1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009 |
- /* SPDX-License-Identifier: GPL-2.0-only */
- /*
- * Universal power supply monitor class
- *
- * Copyright © 2007 Anton Vorontsov <[email protected]>
- * Copyright © 2004 Szabolcs Gyurko
- * Copyright © 2003 Ian Molton <[email protected]>
- *
- * Modified: 2004, Oct Szabolcs Gyurko
- */
- #ifndef __LINUX_POWER_SUPPLY_H__
- #define __LINUX_POWER_SUPPLY_H__
- #include <linux/device.h>
- #include <linux/workqueue.h>
- #include <linux/leds.h>
- #include <linux/spinlock.h>
- #include <linux/notifier.h>
- #include <linux/android_kabi.h>
- /*
- * All voltages, currents, charges, energies, time and temperatures in uV,
- * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
- * stated. It's driver's job to convert its raw values to units in which
- * this class operates.
- */
- /*
- * For systems where the charger determines the maximum battery capacity
- * the min and max fields should be used to present these values to user
- * space. Unused/unknown fields will not appear in sysfs.
- */
- enum {
- POWER_SUPPLY_STATUS_UNKNOWN = 0,
- POWER_SUPPLY_STATUS_CHARGING,
- POWER_SUPPLY_STATUS_DISCHARGING,
- POWER_SUPPLY_STATUS_NOT_CHARGING,
- POWER_SUPPLY_STATUS_FULL,
- };
- /* What algorithm is the charger using? */
- enum {
- POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
- POWER_SUPPLY_CHARGE_TYPE_NONE,
- POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
- POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
- POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
- POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
- POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
- POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
- POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
- /*
- * force to 50 to minimize the chances of userspace binary
- * incompatibility on newer upstream kernels
- */
- POWER_SUPPLY_CHARGE_TYPE_TAPER_EXT = 50, /* charging in CV phase */
- };
- enum {
- POWER_SUPPLY_HEALTH_UNKNOWN = 0,
- POWER_SUPPLY_HEALTH_GOOD,
- POWER_SUPPLY_HEALTH_OVERHEAT,
- POWER_SUPPLY_HEALTH_DEAD,
- POWER_SUPPLY_HEALTH_OVERVOLTAGE,
- POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
- POWER_SUPPLY_HEALTH_COLD,
- POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
- POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
- POWER_SUPPLY_HEALTH_OVERCURRENT,
- POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
- POWER_SUPPLY_HEALTH_WARM,
- POWER_SUPPLY_HEALTH_COOL,
- POWER_SUPPLY_HEALTH_HOT,
- POWER_SUPPLY_HEALTH_NO_BATTERY,
- };
- enum {
- POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
- POWER_SUPPLY_TECHNOLOGY_NiMH,
- POWER_SUPPLY_TECHNOLOGY_LION,
- POWER_SUPPLY_TECHNOLOGY_LIPO,
- POWER_SUPPLY_TECHNOLOGY_LiFe,
- POWER_SUPPLY_TECHNOLOGY_NiCd,
- POWER_SUPPLY_TECHNOLOGY_LiMn,
- };
- enum {
- POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
- POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
- POWER_SUPPLY_CAPACITY_LEVEL_LOW,
- POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
- POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
- POWER_SUPPLY_CAPACITY_LEVEL_FULL,
- };
- enum {
- POWER_SUPPLY_SCOPE_UNKNOWN = 0,
- POWER_SUPPLY_SCOPE_SYSTEM,
- POWER_SUPPLY_SCOPE_DEVICE,
- };
- enum power_supply_property {
- /* Properties of type `int' */
- POWER_SUPPLY_PROP_STATUS = 0,
- POWER_SUPPLY_PROP_CHARGE_TYPE,
- POWER_SUPPLY_PROP_HEALTH,
- POWER_SUPPLY_PROP_PRESENT,
- POWER_SUPPLY_PROP_ONLINE,
- POWER_SUPPLY_PROP_AUTHENTIC,
- POWER_SUPPLY_PROP_TECHNOLOGY,
- POWER_SUPPLY_PROP_CYCLE_COUNT,
- POWER_SUPPLY_PROP_VOLTAGE_MAX,
- POWER_SUPPLY_PROP_VOLTAGE_MIN,
- POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
- POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
- POWER_SUPPLY_PROP_VOLTAGE_NOW,
- POWER_SUPPLY_PROP_VOLTAGE_AVG,
- POWER_SUPPLY_PROP_VOLTAGE_OCV,
- POWER_SUPPLY_PROP_VOLTAGE_BOOT,
- POWER_SUPPLY_PROP_CURRENT_MAX,
- POWER_SUPPLY_PROP_CURRENT_NOW,
- POWER_SUPPLY_PROP_CURRENT_AVG,
- POWER_SUPPLY_PROP_CURRENT_BOOT,
- POWER_SUPPLY_PROP_POWER_NOW,
- POWER_SUPPLY_PROP_POWER_AVG,
- POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
- POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
- POWER_SUPPLY_PROP_CHARGE_FULL,
- POWER_SUPPLY_PROP_CHARGE_EMPTY,
- POWER_SUPPLY_PROP_CHARGE_NOW,
- POWER_SUPPLY_PROP_CHARGE_AVG,
- POWER_SUPPLY_PROP_CHARGE_COUNTER,
- POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
- POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
- POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
- POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
- POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
- POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
- POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
- POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
- POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
- POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
- POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
- POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
- POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
- POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
- POWER_SUPPLY_PROP_ENERGY_FULL,
- POWER_SUPPLY_PROP_ENERGY_EMPTY,
- POWER_SUPPLY_PROP_ENERGY_NOW,
- POWER_SUPPLY_PROP_ENERGY_AVG,
- POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
- POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
- POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
- POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
- POWER_SUPPLY_PROP_CAPACITY_LEVEL,
- POWER_SUPPLY_PROP_TEMP,
- POWER_SUPPLY_PROP_TEMP_MAX,
- POWER_SUPPLY_PROP_TEMP_MIN,
- POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
- POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
- POWER_SUPPLY_PROP_TEMP_AMBIENT,
- POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
- POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
- POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
- POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
- POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
- POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
- POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
- POWER_SUPPLY_PROP_USB_TYPE,
- POWER_SUPPLY_PROP_SCOPE,
- POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
- POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
- POWER_SUPPLY_PROP_CALIBRATE,
- POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
- POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
- POWER_SUPPLY_PROP_MANUFACTURE_DAY,
- /* Properties of type `const char *' */
- POWER_SUPPLY_PROP_MODEL_NAME,
- POWER_SUPPLY_PROP_MANUFACTURER,
- POWER_SUPPLY_PROP_SERIAL_NUMBER,
- };
- enum power_supply_type {
- POWER_SUPPLY_TYPE_UNKNOWN = 0,
- POWER_SUPPLY_TYPE_BATTERY,
- POWER_SUPPLY_TYPE_UPS,
- POWER_SUPPLY_TYPE_MAINS,
- POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
- POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
- POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
- POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
- POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
- POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
- POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
- POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
- POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
- };
- enum power_supply_usb_type {
- POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
- POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
- POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
- POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
- POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
- POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
- POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
- POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
- POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
- POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
- };
- enum power_supply_charge_behaviour {
- POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
- POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
- POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
- };
- enum power_supply_notifier_events {
- PSY_EVENT_PROP_CHANGED,
- };
- union power_supply_propval {
- int intval;
- const char *strval;
- };
- struct device_node;
- struct power_supply;
- /* Run-time specific power supply configuration */
- struct power_supply_config {
- struct device_node *of_node;
- struct fwnode_handle *fwnode;
- /* Driver private data */
- void *drv_data;
- /* Device specific sysfs attributes */
- const struct attribute_group **attr_grp;
- char **supplied_to;
- size_t num_supplicants;
- ANDROID_KABI_RESERVE(1);
- };
- /* Description of power supply */
- struct power_supply_desc {
- const char *name;
- enum power_supply_type type;
- const enum power_supply_usb_type *usb_types;
- size_t num_usb_types;
- const enum power_supply_property *properties;
- size_t num_properties;
- /*
- * Functions for drivers implementing power supply class.
- * These shouldn't be called directly by other drivers for accessing
- * this power supply. Instead use power_supply_*() functions (for
- * example power_supply_get_property()).
- */
- int (*get_property)(struct power_supply *psy,
- enum power_supply_property psp,
- union power_supply_propval *val);
- int (*set_property)(struct power_supply *psy,
- enum power_supply_property psp,
- const union power_supply_propval *val);
- /*
- * property_is_writeable() will be called during registration
- * of power supply. If this happens during device probe then it must
- * not access internal data of device (because probe did not end).
- */
- int (*property_is_writeable)(struct power_supply *psy,
- enum power_supply_property psp);
- void (*external_power_changed)(struct power_supply *psy);
- void (*set_charged)(struct power_supply *psy);
- /*
- * Set if thermal zone should not be created for this power supply.
- * For example for virtual supplies forwarding calls to actual
- * sensors or other supplies.
- */
- bool no_thermal;
- /* For APM emulation, think legacy userspace. */
- int use_for_apm;
- ANDROID_KABI_RESERVE(1);
- };
- struct power_supply {
- const struct power_supply_desc *desc;
- char **supplied_to;
- size_t num_supplicants;
- char **supplied_from;
- size_t num_supplies;
- struct device_node *of_node;
- /* Driver private data */
- void *drv_data;
- /* private */
- struct device dev;
- struct work_struct changed_work;
- struct delayed_work deferred_register_work;
- spinlock_t changed_lock;
- bool changed;
- bool initialized;
- bool removing;
- atomic_t use_cnt;
- #ifdef CONFIG_THERMAL
- struct thermal_zone_device *tzd;
- struct thermal_cooling_device *tcd;
- #endif
- #ifdef CONFIG_LEDS_TRIGGERS
- struct led_trigger *charging_full_trig;
- char *charging_full_trig_name;
- struct led_trigger *charging_trig;
- char *charging_trig_name;
- struct led_trigger *full_trig;
- char *full_trig_name;
- struct led_trigger *online_trig;
- char *online_trig_name;
- struct led_trigger *charging_blink_full_solid_trig;
- char *charging_blink_full_solid_trig_name;
- #endif
- ANDROID_KABI_RESERVE(1);
- };
- /*
- * This is recommended structure to specify static power supply parameters.
- * Generic one, parametrizable for different power supplies. Power supply
- * class itself does not use it, but that's what implementing most platform
- * drivers, should try reuse for consistency.
- */
- struct power_supply_info {
- const char *name;
- int technology;
- int voltage_max_design;
- int voltage_min_design;
- int charge_full_design;
- int charge_empty_design;
- int energy_full_design;
- int energy_empty_design;
- int use_for_apm;
- ANDROID_KABI_RESERVE(1);
- };
- struct power_supply_battery_ocv_table {
- int ocv; /* microVolts */
- int capacity; /* percent */
- };
- struct power_supply_resistance_temp_table {
- int temp; /* celsius */
- int resistance; /* internal resistance percent */
- };
- struct power_supply_vbat_ri_table {
- int vbat_uv; /* Battery voltage in microvolt */
- int ri_uohm; /* Internal resistance in microohm */
- };
- /**
- * struct power_supply_maintenance_charge_table - setting for maintenace charging
- * @charge_current_max_ua: maintenance charging current that is used to keep
- * the charge of the battery full as current is consumed after full charging.
- * The corresponding charge_voltage_max_uv is used as a safeguard: when we
- * reach this voltage the maintenance charging current is turned off. It is
- * turned back on if we fall below this voltage.
- * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
- * lower than the constant_charge_voltage_max_uv. We can apply this settings
- * charge_current_max_ua until we get back up to this voltage.
- * @safety_timer_minutes: maintenance charging safety timer, with an expiry
- * time in minutes. We will only use maintenance charging in this setting
- * for a certain amount of time, then we will first move to the next
- * maintenance charge current and voltage pair in respective array and wait
- * for the next safety timer timeout, or, if we reached the last maintencance
- * charging setting, disable charging until we reach
- * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
- * These timers should be chosen to align with the typical discharge curve
- * for the battery.
- *
- * Ordinary CC/CV charging will stop charging when the charge current goes
- * below charge_term_current_ua, and then restart it (if the device is still
- * plugged into the charger) at charge_restart_voltage_uv. This happens in most
- * consumer products because the power usage while connected to a charger is
- * not zero, and devices are not manufactured to draw power directly from the
- * charger: instead they will at all times dissipate the battery a little, like
- * the power used in standby mode. This will over time give a charge graph
- * such as this:
- *
- * Energy
- * ^ ... ... ... ... ... ... ...
- * | . . . . . . . . . . . . .
- * | .. . .. . .. . .. . .. . .. . ..
- * |. .. .. .. .. .. ..
- * +-------------------------------------------------------------------> t
- *
- * Practically this means that the Li-ions are wandering back and forth in the
- * battery and this causes degeneration of the battery anode and cathode.
- * To prolong the life of the battery, maintenance charging is applied after
- * reaching charge_term_current_ua to hold up the charge in the battery while
- * consuming power, thus lowering the wear on the battery:
- *
- * Energy
- * ^ .......................................
- * | . ......................
- * | ..
- * |.
- * +-------------------------------------------------------------------> t
- *
- * Maintenance charging uses the voltages from this table: a table of settings
- * is traversed using a slightly lower current and voltage than what is used for
- * CC/CV charging. The maintenance charging will for safety reasons not go on
- * indefinately: we lower the current and voltage with successive maintenance
- * settings, then disable charging completely after we reach the last one,
- * and after that we do not restart charging until we reach
- * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
- * ordinary CC/CV charging from there.
- *
- * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
- * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
- * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
- * After this the charge cycle is restarted waiting for
- * charge_restart_voltage_uv.
- *
- * For most mobile electronics this type of maintenance charging is enough for
- * the user to disconnect the device and make use of it before both maintenance
- * charging cycles are complete, if the current and voltage has been chosen
- * appropriately. These need to be determined from battery discharge curves
- * and expected standby current.
- *
- * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
- * charging, ordinary CC/CV charging is restarted. This can happen if the
- * device is e.g. actively used during charging, so more current is drawn than
- * the expected stand-by current. Also overvoltage protection will be applied
- * as usual.
- */
- struct power_supply_maintenance_charge_table {
- int charge_current_max_ua;
- int charge_voltage_max_uv;
- int charge_safety_timer_minutes;
- };
- #define POWER_SUPPLY_OCV_TEMP_MAX 20
- /**
- * struct power_supply_battery_info - information about batteries
- * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
- * @energy_full_design_uwh: energy content when fully charged in microwatt
- * hours
- * @charge_full_design_uah: charge content when fully charged in microampere
- * hours
- * @voltage_min_design_uv: minimum voltage across the poles when the battery
- * is at minimum voltage level in microvolts. If the voltage drops below this
- * level the battery will need precharging when using CC/CV charging.
- * @voltage_max_design_uv: voltage across the poles when the battery is fully
- * charged in microvolts. This is the "nominal voltage" i.e. the voltage
- * printed on the label of the battery.
- * @tricklecharge_current_ua: the tricklecharge current used when trickle
- * charging the battery in microamperes. This is the charging phase when the
- * battery is completely empty and we need to carefully trickle in some
- * charge until we reach the precharging voltage.
- * @precharge_current_ua: current to use in the precharge phase in microamperes,
- * the precharge rate is limited by limiting the current to this value.
- * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
- * microvolts. When we pass this voltage we will nominally switch over to the
- * CC (constant current) charging phase defined by constant_charge_current_ua
- * and constant_charge_voltage_max_uv.
- * @charge_term_current_ua: when the current in the CV (constant voltage)
- * charging phase drops below this value in microamperes the charging will
- * terminate completely and not restart until the voltage over the battery
- * poles reach charge_restart_voltage_uv unless we use maintenance charging.
- * @charge_restart_voltage_uv: when the battery has been fully charged by
- * CC/CV charging and charging has been disabled, and the voltage subsequently
- * drops below this value in microvolts, the charging will be restarted
- * (typically using CV charging).
- * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
- * voltage_max_design_uv and we reach this voltage level, all charging must
- * stop and emergency procedures take place, such as shutting down the system
- * in some cases.
- * @constant_charge_current_max_ua: current in microamperes to use in the CC
- * (constant current) charging phase. The charging rate is limited
- * by this current. This is the main charging phase and as the current is
- * constant into the battery the voltage slowly ascends to
- * constant_charge_voltage_max_uv.
- * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
- * the CC (constant current) charging phase and the beginning of the CV
- * (constant voltage) charging phase.
- * @maintenance_charge: an array of maintenance charging settings to be used
- * after the main CC/CV charging phase is complete.
- * @maintenance_charge_size: the number of maintenance charging settings in
- * maintenance_charge.
- * @alert_low_temp_charge_current_ua: The charging current to use if the battery
- * enters low alert temperature, i.e. if the internal temperature is between
- * temp_alert_min and temp_min. No matter the charging phase, this
- * and alert_high_temp_charge_voltage_uv will be applied.
- * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
- * but for the charging voltage.
- * @alert_high_temp_charge_current_ua: The charging current to use if the
- * battery enters high alert temperature, i.e. if the internal temperature is
- * between temp_alert_max and temp_max. No matter the charging phase, this
- * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
- * the charging current as an evasive manouver.
- * @alert_high_temp_charge_voltage_uv: Same as
- * alert_high_temp_charge_current_ua, but for the charging voltage.
- * @factory_internal_resistance_uohm: the internal resistance of the battery
- * at fabrication time, expressed in microohms. This resistance will vary
- * depending on the lifetime and charge of the battery, so this is just a
- * nominal ballpark figure. This internal resistance is given for the state
- * when the battery is discharging.
- * @factory_internal_resistance_charging_uohm: the internal resistance of the
- * battery at fabrication time while charging, expressed in microohms.
- * The charging process will affect the internal resistance of the battery
- * so this value provides a better resistance under these circumstances.
- * This resistance will vary depending on the lifetime and charge of the
- * battery, so this is just a nominal ballpark figure.
- * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
- * temperature indices. This is an array of temperatures in degrees Celsius
- * indicating which capacity table to use for a certain temperature, since
- * the capacity for reasons of chemistry will be different at different
- * temperatures. Determining capacity is a multivariate problem and the
- * temperature is the first variable we determine.
- * @temp_ambient_alert_min: the battery will go outside of operating conditions
- * when the ambient temperature goes below this temperature in degrees
- * Celsius.
- * @temp_ambient_alert_max: the battery will go outside of operating conditions
- * when the ambient temperature goes above this temperature in degrees
- * Celsius.
- * @temp_alert_min: the battery should issue an alert if the internal
- * temperature goes below this temperature in degrees Celsius.
- * @temp_alert_max: the battery should issue an alert if the internal
- * temperature goes above this temperature in degrees Celsius.
- * @temp_min: the battery will go outside of operating conditions when
- * the internal temperature goes below this temperature in degrees Celsius.
- * Normally this means the system should shut down.
- * @temp_max: the battery will go outside of operating conditions when
- * the internal temperature goes above this temperature in degrees Celsius.
- * Normally this means the system should shut down.
- * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
- * ocv_table and a size for each entry in ocv_table_size. These arrays
- * determine the capacity in percent in relation to the voltage in microvolts
- * at the indexed temperature.
- * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
- * each entry in the array of capacity arrays in ocv_table.
- * @resist_table: this is a table that correlates a battery temperature to the
- * expected internal resistance at this temperature. The resistance is given
- * as a percentage of factory_internal_resistance_uohm. Knowing the
- * resistance of the battery is usually necessary for calculating the open
- * circuit voltage (OCV) that is then used with the ocv_table to calculate
- * the capacity of the battery. The resist_table must be ordered descending
- * by temperature: highest temperature with lowest resistance first, lowest
- * temperature with highest resistance last.
- * @resist_table_size: the number of items in the resist_table.
- * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
- * to internal resistance (Ri). The resistance is given in microohm for the
- * corresponding voltage in microvolts. The internal resistance is used to
- * determine the open circuit voltage so that we can determine the capacity
- * of the battery. These voltages to resistance tables apply when the battery
- * is discharging. The table must be ordered descending by voltage: highest
- * voltage first.
- * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
- * table.
- * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
- * when the battery is charging. Being under charge changes the battery's
- * internal resistance characteristics so a separate table is needed.*
- * The table must be ordered descending by voltage: highest voltage first.
- * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
- * table.
- * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
- * in ohms for this battery, if an identification resistor is mounted
- * between a third battery terminal and ground. This scheme is used by a lot
- * of mobile device batteries.
- * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
- * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
- * tolerance is 10% we will detect a proper battery if the BTI resistance
- * is between 6300 and 7700 Ohm.
- *
- * This is the recommended struct to manage static battery parameters,
- * populated by power_supply_get_battery_info(). Most platform drivers should
- * use these for consistency.
- *
- * Its field names must correspond to elements in enum power_supply_property.
- * The default field value is -EINVAL or NULL for pointers.
- *
- * CC/CV CHARGING:
- *
- * The charging parameters here assume a CC/CV charging scheme. This method
- * is most common with Lithium Ion batteries (other methods are possible) and
- * looks as follows:
- *
- * ^ Battery voltage
- * | --- overvoltage_limit_uv
- * |
- * | ...................................................
- * | .. constant_charge_voltage_max_uv
- * | ..
- * | .
- * | .
- * | .
- * | .
- * | .
- * | .. precharge_voltage_max_uv
- * | ..
- * |. (trickle charging)
- * +------------------------------------------------------------------> time
- *
- * ^ Current into the battery
- * |
- * | ............. constant_charge_current_max_ua
- * | . .
- * | . .
- * | . .
- * | . .
- * | . ..
- * | . ....
- * | . .....
- * | ... precharge_current_ua ....... charge_term_current_ua
- * | . .
- * | . .
- * |.... tricklecharge_current_ua .
- * | .
- * +-----------------------------------------------------------------> time
- *
- * These diagrams are synchronized on time and the voltage and current
- * follow each other.
- *
- * With CC/CV charging commence over time like this for an empty battery:
- *
- * 1. When the battery is completely empty it may need to be charged with
- * an especially small current so that electrons just "trickle in",
- * this is the tricklecharge_current_ua.
- *
- * 2. Next a small initial pre-charge current (precharge_current_ua)
- * is applied if the voltage is below precharge_voltage_max_uv until we
- * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
- * to as "trickle charging" but the use in the Linux kernel is different
- * see below!
- *
- * 3. Then the main charging current is applied, which is called the constant
- * current (CC) phase. A current regulator is set up to allow
- * constant_charge_current_max_ua of current to flow into the battery.
- * The chemical reaction in the battery will make the voltage go up as
- * charge goes into the battery. This current is applied until we reach
- * the constant_charge_voltage_max_uv voltage.
- *
- * 4. At this voltage we switch over to the constant voltage (CV) phase. This
- * means we allow current to go into the battery, but we keep the voltage
- * fixed. This current will continue to charge the battery while keeping
- * the voltage the same. A chemical reaction in the battery goes on
- * storing energy without affecting the voltage. Over time the current
- * will slowly drop and when we reach charge_term_current_ua we will
- * end the constant voltage phase.
- *
- * After this the battery is fully charged, and if we do not support maintenance
- * charging, the charging will not restart until power dissipation makes the
- * voltage fall so that we reach charge_restart_voltage_uv and at this point
- * we restart charging at the appropriate phase, usually this will be inside
- * the CV phase.
- *
- * If we support maintenance charging the voltage is however kept high after
- * the CV phase with a very low current. This is meant to let the same charge
- * go in for usage while the charger is still connected, mainly for
- * dissipation for the power consuming entity while connected to the
- * charger.
- *
- * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
- * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
- * explosions.
- *
- * DETERMINING BATTERY CAPACITY:
- *
- * Several members of the struct deal with trying to determine the remaining
- * capacity in the battery, usually as a percentage of charge. In practice
- * many chargers uses a so-called fuel gauge or coloumb counter that measure
- * how much charge goes into the battery and how much goes out (+/- leak
- * consumption). This does not help if we do not know how much capacity the
- * battery has to begin with, such as when it is first used or was taken out
- * and charged in a separate charger. Therefore many capacity algorithms use
- * the open circuit voltage with a look-up table to determine the rough
- * capacity of the battery. The open circuit voltage can be conceptualized
- * with an ideal voltage source (V) in series with an internal resistance (Ri)
- * like this:
- *
- * +-------> IBAT >----------------+
- * | ^ |
- * [ ] Ri | |
- * | | VBAT |
- * o <---------- | |
- * +| ^ | [ ] Rload
- * .---. | | |
- * | V | | OCV | |
- * '---' | | |
- * | | | |
- * GND +-------------------------------+
- *
- * If we disconnect the load (here simplified as a fixed resistance Rload)
- * and measure VBAT with a infinite impedance voltage meter we will get
- * VBAT = OCV and this assumption is sometimes made even under load, assuming
- * Rload is insignificant. However this will be of dubious quality because the
- * load is rarely that small and Ri is strongly nonlinear depending on
- * temperature and how much capacity is left in the battery due to the
- * chemistry involved.
- *
- * In many practical applications we cannot just disconnect the battery from
- * the load, so instead we often try to measure the instantaneous IBAT (the
- * current out from the battery), estimate the Ri and thus calculate the
- * voltage drop over Ri and compensate like this:
- *
- * OCV = VBAT - (IBAT * Ri)
- *
- * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
- * (by interpolation) the Ri from the VBAT under load. These curves are highly
- * nonlinear and may need many datapoints but can be found in datasheets for
- * some batteries. This gives the compensated open circuit voltage (OCV) for
- * the battery even under load. Using this method will also compensate for
- * temperature changes in the environment: this will also make the internal
- * resistance change, and it will affect the VBAT under load, so correlating
- * VBAT to Ri takes both remaining capacity and temperature into consideration.
- *
- * Alternatively a manufacturer can specify how the capacity of the battery
- * is dependent on the battery temperature which is the main factor affecting
- * Ri. As we know all checmical reactions are faster when it is warm and slower
- * when it is cold. You can put in 1500mAh and only get 800mAh out before the
- * voltage drops too low for example. This effect is also highly nonlinear and
- * the purpose of the table resist_table: this will take a temperature and
- * tell us how big percentage of Ri the specified temperature correlates to.
- * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
- * Celsius.
- *
- * The power supply class itself doesn't use this struct as of now.
- */
- struct power_supply_battery_info {
- unsigned int technology;
- int energy_full_design_uwh;
- int charge_full_design_uah;
- int voltage_min_design_uv;
- int voltage_max_design_uv;
- int tricklecharge_current_ua;
- int precharge_current_ua;
- int precharge_voltage_max_uv;
- int charge_term_current_ua;
- int charge_restart_voltage_uv;
- int overvoltage_limit_uv;
- int constant_charge_current_max_ua;
- int constant_charge_voltage_max_uv;
- struct power_supply_maintenance_charge_table *maintenance_charge;
- int maintenance_charge_size;
- int alert_low_temp_charge_current_ua;
- int alert_low_temp_charge_voltage_uv;
- int alert_high_temp_charge_current_ua;
- int alert_high_temp_charge_voltage_uv;
- int factory_internal_resistance_uohm;
- int factory_internal_resistance_charging_uohm;
- int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
- int temp_ambient_alert_min;
- int temp_ambient_alert_max;
- int temp_alert_min;
- int temp_alert_max;
- int temp_min;
- int temp_max;
- struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
- int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
- struct power_supply_resistance_temp_table *resist_table;
- int resist_table_size;
- struct power_supply_vbat_ri_table *vbat2ri_discharging;
- int vbat2ri_discharging_size;
- struct power_supply_vbat_ri_table *vbat2ri_charging;
- int vbat2ri_charging_size;
- int bti_resistance_ohm;
- int bti_resistance_tolerance;
- ANDROID_KABI_RESERVE(1);
- };
- extern struct blocking_notifier_head power_supply_notifier;
- extern int power_supply_reg_notifier(struct notifier_block *nb);
- extern void power_supply_unreg_notifier(struct notifier_block *nb);
- #if IS_ENABLED(CONFIG_POWER_SUPPLY)
- extern struct power_supply *power_supply_get_by_name(const char *name);
- extern void power_supply_put(struct power_supply *psy);
- #else
- static inline void power_supply_put(struct power_supply *psy) {}
- static inline struct power_supply *power_supply_get_by_name(const char *name)
- { return NULL; }
- #endif
- #ifdef CONFIG_OF
- extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
- const char *property);
- extern int power_supply_get_by_phandle_array(struct device_node *np,
- const char *property,
- struct power_supply **psy,
- ssize_t size);
- extern struct power_supply *devm_power_supply_get_by_phandle(
- struct device *dev, const char *property);
- #else /* !CONFIG_OF */
- static inline struct power_supply *
- power_supply_get_by_phandle(struct device_node *np, const char *property)
- { return NULL; }
- static inline int
- power_supply_get_by_phandle_array(struct device_node *np,
- const char *property,
- struct power_supply **psy,
- int size)
- { return 0; }
- static inline struct power_supply *
- devm_power_supply_get_by_phandle(struct device *dev, const char *property)
- { return NULL; }
- #endif /* CONFIG_OF */
- extern int power_supply_get_battery_info(struct power_supply *psy,
- struct power_supply_battery_info **info_out);
- extern void power_supply_put_battery_info(struct power_supply *psy,
- struct power_supply_battery_info *info);
- extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
- int table_len, int ocv);
- extern struct power_supply_battery_ocv_table *
- power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
- int temp, int *table_len);
- extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
- int ocv, int temp);
- extern int
- power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
- int table_len, int temp);
- extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
- int vbat_uv, bool charging);
- extern struct power_supply_maintenance_charge_table *
- power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
- extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
- int resistance);
- extern void power_supply_changed(struct power_supply *psy);
- extern int power_supply_am_i_supplied(struct power_supply *psy);
- int power_supply_get_property_from_supplier(struct power_supply *psy,
- enum power_supply_property psp,
- union power_supply_propval *val);
- extern int power_supply_set_battery_charged(struct power_supply *psy);
- static inline bool
- power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
- {
- struct power_supply_maintenance_charge_table *mt;
- mt = power_supply_get_maintenance_charging_setting(info, 0);
- return (mt != NULL);
- }
- static inline bool
- power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
- {
- return ((info->vbat2ri_discharging != NULL) &&
- info->vbat2ri_discharging_size > 0);
- }
- static inline bool
- power_supply_supports_temp2ri(struct power_supply_battery_info *info)
- {
- return ((info->resist_table != NULL) &&
- info->resist_table_size > 0);
- }
- #ifdef CONFIG_POWER_SUPPLY
- extern int power_supply_is_system_supplied(void);
- #else
- static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
- #endif
- extern int power_supply_get_property(struct power_supply *psy,
- enum power_supply_property psp,
- union power_supply_propval *val);
- #if IS_ENABLED(CONFIG_POWER_SUPPLY)
- extern int power_supply_set_property(struct power_supply *psy,
- enum power_supply_property psp,
- const union power_supply_propval *val);
- #else
- static inline int power_supply_set_property(struct power_supply *psy,
- enum power_supply_property psp,
- const union power_supply_propval *val)
- { return 0; }
- #endif
- extern int power_supply_property_is_writeable(struct power_supply *psy,
- enum power_supply_property psp);
- extern void power_supply_external_power_changed(struct power_supply *psy);
- extern struct power_supply *__must_check
- power_supply_register(struct device *parent,
- const struct power_supply_desc *desc,
- const struct power_supply_config *cfg);
- extern struct power_supply *__must_check
- power_supply_register_no_ws(struct device *parent,
- const struct power_supply_desc *desc,
- const struct power_supply_config *cfg);
- extern struct power_supply *__must_check
- devm_power_supply_register(struct device *parent,
- const struct power_supply_desc *desc,
- const struct power_supply_config *cfg);
- extern struct power_supply *__must_check
- devm_power_supply_register_no_ws(struct device *parent,
- const struct power_supply_desc *desc,
- const struct power_supply_config *cfg);
- extern void power_supply_unregister(struct power_supply *psy);
- extern int power_supply_powers(struct power_supply *psy, struct device *dev);
- #define to_power_supply(device) container_of(device, struct power_supply, dev)
- extern void *power_supply_get_drvdata(struct power_supply *psy);
- /* For APM emulation, think legacy userspace. */
- extern struct class *power_supply_class;
- static inline bool power_supply_is_amp_property(enum power_supply_property psp)
- {
- switch (psp) {
- case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
- case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
- case POWER_SUPPLY_PROP_CHARGE_FULL:
- case POWER_SUPPLY_PROP_CHARGE_EMPTY:
- case POWER_SUPPLY_PROP_CHARGE_NOW:
- case POWER_SUPPLY_PROP_CHARGE_AVG:
- case POWER_SUPPLY_PROP_CHARGE_COUNTER:
- case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
- case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
- case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
- case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
- case POWER_SUPPLY_PROP_CURRENT_MAX:
- case POWER_SUPPLY_PROP_CURRENT_NOW:
- case POWER_SUPPLY_PROP_CURRENT_AVG:
- case POWER_SUPPLY_PROP_CURRENT_BOOT:
- return true;
- default:
- break;
- }
- return false;
- }
- static inline bool power_supply_is_watt_property(enum power_supply_property psp)
- {
- switch (psp) {
- case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
- case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
- case POWER_SUPPLY_PROP_ENERGY_FULL:
- case POWER_SUPPLY_PROP_ENERGY_EMPTY:
- case POWER_SUPPLY_PROP_ENERGY_NOW:
- case POWER_SUPPLY_PROP_ENERGY_AVG:
- case POWER_SUPPLY_PROP_VOLTAGE_MAX:
- case POWER_SUPPLY_PROP_VOLTAGE_MIN:
- case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
- case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
- case POWER_SUPPLY_PROP_VOLTAGE_NOW:
- case POWER_SUPPLY_PROP_VOLTAGE_AVG:
- case POWER_SUPPLY_PROP_VOLTAGE_OCV:
- case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
- case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
- case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
- case POWER_SUPPLY_PROP_POWER_NOW:
- return true;
- default:
- break;
- }
- return false;
- }
- #ifdef CONFIG_POWER_SUPPLY_HWMON
- int power_supply_add_hwmon_sysfs(struct power_supply *psy);
- void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
- #else
- static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
- {
- return 0;
- }
- static inline
- void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
- #endif
- #ifdef CONFIG_SYSFS
- ssize_t power_supply_charge_behaviour_show(struct device *dev,
- unsigned int available_behaviours,
- enum power_supply_charge_behaviour behaviour,
- char *buf);
- int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
- #else
- static inline
- ssize_t power_supply_charge_behaviour_show(struct device *dev,
- unsigned int available_behaviours,
- enum power_supply_charge_behaviour behaviour,
- char *buf)
- {
- return -EOPNOTSUPP;
- }
- static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
- const char *buf)
- {
- return -EOPNOTSUPP;
- }
- #endif
- #endif /* __LINUX_POWER_SUPPLY_H__ */
|