123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _LINUX_MATH_H
- #define _LINUX_MATH_H
- #include <linux/types.h>
- #include <asm/div64.h>
- #include <uapi/linux/kernel.h>
- /*
- * This looks more complex than it should be. But we need to
- * get the type for the ~ right in round_down (it needs to be
- * as wide as the result!), and we want to evaluate the macro
- * arguments just once each.
- */
- #define __round_mask(x, y) ((__typeof__(x))((y)-1))
- /**
- * round_up - round up to next specified power of 2
- * @x: the value to round
- * @y: multiple to round up to (must be a power of 2)
- *
- * Rounds @x up to next multiple of @y (which must be a power of 2).
- * To perform arbitrary rounding up, use roundup() below.
- */
- #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
- /**
- * round_down - round down to next specified power of 2
- * @x: the value to round
- * @y: multiple to round down to (must be a power of 2)
- *
- * Rounds @x down to next multiple of @y (which must be a power of 2).
- * To perform arbitrary rounding down, use rounddown() below.
- */
- #define round_down(x, y) ((x) & ~__round_mask(x, y))
- #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
- #define DIV_ROUND_DOWN_ULL(ll, d) \
- ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
- #define DIV_ROUND_UP_ULL(ll, d) \
- DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
- #if BITS_PER_LONG == 32
- # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
- #else
- # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
- #endif
- /**
- * roundup - round up to the next specified multiple
- * @x: the value to up
- * @y: multiple to round up to
- *
- * Rounds @x up to next multiple of @y. If @y will always be a power
- * of 2, consider using the faster round_up().
- */
- #define roundup(x, y) ( \
- { \
- typeof(y) __y = y; \
- (((x) + (__y - 1)) / __y) * __y; \
- } \
- )
- /**
- * rounddown - round down to next specified multiple
- * @x: the value to round
- * @y: multiple to round down to
- *
- * Rounds @x down to next multiple of @y. If @y will always be a power
- * of 2, consider using the faster round_down().
- */
- #define rounddown(x, y) ( \
- { \
- typeof(x) __x = (x); \
- __x - (__x % (y)); \
- } \
- )
- /*
- * Divide positive or negative dividend by positive or negative divisor
- * and round to closest integer. Result is undefined for negative
- * divisors if the dividend variable type is unsigned and for negative
- * dividends if the divisor variable type is unsigned.
- */
- #define DIV_ROUND_CLOSEST(x, divisor)( \
- { \
- typeof(x) __x = x; \
- typeof(divisor) __d = divisor; \
- (((typeof(x))-1) > 0 || \
- ((typeof(divisor))-1) > 0 || \
- (((__x) > 0) == ((__d) > 0))) ? \
- (((__x) + ((__d) / 2)) / (__d)) : \
- (((__x) - ((__d) / 2)) / (__d)); \
- } \
- )
- /*
- * Same as above but for u64 dividends. divisor must be a 32-bit
- * number.
- */
- #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
- { \
- typeof(divisor) __d = divisor; \
- unsigned long long _tmp = (x) + (__d) / 2; \
- do_div(_tmp, __d); \
- _tmp; \
- } \
- )
- #define __STRUCT_FRACT(type) \
- struct type##_fract { \
- __##type numerator; \
- __##type denominator; \
- };
- __STRUCT_FRACT(s16)
- __STRUCT_FRACT(u16)
- __STRUCT_FRACT(s32)
- __STRUCT_FRACT(u32)
- #undef __STRUCT_FRACT
- /*
- * Multiplies an integer by a fraction, while avoiding unnecessary
- * overflow or loss of precision.
- */
- #define mult_frac(x, numer, denom)( \
- { \
- typeof(x) quot = (x) / (denom); \
- typeof(x) rem = (x) % (denom); \
- (quot * (numer)) + ((rem * (numer)) / (denom)); \
- } \
- )
- #define sector_div(a, b) do_div(a, b)
- /**
- * abs - return absolute value of an argument
- * @x: the value. If it is unsigned type, it is converted to signed type first.
- * char is treated as if it was signed (regardless of whether it really is)
- * but the macro's return type is preserved as char.
- *
- * Return: an absolute value of x.
- */
- #define abs(x) __abs_choose_expr(x, long long, \
- __abs_choose_expr(x, long, \
- __abs_choose_expr(x, int, \
- __abs_choose_expr(x, short, \
- __abs_choose_expr(x, char, \
- __builtin_choose_expr( \
- __builtin_types_compatible_p(typeof(x), char), \
- (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
- ((void)0)))))))
- #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
- __builtin_types_compatible_p(typeof(x), signed type) || \
- __builtin_types_compatible_p(typeof(x), unsigned type), \
- ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
- /**
- * reciprocal_scale - "scale" a value into range [0, ep_ro)
- * @val: value
- * @ep_ro: right open interval endpoint
- *
- * Perform a "reciprocal multiplication" in order to "scale" a value into
- * range [0, @ep_ro), where the upper interval endpoint is right-open.
- * This is useful, e.g. for accessing a index of an array containing
- * @ep_ro elements, for example. Think of it as sort of modulus, only that
- * the result isn't that of modulo. ;) Note that if initial input is a
- * small value, then result will return 0.
- *
- * Return: a result based on @val in interval [0, @ep_ro).
- */
- static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
- {
- return (u32)(((u64) val * ep_ro) >> 32);
- }
- u64 int_pow(u64 base, unsigned int exp);
- unsigned long int_sqrt(unsigned long);
- #if BITS_PER_LONG < 64
- u32 int_sqrt64(u64 x);
- #else
- static inline u32 int_sqrt64(u64 x)
- {
- return (u32)int_sqrt(x);
- }
- #endif
- #endif /* _LINUX_MATH_H */
|