123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 |
- /* SPDX-License-Identifier: GPL-2.0 */
- /*
- * KCSAN access checks and modifiers. These can be used to explicitly check
- * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
- *
- * Copyright (C) 2019, Google LLC.
- */
- #ifndef _LINUX_KCSAN_CHECKS_H
- #define _LINUX_KCSAN_CHECKS_H
- /* Note: Only include what is already included by compiler.h. */
- #include <linux/compiler_attributes.h>
- #include <linux/types.h>
- /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
- #define KCSAN_ACCESS_WRITE (1 << 0) /* Access is a write. */
- #define KCSAN_ACCESS_COMPOUND (1 << 1) /* Compounded read-write instrumentation. */
- #define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */
- /* The following are special, and never due to compiler instrumentation. */
- #define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */
- #define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */
- /*
- * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
- * even in compilation units that selectively disable KCSAN, but must use KCSAN
- * to validate access to an address. Never use these in header files!
- */
- #ifdef CONFIG_KCSAN
- /**
- * __kcsan_check_access - check generic access for races
- *
- * @ptr: address of access
- * @size: size of access
- * @type: access type modifier
- */
- void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
- /*
- * See definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
- * Note: The mappings are arbitrary, and do not reflect any real mappings of C11
- * memory orders to the LKMM memory orders and vice-versa!
- */
- #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb __ATOMIC_SEQ_CST
- #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb __ATOMIC_ACQ_REL
- #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb __ATOMIC_ACQUIRE
- #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_release __ATOMIC_RELEASE
- /**
- * __kcsan_mb - full memory barrier instrumentation
- */
- void __kcsan_mb(void);
- /**
- * __kcsan_wmb - write memory barrier instrumentation
- */
- void __kcsan_wmb(void);
- /**
- * __kcsan_rmb - read memory barrier instrumentation
- */
- void __kcsan_rmb(void);
- /**
- * __kcsan_release - release barrier instrumentation
- */
- void __kcsan_release(void);
- /**
- * kcsan_disable_current - disable KCSAN for the current context
- *
- * Supports nesting.
- */
- void kcsan_disable_current(void);
- /**
- * kcsan_enable_current - re-enable KCSAN for the current context
- *
- * Supports nesting.
- */
- void kcsan_enable_current(void);
- void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
- /**
- * kcsan_nestable_atomic_begin - begin nestable atomic region
- *
- * Accesses within the atomic region may appear to race with other accesses but
- * should be considered atomic.
- */
- void kcsan_nestable_atomic_begin(void);
- /**
- * kcsan_nestable_atomic_end - end nestable atomic region
- */
- void kcsan_nestable_atomic_end(void);
- /**
- * kcsan_flat_atomic_begin - begin flat atomic region
- *
- * Accesses within the atomic region may appear to race with other accesses but
- * should be considered atomic.
- */
- void kcsan_flat_atomic_begin(void);
- /**
- * kcsan_flat_atomic_end - end flat atomic region
- */
- void kcsan_flat_atomic_end(void);
- /**
- * kcsan_atomic_next - consider following accesses as atomic
- *
- * Force treating the next n memory accesses for the current context as atomic
- * operations.
- *
- * @n: number of following memory accesses to treat as atomic.
- */
- void kcsan_atomic_next(int n);
- /**
- * kcsan_set_access_mask - set access mask
- *
- * Set the access mask for all accesses for the current context if non-zero.
- * Only value changes to bits set in the mask will be reported.
- *
- * @mask: bitmask
- */
- void kcsan_set_access_mask(unsigned long mask);
- /* Scoped access information. */
- struct kcsan_scoped_access {
- union {
- struct list_head list; /* scoped_accesses list */
- /*
- * Not an entry in scoped_accesses list; stack depth from where
- * the access was initialized.
- */
- int stack_depth;
- };
- /* Access information. */
- const volatile void *ptr;
- size_t size;
- int type;
- /* Location where scoped access was set up. */
- unsigned long ip;
- };
- /*
- * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
- * out of scope; relies on attribute "cleanup", which is supported by all
- * compilers that support KCSAN.
- */
- #define __kcsan_cleanup_scoped \
- __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
- /**
- * kcsan_begin_scoped_access - begin scoped access
- *
- * Begin scoped access and initialize @sa, which will cause KCSAN to
- * continuously check the memory range in the current thread until
- * kcsan_end_scoped_access() is called for @sa.
- *
- * Scoped accesses are implemented by appending @sa to an internal list for the
- * current execution context, and then checked on every call into the KCSAN
- * runtime.
- *
- * @ptr: address of access
- * @size: size of access
- * @type: access type modifier
- * @sa: struct kcsan_scoped_access to use for the scope of the access
- */
- struct kcsan_scoped_access *
- kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
- struct kcsan_scoped_access *sa);
- /**
- * kcsan_end_scoped_access - end scoped access
- *
- * End a scoped access, which will stop KCSAN checking the memory range.
- * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
- *
- * @sa: a previously initialized struct kcsan_scoped_access
- */
- void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
- #else /* CONFIG_KCSAN */
- static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
- int type) { }
- static inline void __kcsan_mb(void) { }
- static inline void __kcsan_wmb(void) { }
- static inline void __kcsan_rmb(void) { }
- static inline void __kcsan_release(void) { }
- static inline void kcsan_disable_current(void) { }
- static inline void kcsan_enable_current(void) { }
- static inline void kcsan_enable_current_nowarn(void) { }
- static inline void kcsan_nestable_atomic_begin(void) { }
- static inline void kcsan_nestable_atomic_end(void) { }
- static inline void kcsan_flat_atomic_begin(void) { }
- static inline void kcsan_flat_atomic_end(void) { }
- static inline void kcsan_atomic_next(int n) { }
- static inline void kcsan_set_access_mask(unsigned long mask) { }
- struct kcsan_scoped_access { };
- #define __kcsan_cleanup_scoped __maybe_unused
- static inline struct kcsan_scoped_access *
- kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
- struct kcsan_scoped_access *sa) { return sa; }
- static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
- #endif /* CONFIG_KCSAN */
- #ifdef __SANITIZE_THREAD__
- /*
- * Only calls into the runtime when the particular compilation unit has KCSAN
- * instrumentation enabled. May be used in header files.
- */
- #define kcsan_check_access __kcsan_check_access
- /*
- * Only use these to disable KCSAN for accesses in the current compilation unit;
- * calls into libraries may still perform KCSAN checks.
- */
- #define __kcsan_disable_current kcsan_disable_current
- #define __kcsan_enable_current kcsan_enable_current_nowarn
- #else /* __SANITIZE_THREAD__ */
- static inline void kcsan_check_access(const volatile void *ptr, size_t size,
- int type) { }
- static inline void __kcsan_enable_current(void) { }
- static inline void __kcsan_disable_current(void) { }
- #endif /* __SANITIZE_THREAD__ */
- #if defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__SANITIZE_THREAD__)
- /*
- * Normal barrier instrumentation is not done via explicit calls, but by mapping
- * to a repurposed __atomic_signal_fence(), which normally does not generate any
- * real instructions, but is still intercepted by fsanitize=thread. This means,
- * like any other compile-time instrumentation, barrier instrumentation can be
- * disabled with the __no_kcsan function attribute.
- *
- * Also see definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
- *
- * These are all macros, like <asm/barrier.h>, since some architectures use them
- * in non-static inline functions.
- */
- #define __KCSAN_BARRIER_TO_SIGNAL_FENCE(name) \
- do { \
- barrier(); \
- __atomic_signal_fence(__KCSAN_BARRIER_TO_SIGNAL_FENCE_##name); \
- barrier(); \
- } while (0)
- #define kcsan_mb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(mb)
- #define kcsan_wmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(wmb)
- #define kcsan_rmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(rmb)
- #define kcsan_release() __KCSAN_BARRIER_TO_SIGNAL_FENCE(release)
- #elif defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__KCSAN_INSTRUMENT_BARRIERS__)
- #define kcsan_mb __kcsan_mb
- #define kcsan_wmb __kcsan_wmb
- #define kcsan_rmb __kcsan_rmb
- #define kcsan_release __kcsan_release
- #else /* CONFIG_KCSAN_WEAK_MEMORY && ... */
- #define kcsan_mb() do { } while (0)
- #define kcsan_wmb() do { } while (0)
- #define kcsan_rmb() do { } while (0)
- #define kcsan_release() do { } while (0)
- #endif /* CONFIG_KCSAN_WEAK_MEMORY && ... */
- /**
- * __kcsan_check_read - check regular read access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
- /**
- * __kcsan_check_write - check regular write access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define __kcsan_check_write(ptr, size) \
- __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
- /**
- * __kcsan_check_read_write - check regular read-write access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define __kcsan_check_read_write(ptr, size) \
- __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
- /**
- * kcsan_check_read - check regular read access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
- /**
- * kcsan_check_write - check regular write access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define kcsan_check_write(ptr, size) \
- kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
- /**
- * kcsan_check_read_write - check regular read-write access for races
- *
- * @ptr: address of access
- * @size: size of access
- */
- #define kcsan_check_read_write(ptr, size) \
- kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
- /*
- * Check for atomic accesses: if atomic accesses are not ignored, this simply
- * aliases to kcsan_check_access(), otherwise becomes a no-op.
- */
- #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
- #define kcsan_check_atomic_read(...) do { } while (0)
- #define kcsan_check_atomic_write(...) do { } while (0)
- #define kcsan_check_atomic_read_write(...) do { } while (0)
- #else
- #define kcsan_check_atomic_read(ptr, size) \
- kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
- #define kcsan_check_atomic_write(ptr, size) \
- kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
- #define kcsan_check_atomic_read_write(ptr, size) \
- kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
- #endif
- /**
- * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
- *
- * Assert that there are no concurrent writes to @var; other readers are
- * allowed. This assertion can be used to specify properties of concurrent code,
- * where violation cannot be detected as a normal data race.
- *
- * For example, if we only have a single writer, but multiple concurrent
- * readers, to avoid data races, all these accesses must be marked; even
- * concurrent marked writes racing with the single writer are bugs.
- * Unfortunately, due to being marked, they are no longer data races. For cases
- * like these, we can use the macro as follows:
- *
- * .. code-block:: c
- *
- * void writer(void) {
- * spin_lock(&update_foo_lock);
- * ASSERT_EXCLUSIVE_WRITER(shared_foo);
- * WRITE_ONCE(shared_foo, ...);
- * spin_unlock(&update_foo_lock);
- * }
- * void reader(void) {
- * // update_foo_lock does not need to be held!
- * ... = READ_ONCE(shared_foo);
- * }
- *
- * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
- * checking if a clear scope where no concurrent writes are expected exists.
- *
- * @var: variable to assert on
- */
- #define ASSERT_EXCLUSIVE_WRITER(var) \
- __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
- /*
- * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
- * expected to be unique for the scope in which instances of kcsan_scoped_access
- * are declared.
- */
- #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
- #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
- struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
- __kcsan_cleanup_scoped; \
- struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
- __maybe_unused = kcsan_begin_scoped_access( \
- &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
- &__kcsan_scoped_name(id, _))
- /**
- * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
- *
- * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
- *
- * Assert that there are no concurrent writes to @var for the duration of the
- * scope in which it is introduced. This provides a better way to fully cover
- * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
- * increases the likelihood for KCSAN to detect racing accesses.
- *
- * For example, it allows finding race-condition bugs that only occur due to
- * state changes within the scope itself:
- *
- * .. code-block:: c
- *
- * void writer(void) {
- * spin_lock(&update_foo_lock);
- * {
- * ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
- * WRITE_ONCE(shared_foo, 42);
- * ...
- * // shared_foo should still be 42 here!
- * }
- * spin_unlock(&update_foo_lock);
- * }
- * void buggy(void) {
- * if (READ_ONCE(shared_foo) == 42)
- * WRITE_ONCE(shared_foo, 1); // bug!
- * }
- *
- * @var: variable to assert on
- */
- #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
- __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
- /**
- * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
- *
- * Assert that there are no concurrent accesses to @var (no readers nor
- * writers). This assertion can be used to specify properties of concurrent
- * code, where violation cannot be detected as a normal data race.
- *
- * For example, where exclusive access is expected after determining no other
- * users of an object are left, but the object is not actually freed. We can
- * check that this property actually holds as follows:
- *
- * .. code-block:: c
- *
- * if (refcount_dec_and_test(&obj->refcnt)) {
- * ASSERT_EXCLUSIVE_ACCESS(*obj);
- * do_some_cleanup(obj);
- * release_for_reuse(obj);
- * }
- *
- * Note:
- *
- * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
- * checking if a clear scope where no concurrent accesses are expected exists.
- *
- * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
- * fit to detect use-after-free bugs.
- *
- * @var: variable to assert on
- */
- #define ASSERT_EXCLUSIVE_ACCESS(var) \
- __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
- /**
- * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
- *
- * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
- *
- * Assert that there are no concurrent accesses to @var (no readers nor writers)
- * for the entire duration of the scope in which it is introduced. This provides
- * a better way to fully cover the enclosing scope, compared to multiple
- * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
- * racing accesses.
- *
- * @var: variable to assert on
- */
- #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
- __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
- /**
- * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
- *
- * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
- *
- * Assert that there are no concurrent writes to a subset of bits in @var;
- * concurrent readers are permitted. This assertion captures more detailed
- * bit-level properties, compared to the other (word granularity) assertions.
- * Only the bits set in @mask are checked for concurrent modifications, while
- * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
- * are ignored.
- *
- * Use this for variables, where some bits must not be modified concurrently,
- * yet other bits are expected to be modified concurrently.
- *
- * For example, variables where, after initialization, some bits are read-only,
- * but other bits may still be modified concurrently. A reader may wish to
- * assert that this is true as follows:
- *
- * .. code-block:: c
- *
- * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
- * foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
- *
- * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
- * to access the masked bits only, and KCSAN optimistically assumes it is
- * therefore safe, even in the presence of data races, and marking it with
- * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
- * it may still be advisable to do so, since we cannot reason about all compiler
- * optimizations when it comes to bit manipulations (on the reader and writer
- * side). If you are sure nothing can go wrong, we can write the above simply
- * as:
- *
- * .. code-block:: c
- *
- * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
- * foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
- *
- * Another example, where this may be used, is when certain bits of @var may
- * only be modified when holding the appropriate lock, but other bits may still
- * be modified concurrently. Writers, where other bits may change concurrently,
- * could use the assertion as follows:
- *
- * .. code-block:: c
- *
- * spin_lock(&foo_lock);
- * ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
- * old_flags = flags;
- * new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
- * if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
- * spin_unlock(&foo_lock);
- *
- * @var: variable to assert on
- * @mask: only check for modifications to bits set in @mask
- */
- #define ASSERT_EXCLUSIVE_BITS(var, mask) \
- do { \
- kcsan_set_access_mask(mask); \
- __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
- kcsan_set_access_mask(0); \
- kcsan_atomic_next(1); \
- } while (0)
- #endif /* _LINUX_KCSAN_CHECKS_H */
|