123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _LINUX_MATH64_H
- #define _LINUX_MATH64_H
- #include <linux/types.h>
- #include <linux/math.h>
- #include <vdso/math64.h>
- #include <asm/div64.h>
- #if BITS_PER_LONG == 64
- #define div64_long(x, y) div64_s64((x), (y))
- #define div64_ul(x, y) div64_u64((x), (y))
- /**
- * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 32bit divisor
- * @remainder: pointer to unsigned 32bit remainder
- *
- * Return: sets ``*remainder``, then returns dividend / divisor
- *
- * This is commonly provided by 32bit archs to provide an optimized 64bit
- * divide.
- */
- static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
- {
- *remainder = dividend % divisor;
- return dividend / divisor;
- }
- /*
- * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
- * @dividend: signed 64bit dividend
- * @divisor: signed 32bit divisor
- * @remainder: pointer to signed 32bit remainder
- *
- * Return: sets ``*remainder``, then returns dividend / divisor
- */
- static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
- {
- *remainder = dividend % divisor;
- return dividend / divisor;
- }
- /*
- * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 64bit divisor
- * @remainder: pointer to unsigned 64bit remainder
- *
- * Return: sets ``*remainder``, then returns dividend / divisor
- */
- static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
- {
- *remainder = dividend % divisor;
- return dividend / divisor;
- }
- /*
- * div64_u64 - unsigned 64bit divide with 64bit divisor
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 64bit divisor
- *
- * Return: dividend / divisor
- */
- static inline u64 div64_u64(u64 dividend, u64 divisor)
- {
- return dividend / divisor;
- }
- /*
- * div64_s64 - signed 64bit divide with 64bit divisor
- * @dividend: signed 64bit dividend
- * @divisor: signed 64bit divisor
- *
- * Return: dividend / divisor
- */
- static inline s64 div64_s64(s64 dividend, s64 divisor)
- {
- return dividend / divisor;
- }
- #elif BITS_PER_LONG == 32
- #define div64_long(x, y) div_s64((x), (y))
- #define div64_ul(x, y) div_u64((x), (y))
- #ifndef div_u64_rem
- static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
- {
- *remainder = do_div(dividend, divisor);
- return dividend;
- }
- #endif
- #ifndef div_s64_rem
- extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
- #endif
- #ifndef div64_u64_rem
- extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
- #endif
- #ifndef div64_u64
- extern u64 div64_u64(u64 dividend, u64 divisor);
- #endif
- #ifndef div64_s64
- extern s64 div64_s64(s64 dividend, s64 divisor);
- #endif
- #endif /* BITS_PER_LONG */
- /**
- * div_u64 - unsigned 64bit divide with 32bit divisor
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 32bit divisor
- *
- * This is the most common 64bit divide and should be used if possible,
- * as many 32bit archs can optimize this variant better than a full 64bit
- * divide.
- */
- #ifndef div_u64
- static inline u64 div_u64(u64 dividend, u32 divisor)
- {
- u32 remainder;
- return div_u64_rem(dividend, divisor, &remainder);
- }
- #endif
- /**
- * div_s64 - signed 64bit divide with 32bit divisor
- * @dividend: signed 64bit dividend
- * @divisor: signed 32bit divisor
- */
- #ifndef div_s64
- static inline s64 div_s64(s64 dividend, s32 divisor)
- {
- s32 remainder;
- return div_s64_rem(dividend, divisor, &remainder);
- }
- #endif
- u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
- #ifndef mul_u32_u32
- /*
- * Many a GCC version messes this up and generates a 64x64 mult :-(
- */
- static inline u64 mul_u32_u32(u32 a, u32 b)
- {
- return (u64)a * b;
- }
- #endif
- #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
- #ifndef mul_u64_u32_shr
- static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
- {
- return (u64)(((unsigned __int128)a * mul) >> shift);
- }
- #endif /* mul_u64_u32_shr */
- #ifndef mul_u64_u64_shr
- static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
- {
- return (u64)(((unsigned __int128)a * mul) >> shift);
- }
- #endif /* mul_u64_u64_shr */
- #else
- #ifndef mul_u64_u32_shr
- static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
- {
- u32 ah, al;
- u64 ret;
- al = a;
- ah = a >> 32;
- ret = mul_u32_u32(al, mul) >> shift;
- if (ah)
- ret += mul_u32_u32(ah, mul) << (32 - shift);
- return ret;
- }
- #endif /* mul_u64_u32_shr */
- #ifndef mul_u64_u64_shr
- static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
- {
- union {
- u64 ll;
- struct {
- #ifdef __BIG_ENDIAN
- u32 high, low;
- #else
- u32 low, high;
- #endif
- } l;
- } rl, rm, rn, rh, a0, b0;
- u64 c;
- a0.ll = a;
- b0.ll = b;
- rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
- rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
- rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
- rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
- /*
- * Each of these lines computes a 64-bit intermediate result into "c",
- * starting at bits 32-95. The low 32-bits go into the result of the
- * multiplication, the high 32-bits are carried into the next step.
- */
- rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
- rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
- rh.l.high = (c >> 32) + rh.l.high;
- /*
- * The 128-bit result of the multiplication is in rl.ll and rh.ll,
- * shift it right and throw away the high part of the result.
- */
- if (shift == 0)
- return rl.ll;
- if (shift < 64)
- return (rl.ll >> shift) | (rh.ll << (64 - shift));
- return rh.ll >> (shift & 63);
- }
- #endif /* mul_u64_u64_shr */
- #endif
- #ifndef mul_s64_u64_shr
- static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
- {
- u64 ret;
- /*
- * Extract the sign before the multiplication and put it back
- * afterwards if needed.
- */
- ret = mul_u64_u64_shr(abs(a), b, shift);
- if (a < 0)
- ret = -((s64) ret);
- return ret;
- }
- #endif /* mul_s64_u64_shr */
- #ifndef mul_u64_u32_div
- static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
- {
- union {
- u64 ll;
- struct {
- #ifdef __BIG_ENDIAN
- u32 high, low;
- #else
- u32 low, high;
- #endif
- } l;
- } u, rl, rh;
- u.ll = a;
- rl.ll = mul_u32_u32(u.l.low, mul);
- rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
- /* Bits 32-63 of the result will be in rh.l.low. */
- rl.l.high = do_div(rh.ll, divisor);
- /* Bits 0-31 of the result will be in rl.l.low. */
- do_div(rl.ll, divisor);
- rl.l.high = rh.l.low;
- return rl.ll;
- }
- #endif /* mul_u64_u32_div */
- u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
- #define DIV64_U64_ROUND_UP(ll, d) \
- ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
- /**
- * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 64bit divisor
- *
- * Divide unsigned 64bit dividend by unsigned 64bit divisor
- * and round to closest integer.
- *
- * Return: dividend / divisor rounded to nearest integer
- */
- #define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \
- ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
- /*
- * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
- * @dividend: unsigned 64bit dividend
- * @divisor: unsigned 32bit divisor
- *
- * Divide unsigned 64bit dividend by unsigned 32bit divisor
- * and round to closest integer.
- *
- * Return: dividend / divisor rounded to nearest integer
- */
- #define DIV_U64_ROUND_CLOSEST(dividend, divisor) \
- ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
- /*
- * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
- * @dividend: signed 64bit dividend
- * @divisor: signed 32bit divisor
- *
- * Divide signed 64bit dividend by signed 32bit divisor
- * and round to closest integer.
- *
- * Return: dividend / divisor rounded to nearest integer
- */
- #define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \
- { \
- s64 __x = (dividend); \
- s32 __d = (divisor); \
- ((__x > 0) == (__d > 0)) ? \
- div_s64((__x + (__d / 2)), __d) : \
- div_s64((__x - (__d / 2)), __d); \
- } \
- )
- #endif /* _LINUX_MATH64_H */
|