123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _LINUX_RMAP_H
- #define _LINUX_RMAP_H
- /*
- * Declarations for Reverse Mapping functions in mm/rmap.c
- */
- #include <linux/list.h>
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/rwsem.h>
- #include <linux/memcontrol.h>
- #include <linux/highmem.h>
- #include <linux/pagemap.h>
- #include <linux/memremap.h>
- /*
- * The anon_vma heads a list of private "related" vmas, to scan if
- * an anonymous page pointing to this anon_vma needs to be unmapped:
- * the vmas on the list will be related by forking, or by splitting.
- *
- * Since vmas come and go as they are split and merged (particularly
- * in mprotect), the mapping field of an anonymous page cannot point
- * directly to a vma: instead it points to an anon_vma, on whose list
- * the related vmas can be easily linked or unlinked.
- *
- * After unlinking the last vma on the list, we must garbage collect
- * the anon_vma object itself: we're guaranteed no page can be
- * pointing to this anon_vma once its vma list is empty.
- */
- struct anon_vma {
- struct anon_vma *root; /* Root of this anon_vma tree */
- struct rw_semaphore rwsem; /* W: modification, R: walking the list */
- /*
- * The refcount is taken on an anon_vma when there is no
- * guarantee that the vma of page tables will exist for
- * the duration of the operation. A caller that takes
- * the reference is responsible for clearing up the
- * anon_vma if they are the last user on release
- */
- atomic_t refcount;
- /*
- * Count of child anon_vmas. Equals to the count of all anon_vmas that
- * have ->parent pointing to this one, including itself.
- *
- * This counter is used for making decision about reusing anon_vma
- * instead of forking new one. See comments in function anon_vma_clone.
- */
- unsigned long num_children;
- /* Count of VMAs whose ->anon_vma pointer points to this object. */
- unsigned long num_active_vmas;
- struct anon_vma *parent; /* Parent of this anon_vma */
- /*
- * NOTE: the LSB of the rb_root.rb_node is set by
- * mm_take_all_locks() _after_ taking the above lock. So the
- * rb_root must only be read/written after taking the above lock
- * to be sure to see a valid next pointer. The LSB bit itself
- * is serialized by a system wide lock only visible to
- * mm_take_all_locks() (mm_all_locks_mutex).
- */
- /* Interval tree of private "related" vmas */
- struct rb_root_cached rb_root;
- };
- /*
- * The copy-on-write semantics of fork mean that an anon_vma
- * can become associated with multiple processes. Furthermore,
- * each child process will have its own anon_vma, where new
- * pages for that process are instantiated.
- *
- * This structure allows us to find the anon_vmas associated
- * with a VMA, or the VMAs associated with an anon_vma.
- * The "same_vma" list contains the anon_vma_chains linking
- * all the anon_vmas associated with this VMA.
- * The "rb" field indexes on an interval tree the anon_vma_chains
- * which link all the VMAs associated with this anon_vma.
- */
- struct anon_vma_chain {
- struct vm_area_struct *vma;
- struct anon_vma *anon_vma;
- struct list_head same_vma; /* locked by mmap_lock & page_table_lock */
- struct rb_node rb; /* locked by anon_vma->rwsem */
- unsigned long rb_subtree_last;
- #ifdef CONFIG_DEBUG_VM_RB
- unsigned long cached_vma_start, cached_vma_last;
- #endif
- };
- enum ttu_flags {
- TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */
- TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */
- TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */
- TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */
- TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible
- * and caller guarantees they will
- * do a final flush if necessary */
- TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock:
- * caller holds it */
- };
- #ifdef CONFIG_MMU
- static inline void get_anon_vma(struct anon_vma *anon_vma)
- {
- atomic_inc(&anon_vma->refcount);
- }
- void __put_anon_vma(struct anon_vma *anon_vma);
- static inline void put_anon_vma(struct anon_vma *anon_vma)
- {
- if (atomic_dec_and_test(&anon_vma->refcount))
- __put_anon_vma(anon_vma);
- }
- static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
- {
- down_write(&anon_vma->root->rwsem);
- }
- static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
- {
- up_write(&anon_vma->root->rwsem);
- }
- static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
- {
- down_read(&anon_vma->root->rwsem);
- }
- static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
- {
- return down_read_trylock(&anon_vma->root->rwsem);
- }
- static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
- {
- up_read(&anon_vma->root->rwsem);
- }
- /*
- * anon_vma helper functions.
- */
- void anon_vma_init(void); /* create anon_vma_cachep */
- int __anon_vma_prepare(struct vm_area_struct *);
- void unlink_anon_vmas(struct vm_area_struct *);
- int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
- int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
- static inline int anon_vma_prepare(struct vm_area_struct *vma)
- {
- if (likely(vma->anon_vma))
- return 0;
- return __anon_vma_prepare(vma);
- }
- static inline void anon_vma_merge(struct vm_area_struct *vma,
- struct vm_area_struct *next)
- {
- VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
- unlink_anon_vmas(next);
- }
- struct anon_vma *folio_get_anon_vma(struct folio *folio);
- /* RMAP flags, currently only relevant for some anon rmap operations. */
- typedef int __bitwise rmap_t;
- /*
- * No special request: if the page is a subpage of a compound page, it is
- * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
- */
- #define RMAP_NONE ((__force rmap_t)0)
- /* The (sub)page is exclusive to a single process. */
- #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0))
- /*
- * The compound page is not mapped via PTEs, but instead via a single PMD and
- * should be accounted accordingly.
- */
- #define RMAP_COMPOUND ((__force rmap_t)BIT(1))
- /*
- * rmap interfaces called when adding or removing pte of page
- */
- void page_move_anon_rmap(struct page *, struct vm_area_struct *);
- void page_add_anon_rmap(struct page *, struct vm_area_struct *,
- unsigned long address, rmap_t flags);
- void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
- unsigned long address);
- void page_add_file_rmap(struct page *, struct vm_area_struct *,
- bool compound);
- void page_remove_rmap(struct page *, struct vm_area_struct *,
- bool compound);
- void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
- unsigned long address, rmap_t flags);
- void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
- unsigned long address);
- static inline void __page_dup_rmap(struct page *page, bool compound)
- {
- atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
- }
- static inline void page_dup_file_rmap(struct page *page, bool compound)
- {
- __page_dup_rmap(page, compound);
- }
- /**
- * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
- * anonymous page
- * @page: the page to duplicate the mapping for
- * @compound: the page is mapped as compound or as a small page
- * @vma: the source vma
- *
- * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
- *
- * Duplicating the mapping can only fail if the page may be pinned; device
- * private pages cannot get pinned and consequently this function cannot fail.
- *
- * If duplicating the mapping succeeds, the page has to be mapped R/O into
- * the parent and the child. It must *not* get mapped writable after this call.
- *
- * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
- */
- static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
- struct vm_area_struct *vma)
- {
- VM_BUG_ON_PAGE(!PageAnon(page), page);
- /*
- * No need to check+clear for already shared pages, including KSM
- * pages.
- */
- if (!PageAnonExclusive(page))
- goto dup;
- /*
- * If this page may have been pinned by the parent process,
- * don't allow to duplicate the mapping but instead require to e.g.,
- * copy the page immediately for the child so that we'll always
- * guarantee the pinned page won't be randomly replaced in the
- * future on write faults.
- */
- if (likely(!is_device_private_page(page) &&
- unlikely(page_needs_cow_for_dma(vma, page))))
- return -EBUSY;
- ClearPageAnonExclusive(page);
- /*
- * It's okay to share the anon page between both processes, mapping
- * the page R/O into both processes.
- */
- dup:
- __page_dup_rmap(page, compound);
- return 0;
- }
- /**
- * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
- * shared to prepare for KSM or temporary unmapping
- * @page: the exclusive anonymous page to try marking possibly shared
- *
- * The caller needs to hold the PT lock and has to have the page table entry
- * cleared/invalidated.
- *
- * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
- * to duplicate a mapping, but instead to prepare for KSM or temporarily
- * unmapping a page (swap, migration) via page_remove_rmap().
- *
- * Marking the page shared can only fail if the page may be pinned; device
- * private pages cannot get pinned and consequently this function cannot fail.
- *
- * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
- * otherwise.
- */
- static inline int page_try_share_anon_rmap(struct page *page)
- {
- VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
- /* device private pages cannot get pinned via GUP. */
- if (unlikely(is_device_private_page(page))) {
- ClearPageAnonExclusive(page);
- return 0;
- }
- /*
- * We have to make sure that when we clear PageAnonExclusive, that
- * the page is not pinned and that concurrent GUP-fast won't succeed in
- * concurrently pinning the page.
- *
- * Conceptually, PageAnonExclusive clearing consists of:
- * (A1) Clear PTE
- * (A2) Check if the page is pinned; back off if so.
- * (A3) Clear PageAnonExclusive
- * (A4) Restore PTE (optional, but certainly not writable)
- *
- * When clearing PageAnonExclusive, we cannot possibly map the page
- * writable again, because anon pages that may be shared must never
- * be writable. So in any case, if the PTE was writable it cannot
- * be writable anymore afterwards and there would be a PTE change. Only
- * if the PTE wasn't writable, there might not be a PTE change.
- *
- * Conceptually, GUP-fast pinning of an anon page consists of:
- * (B1) Read the PTE
- * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
- * (B3) Pin the mapped page
- * (B4) Check if the PTE changed by re-reading it; back off if so.
- * (B5) If the original PTE is not writable, check if
- * PageAnonExclusive is not set; back off if so.
- *
- * If the PTE was writable, we only have to make sure that GUP-fast
- * observes a PTE change and properly backs off.
- *
- * If the PTE was not writable, we have to make sure that GUP-fast either
- * detects a (temporary) PTE change or that PageAnonExclusive is cleared
- * and properly backs off.
- *
- * Consequently, when clearing PageAnonExclusive(), we have to make
- * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
- * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
- * and (B5) happen in the right memory order.
- *
- * We assume that there might not be a memory barrier after
- * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
- * so we use explicit ones here.
- */
- /* Paired with the memory barrier in try_grab_folio(). */
- if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
- smp_mb();
- if (unlikely(page_maybe_dma_pinned(page)))
- return -EBUSY;
- ClearPageAnonExclusive(page);
- /*
- * This is conceptually a smp_wmb() paired with the smp_rmb() in
- * gup_must_unshare().
- */
- if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
- smp_mb__after_atomic();
- return 0;
- }
- /*
- * Called from mm/vmscan.c to handle paging out
- */
- int folio_referenced(struct folio *, int is_locked,
- struct mem_cgroup *memcg, unsigned long *vm_flags);
- void try_to_migrate(struct folio *folio, enum ttu_flags flags);
- void try_to_unmap(struct folio *, enum ttu_flags flags);
- int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
- unsigned long end, struct page **pages,
- void *arg);
- /* Avoid racy checks */
- #define PVMW_SYNC (1 << 0)
- /* Look for migration entries rather than present PTEs */
- #define PVMW_MIGRATION (1 << 1)
- struct page_vma_mapped_walk {
- unsigned long pfn;
- unsigned long nr_pages;
- pgoff_t pgoff;
- struct vm_area_struct *vma;
- unsigned long address;
- pmd_t *pmd;
- pte_t *pte;
- spinlock_t *ptl;
- unsigned int flags;
- };
- #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \
- struct page_vma_mapped_walk name = { \
- .pfn = page_to_pfn(_page), \
- .nr_pages = compound_nr(_page), \
- .pgoff = page_to_pgoff(_page), \
- .vma = _vma, \
- .address = _address, \
- .flags = _flags, \
- }
- #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \
- struct page_vma_mapped_walk name = { \
- .pfn = folio_pfn(_folio), \
- .nr_pages = folio_nr_pages(_folio), \
- .pgoff = folio_pgoff(_folio), \
- .vma = _vma, \
- .address = _address, \
- .flags = _flags, \
- }
- static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
- {
- /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
- if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
- pte_unmap(pvmw->pte);
- if (pvmw->ptl)
- spin_unlock(pvmw->ptl);
- }
- bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
- /*
- * Used by swapoff to help locate where page is expected in vma.
- */
- unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
- /*
- * Cleans the PTEs of shared mappings.
- * (and since clean PTEs should also be readonly, write protects them too)
- *
- * returns the number of cleaned PTEs.
- */
- int folio_mkclean(struct folio *);
- int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
- struct vm_area_struct *vma);
- void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
- int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
- /*
- * rmap_walk_control: To control rmap traversing for specific needs
- *
- * arg: passed to rmap_one() and invalid_vma()
- * try_lock: bail out if the rmap lock is contended
- * contended: indicate the rmap traversal bailed out due to lock contention
- * rmap_one: executed on each vma where page is mapped
- * done: for checking traversing termination condition
- * anon_lock: for getting anon_lock by optimized way rather than default
- * invalid_vma: for skipping uninterested vma
- */
- struct rmap_walk_control {
- void *arg;
- bool try_lock;
- bool contended;
- /*
- * Return false if page table scanning in rmap_walk should be stopped.
- * Otherwise, return true.
- */
- bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
- unsigned long addr, void *arg);
- int (*done)(struct folio *folio);
- struct anon_vma *(*anon_lock)(struct folio *folio,
- struct rmap_walk_control *rwc);
- bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
- };
- void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
- void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
- struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
- struct rmap_walk_control *rwc);
- #else /* !CONFIG_MMU */
- #define anon_vma_init() do {} while (0)
- #define anon_vma_prepare(vma) (0)
- #define anon_vma_link(vma) do {} while (0)
- static inline int folio_referenced(struct folio *folio, int is_locked,
- struct mem_cgroup *memcg,
- unsigned long *vm_flags)
- {
- *vm_flags = 0;
- return 0;
- }
- static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
- {
- }
- static inline int folio_mkclean(struct folio *folio)
- {
- return 0;
- }
- #endif /* CONFIG_MMU */
- static inline int page_mkclean(struct page *page)
- {
- return folio_mkclean(page_folio(page));
- }
- #endif /* _LINUX_RMAP_H */
|