979. int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
  980. unsigned int optlen);
  981. int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
  982. sockptr_t optval, sockptr_t optlen);
  983. int ipv6_getsockopt(struct sock *sk, int level, int optname,
  984. char __user *optval, int __user *optlen);
  985. int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
  986. int addr_len);
  987. int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
  988. int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
  989. int addr_len);
  990. int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
  991. void ip6_datagram_release_cb(struct sock *sk);
  992. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
  993. int *addr_len);
  994. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  995. int *addr_len);
  996. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  997. u32 info, u8 *payload);
  998. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  999. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  1000. void inet6_cleanup_sock(struct sock *sk);
  1001. void inet6_sock_destruct(struct sock *sk);
  1002. int inet6_release(struct socket *sock);
  1003. int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
  1004. int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
  1005. int peer);
  1006. int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
  1007. int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
  1008. unsigned long arg);
  1009. int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  1010. struct sock *sk);
  1011. int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
  1012. int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  1013. int flags);
  1014. /*
  1015. * reassembly.c
  1016. */
  1017. extern const struct proto_ops inet6_stream_ops;
  1018. extern const struct proto_ops inet6_dgram_ops;
  1019. extern const struct proto_ops inet6_sockraw_ops;
  1020. struct group_source_req;
  1021. struct group_filter;
  1022. int ip6_mc_source(int add, int omode, struct sock *sk,
  1023. struct group_source_req *pgsr);
  1024. int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
  1025. struct sockaddr_storage *list);
  1026. int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  1027. sockptr_t optval, size_t ss_offset);
  1028. #ifdef CONFIG_PROC_FS
  1029. int ac6_proc_init(struct net *net);
  1030. void ac6_proc_exit(struct net *net);
  1031. int raw6_proc_init(void);
  1032. void raw6_proc_exit(void);
  1033. int tcp6_proc_init(struct net *net);
  1034. void tcp6_proc_exit(struct net *net);
  1035. int udp6_proc_init(struct net *net);
  1036. void udp6_proc_exit(struct net *net);
  1037. int udplite6_proc_init(void);
  1038. void udplite6_proc_exit(void);
  1039. int ipv6_misc_proc_init(void);
  1040. void ipv6_misc_proc_exit(void);
  1041. int snmp6_register_dev(struct inet6_dev *idev);
  1042. int snmp6_unregister_dev(struct inet6_dev *idev);
  1043. #else
  1044. static inline int ac6_proc_init(struct net *net) { return 0; }
  1045. static inline void ac6_proc_exit(struct net *net) { }
  1046. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  1047. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  1048. #endif
  1049. #ifdef CONFIG_SYSCTL
  1050. struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  1051. struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  1052. int ipv6_sysctl_register(void);
  1053. void ipv6_sysctl_unregister(void);
  1054. #endif
  1055. int ipv6_sock_mc_join(struct sock *sk, int ifindex,
  1056. const struct in6_addr *addr);
  1057. int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
  1058. const struct in6_addr *addr, unsigned int mode);
  1059. int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
  1060. const struct in6_addr *addr);
  1061. static inline int ip6_sock_set_v6only(struct sock *sk)
  1062. {
  1063. if (inet_sk(sk)->inet_num)
  1064. return -EINVAL;
  1065. lock_sock(sk);
  1066. sk->sk_ipv6only = true;
  1067. release_sock(sk);
  1068. return 0;
  1069. }
  1070. static inline void ip6_sock_set_recverr(struct sock *sk)
  1071. {
  1072. lock_sock(sk);
  1073. inet6_sk(sk)->recverr = true;
  1074. release_sock(sk);
  1075. }
  1076. static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
  1077. {
  1078. unsigned int pref = 0;
  1079. unsigned int prefmask = ~0;
  1080. /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
  1081. switch (val & (IPV6_PREFER_SRC_PUBLIC |
  1082. IPV6_PREFER_SRC_TMP |
  1083. IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
  1084. case IPV6_PREFER_SRC_PUBLIC:
  1085. pref |= IPV6_PREFER_SRC_PUBLIC;
  1086. prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
  1087. IPV6_PREFER_SRC_TMP);
  1088. break;
  1089. case IPV6_PREFER_SRC_TMP:
  1090. pref |= IPV6_PREFER_SRC_TMP;
  1091. prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
  1092. IPV6_PREFER_SRC_TMP);
  1093. break;
  1094. case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
  1095. prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
  1096. IPV6_PREFER_SRC_TMP);
  1097. break;
  1098. case 0:
  1099. break;
  1100. default:
  1101. return -EINVAL;
  1102. }
  1103. /* check HOME/COA conflicts */
  1104. switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
  1105. case IPV6_PREFER_SRC_HOME:
  1106. prefmask &= ~IPV6_PREFER_SRC_COA;
  1107. break;
  1108. case IPV6_PREFER_SRC_COA:
  1109. pref |= IPV6_PREFER_SRC_COA;
  1110. break;
  1111. case 0:
  1112. break;
  1113. default:
  1114. return -EINVAL;
  1115. }
  1116. /* check CGA/NONCGA conflicts */
  1117. switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
  1118. case IPV6_PREFER_SRC_CGA:
  1119. case IPV6_PREFER_SRC_NONCGA:
  1120. case 0:
  1121. break;
  1122. default:
  1123. return -EINVAL;
  1124. }
  1125. inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
  1126. return 0;
  1127. }
  1128. static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
  1129. {
  1130. int ret;
  1131. lock_sock(sk);
  1132. ret = __ip6_sock_set_addr_preferences(sk, val);
  1133. release_sock(sk);
  1134. return ret;
  1135. }
  1136. static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
  1137. {
  1138. lock_sock(sk);
  1139. inet6_sk(sk)->rxopt.bits.rxinfo = true;
  1140. release_sock(sk);
  1141. }
  1142. #endif /* _NET_IPV6_H */