123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963 |
- // SPDX-License-Identifier: GPL-2.0+
- /*
- * Copyright (C) 2018 Oracle. All Rights Reserved.
- * Author: Darrick J. Wong <[email protected]>
- */
- #include "xfs.h"
- #include "xfs_fs.h"
- #include "xfs_shared.h"
- #include "xfs_format.h"
- #include "xfs_trans_resv.h"
- #include "xfs_mount.h"
- #include "xfs_btree.h"
- #include "xfs_log_format.h"
- #include "xfs_trans.h"
- #include "xfs_sb.h"
- #include "xfs_inode.h"
- #include "xfs_alloc.h"
- #include "xfs_alloc_btree.h"
- #include "xfs_ialloc.h"
- #include "xfs_ialloc_btree.h"
- #include "xfs_rmap.h"
- #include "xfs_rmap_btree.h"
- #include "xfs_refcount_btree.h"
- #include "xfs_extent_busy.h"
- #include "xfs_ag.h"
- #include "xfs_ag_resv.h"
- #include "xfs_quota.h"
- #include "xfs_qm.h"
- #include "scrub/scrub.h"
- #include "scrub/common.h"
- #include "scrub/trace.h"
- #include "scrub/repair.h"
- #include "scrub/bitmap.h"
- /*
- * Attempt to repair some metadata, if the metadata is corrupt and userspace
- * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
- * and will set *fixed to true if it thinks it repaired anything.
- */
- int
- xrep_attempt(
- struct xfs_scrub *sc)
- {
- int error = 0;
- trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
- xchk_ag_btcur_free(&sc->sa);
- /* Repair whatever's broken. */
- ASSERT(sc->ops->repair);
- error = sc->ops->repair(sc);
- trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
- switch (error) {
- case 0:
- /*
- * Repair succeeded. Commit the fixes and perform a second
- * scrub so that we can tell userspace if we fixed the problem.
- */
- sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
- sc->flags |= XREP_ALREADY_FIXED;
- return -EAGAIN;
- case -EDEADLOCK:
- case -EAGAIN:
- /* Tell the caller to try again having grabbed all the locks. */
- if (!(sc->flags & XCHK_TRY_HARDER)) {
- sc->flags |= XCHK_TRY_HARDER;
- return -EAGAIN;
- }
- /*
- * We tried harder but still couldn't grab all the resources
- * we needed to fix it. The corruption has not been fixed,
- * so report back to userspace.
- */
- return -EFSCORRUPTED;
- default:
- return error;
- }
- }
- /*
- * Complain about unfixable problems in the filesystem. We don't log
- * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
- * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
- * administrator isn't running xfs_scrub in no-repairs mode.
- *
- * Use this helper function because _ratelimited silently declares a static
- * structure to track rate limiting information.
- */
- void
- xrep_failure(
- struct xfs_mount *mp)
- {
- xfs_alert_ratelimited(mp,
- "Corruption not fixed during online repair. Unmount and run xfs_repair.");
- }
- /*
- * Repair probe -- userspace uses this to probe if we're willing to repair a
- * given mountpoint.
- */
- int
- xrep_probe(
- struct xfs_scrub *sc)
- {
- int error = 0;
- if (xchk_should_terminate(sc, &error))
- return error;
- return 0;
- }
- /*
- * Roll a transaction, keeping the AG headers locked and reinitializing
- * the btree cursors.
- */
- int
- xrep_roll_ag_trans(
- struct xfs_scrub *sc)
- {
- int error;
- /* Keep the AG header buffers locked so we can keep going. */
- if (sc->sa.agi_bp)
- xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
- if (sc->sa.agf_bp)
- xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
- if (sc->sa.agfl_bp)
- xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
- /*
- * Roll the transaction. We still own the buffer and the buffer lock
- * regardless of whether or not the roll succeeds. If the roll fails,
- * the buffers will be released during teardown on our way out of the
- * kernel. If it succeeds, we join them to the new transaction and
- * move on.
- */
- error = xfs_trans_roll(&sc->tp);
- if (error)
- return error;
- /* Join AG headers to the new transaction. */
- if (sc->sa.agi_bp)
- xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
- if (sc->sa.agf_bp)
- xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
- if (sc->sa.agfl_bp)
- xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
- return 0;
- }
- /*
- * Does the given AG have enough space to rebuild a btree? Neither AG
- * reservation can be critical, and we must have enough space (factoring
- * in AG reservations) to construct a whole btree.
- */
- bool
- xrep_ag_has_space(
- struct xfs_perag *pag,
- xfs_extlen_t nr_blocks,
- enum xfs_ag_resv_type type)
- {
- return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
- !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
- pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
- }
- /*
- * Figure out how many blocks to reserve for an AG repair. We calculate the
- * worst case estimate for the number of blocks we'd need to rebuild one of
- * any type of per-AG btree.
- */
- xfs_extlen_t
- xrep_calc_ag_resblks(
- struct xfs_scrub *sc)
- {
- struct xfs_mount *mp = sc->mp;
- struct xfs_scrub_metadata *sm = sc->sm;
- struct xfs_perag *pag;
- struct xfs_buf *bp;
- xfs_agino_t icount = NULLAGINO;
- xfs_extlen_t aglen = NULLAGBLOCK;
- xfs_extlen_t usedlen;
- xfs_extlen_t freelen;
- xfs_extlen_t bnobt_sz;
- xfs_extlen_t inobt_sz;
- xfs_extlen_t rmapbt_sz;
- xfs_extlen_t refcbt_sz;
- int error;
- if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
- return 0;
- pag = xfs_perag_get(mp, sm->sm_agno);
- if (pag->pagi_init) {
- /* Use in-core icount if possible. */
- icount = pag->pagi_count;
- } else {
- /* Try to get the actual counters from disk. */
- error = xfs_ialloc_read_agi(pag, NULL, &bp);
- if (!error) {
- icount = pag->pagi_count;
- xfs_buf_relse(bp);
- }
- }
- /* Now grab the block counters from the AGF. */
- error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
- if (error) {
- aglen = pag->block_count;
- freelen = aglen;
- usedlen = aglen;
- } else {
- struct xfs_agf *agf = bp->b_addr;
- aglen = be32_to_cpu(agf->agf_length);
- freelen = be32_to_cpu(agf->agf_freeblks);
- usedlen = aglen - freelen;
- xfs_buf_relse(bp);
- }
- /* If the icount is impossible, make some worst-case assumptions. */
- if (icount == NULLAGINO ||
- !xfs_verify_agino(pag, icount)) {
- icount = pag->agino_max - pag->agino_min + 1;
- }
- /* If the block counts are impossible, make worst-case assumptions. */
- if (aglen == NULLAGBLOCK ||
- aglen != pag->block_count ||
- freelen >= aglen) {
- aglen = pag->block_count;
- freelen = aglen;
- usedlen = aglen;
- }
- xfs_perag_put(pag);
- trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
- freelen, usedlen);
- /*
- * Figure out how many blocks we'd need worst case to rebuild
- * each type of btree. Note that we can only rebuild the
- * bnobt/cntbt or inobt/finobt as pairs.
- */
- bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
- if (xfs_has_sparseinodes(mp))
- inobt_sz = xfs_iallocbt_calc_size(mp, icount /
- XFS_INODES_PER_HOLEMASK_BIT);
- else
- inobt_sz = xfs_iallocbt_calc_size(mp, icount /
- XFS_INODES_PER_CHUNK);
- if (xfs_has_finobt(mp))
- inobt_sz *= 2;
- if (xfs_has_reflink(mp))
- refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
- else
- refcbt_sz = 0;
- if (xfs_has_rmapbt(mp)) {
- /*
- * Guess how many blocks we need to rebuild the rmapbt.
- * For non-reflink filesystems we can't have more records than
- * used blocks. However, with reflink it's possible to have
- * more than one rmap record per AG block. We don't know how
- * many rmaps there could be in the AG, so we start off with
- * what we hope is an generous over-estimation.
- */
- if (xfs_has_reflink(mp))
- rmapbt_sz = xfs_rmapbt_calc_size(mp,
- (unsigned long long)aglen * 2);
- else
- rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
- } else {
- rmapbt_sz = 0;
- }
- trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
- inobt_sz, rmapbt_sz, refcbt_sz);
- return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
- }
- /* Allocate a block in an AG. */
- int
- xrep_alloc_ag_block(
- struct xfs_scrub *sc,
- const struct xfs_owner_info *oinfo,
- xfs_fsblock_t *fsbno,
- enum xfs_ag_resv_type resv)
- {
- struct xfs_alloc_arg args = {0};
- xfs_agblock_t bno;
- int error;
- switch (resv) {
- case XFS_AG_RESV_AGFL:
- case XFS_AG_RESV_RMAPBT:
- error = xfs_alloc_get_freelist(sc->sa.pag, sc->tp,
- sc->sa.agf_bp, &bno, 1);
- if (error)
- return error;
- if (bno == NULLAGBLOCK)
- return -ENOSPC;
- xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false);
- *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno);
- if (resv == XFS_AG_RESV_RMAPBT)
- xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno);
- return 0;
- default:
- break;
- }
- args.tp = sc->tp;
- args.mp = sc->mp;
- args.oinfo = *oinfo;
- args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0);
- args.minlen = 1;
- args.maxlen = 1;
- args.prod = 1;
- args.type = XFS_ALLOCTYPE_THIS_AG;
- args.resv = resv;
- error = xfs_alloc_vextent(&args);
- if (error)
- return error;
- if (args.fsbno == NULLFSBLOCK)
- return -ENOSPC;
- ASSERT(args.len == 1);
- *fsbno = args.fsbno;
- return 0;
- }
- /* Initialize a new AG btree root block with zero entries. */
- int
- xrep_init_btblock(
- struct xfs_scrub *sc,
- xfs_fsblock_t fsb,
- struct xfs_buf **bpp,
- xfs_btnum_t btnum,
- const struct xfs_buf_ops *ops)
- {
- struct xfs_trans *tp = sc->tp;
- struct xfs_mount *mp = sc->mp;
- struct xfs_buf *bp;
- int error;
- trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
- XFS_FSB_TO_AGBNO(mp, fsb), btnum);
- ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno);
- error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
- XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
- &bp);
- if (error)
- return error;
- xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
- xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno);
- xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
- xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
- bp->b_ops = ops;
- *bpp = bp;
- return 0;
- }
- /*
- * Reconstructing per-AG Btrees
- *
- * When a space btree is corrupt, we don't bother trying to fix it. Instead,
- * we scan secondary space metadata to derive the records that should be in
- * the damaged btree, initialize a fresh btree root, and insert the records.
- * Note that for rebuilding the rmapbt we scan all the primary data to
- * generate the new records.
- *
- * However, that leaves the matter of removing all the metadata describing the
- * old broken structure. For primary metadata we use the rmap data to collect
- * every extent with a matching rmap owner (bitmap); we then iterate all other
- * metadata structures with the same rmap owner to collect the extents that
- * cannot be removed (sublist). We then subtract sublist from bitmap to
- * derive the blocks that were used by the old btree. These blocks can be
- * reaped.
- *
- * For rmapbt reconstructions we must use different tactics for extent
- * collection. First we iterate all primary metadata (this excludes the old
- * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
- * records are collected as bitmap. The bnobt records are collected as
- * sublist. As with the other btrees we subtract sublist from bitmap, and the
- * result (since the rmapbt lives in the free space) are the blocks from the
- * old rmapbt.
- *
- * Disposal of Blocks from Old per-AG Btrees
- *
- * Now that we've constructed a new btree to replace the damaged one, we want
- * to dispose of the blocks that (we think) the old btree was using.
- * Previously, we used the rmapbt to collect the extents (bitmap) with the
- * rmap owner corresponding to the tree we rebuilt, collected extents for any
- * blocks with the same rmap owner that are owned by another data structure
- * (sublist), and subtracted sublist from bitmap. In theory the extents
- * remaining in bitmap are the old btree's blocks.
- *
- * Unfortunately, it's possible that the btree was crosslinked with other
- * blocks on disk. The rmap data can tell us if there are multiple owners, so
- * if the rmapbt says there is an owner of this block other than @oinfo, then
- * the block is crosslinked. Remove the reverse mapping and continue.
- *
- * If there is one rmap record, we can free the block, which removes the
- * reverse mapping but doesn't add the block to the free space. Our repair
- * strategy is to hope the other metadata objects crosslinked on this block
- * will be rebuilt (atop different blocks), thereby removing all the cross
- * links.
- *
- * If there are no rmap records at all, we also free the block. If the btree
- * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
- * supposed to be a rmap record and everything is ok. For other btrees there
- * had to have been an rmap entry for the block to have ended up on @bitmap,
- * so if it's gone now there's something wrong and the fs will shut down.
- *
- * Note: If there are multiple rmap records with only the same rmap owner as
- * the btree we're trying to rebuild and the block is indeed owned by another
- * data structure with the same rmap owner, then the block will be in sublist
- * and therefore doesn't need disposal. If there are multiple rmap records
- * with only the same rmap owner but the block is not owned by something with
- * the same rmap owner, the block will be freed.
- *
- * The caller is responsible for locking the AG headers for the entire rebuild
- * operation so that nothing else can sneak in and change the AG state while
- * we're not looking. We also assume that the caller already invalidated any
- * buffers associated with @bitmap.
- */
- /*
- * Invalidate buffers for per-AG btree blocks we're dumping. This function
- * is not intended for use with file data repairs; we have bunmapi for that.
- */
- int
- xrep_invalidate_blocks(
- struct xfs_scrub *sc,
- struct xbitmap *bitmap)
- {
- struct xbitmap_range *bmr;
- struct xbitmap_range *n;
- struct xfs_buf *bp;
- xfs_fsblock_t fsbno;
- /*
- * For each block in each extent, see if there's an incore buffer for
- * exactly that block; if so, invalidate it. The buffer cache only
- * lets us look for one buffer at a time, so we have to look one block
- * at a time. Avoid invalidating AG headers and post-EOFS blocks
- * because we never own those; and if we can't TRYLOCK the buffer we
- * assume it's owned by someone else.
- */
- for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
- int error;
- /* Skip AG headers and post-EOFS blocks */
- if (!xfs_verify_fsbno(sc->mp, fsbno))
- continue;
- error = xfs_buf_incore(sc->mp->m_ddev_targp,
- XFS_FSB_TO_DADDR(sc->mp, fsbno),
- XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp);
- if (error)
- continue;
- xfs_trans_bjoin(sc->tp, bp);
- xfs_trans_binval(sc->tp, bp);
- }
- return 0;
- }
- /* Ensure the freelist is the correct size. */
- int
- xrep_fix_freelist(
- struct xfs_scrub *sc,
- bool can_shrink)
- {
- struct xfs_alloc_arg args = {0};
- args.mp = sc->mp;
- args.tp = sc->tp;
- args.agno = sc->sa.pag->pag_agno;
- args.alignment = 1;
- args.pag = sc->sa.pag;
- return xfs_alloc_fix_freelist(&args,
- can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
- }
- /*
- * Put a block back on the AGFL.
- */
- STATIC int
- xrep_put_freelist(
- struct xfs_scrub *sc,
- xfs_agblock_t agbno)
- {
- int error;
- /* Make sure there's space on the freelist. */
- error = xrep_fix_freelist(sc, true);
- if (error)
- return error;
- /*
- * Since we're "freeing" a lost block onto the AGFL, we have to
- * create an rmap for the block prior to merging it or else other
- * parts will break.
- */
- error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
- &XFS_RMAP_OINFO_AG);
- if (error)
- return error;
- /* Put the block on the AGFL. */
- error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
- sc->sa.agfl_bp, agbno, 0);
- if (error)
- return error;
- xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
- XFS_EXTENT_BUSY_SKIP_DISCARD);
- return 0;
- }
- /* Dispose of a single block. */
- STATIC int
- xrep_reap_block(
- struct xfs_scrub *sc,
- xfs_fsblock_t fsbno,
- const struct xfs_owner_info *oinfo,
- enum xfs_ag_resv_type resv)
- {
- struct xfs_btree_cur *cur;
- struct xfs_buf *agf_bp = NULL;
- xfs_agblock_t agbno;
- bool has_other_rmap;
- int error;
- agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
- ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
- /*
- * If we are repairing per-inode metadata, we need to read in the AGF
- * buffer. Otherwise, we're repairing a per-AG structure, so reuse
- * the AGF buffer that the setup functions already grabbed.
- */
- if (sc->ip) {
- error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
- if (error)
- return error;
- } else {
- agf_bp = sc->sa.agf_bp;
- }
- cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag);
- /* Can we find any other rmappings? */
- error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
- xfs_btree_del_cursor(cur, error);
- if (error)
- goto out_free;
- /*
- * If there are other rmappings, this block is cross linked and must
- * not be freed. Remove the reverse mapping and move on. Otherwise,
- * we were the only owner of the block, so free the extent, which will
- * also remove the rmap.
- *
- * XXX: XFS doesn't support detecting the case where a single block
- * metadata structure is crosslinked with a multi-block structure
- * because the buffer cache doesn't detect aliasing problems, so we
- * can't fix 100% of crosslinking problems (yet). The verifiers will
- * blow on writeout, the filesystem will shut down, and the admin gets
- * to run xfs_repair.
- */
- if (has_other_rmap)
- error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno,
- 1, oinfo);
- else if (resv == XFS_AG_RESV_AGFL)
- error = xrep_put_freelist(sc, agbno);
- else
- error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
- if (agf_bp != sc->sa.agf_bp)
- xfs_trans_brelse(sc->tp, agf_bp);
- if (error)
- return error;
- if (sc->ip)
- return xfs_trans_roll_inode(&sc->tp, sc->ip);
- return xrep_roll_ag_trans(sc);
- out_free:
- if (agf_bp != sc->sa.agf_bp)
- xfs_trans_brelse(sc->tp, agf_bp);
- return error;
- }
- /* Dispose of every block of every extent in the bitmap. */
- int
- xrep_reap_extents(
- struct xfs_scrub *sc,
- struct xbitmap *bitmap,
- const struct xfs_owner_info *oinfo,
- enum xfs_ag_resv_type type)
- {
- struct xbitmap_range *bmr;
- struct xbitmap_range *n;
- xfs_fsblock_t fsbno;
- int error = 0;
- ASSERT(xfs_has_rmapbt(sc->mp));
- for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
- ASSERT(sc->ip != NULL ||
- XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
- trace_xrep_dispose_btree_extent(sc->mp,
- XFS_FSB_TO_AGNO(sc->mp, fsbno),
- XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
- error = xrep_reap_block(sc, fsbno, oinfo, type);
- if (error)
- break;
- }
- return error;
- }
- /*
- * Finding per-AG Btree Roots for AGF/AGI Reconstruction
- *
- * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
- * the AG headers by using the rmap data to rummage through the AG looking for
- * btree roots. This is not guaranteed to work if the AG is heavily damaged
- * or the rmap data are corrupt.
- *
- * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
- * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
- * AGI is being rebuilt. It must maintain these locks until it's safe for
- * other threads to change the btrees' shapes. The caller provides
- * information about the btrees to look for by passing in an array of
- * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
- * The (root, height) fields will be set on return if anything is found. The
- * last element of the array should have a NULL buf_ops to mark the end of the
- * array.
- *
- * For every rmapbt record matching any of the rmap owners in btree_info,
- * read each block referenced by the rmap record. If the block is a btree
- * block from this filesystem matching any of the magic numbers and has a
- * level higher than what we've already seen, remember the block and the
- * height of the tree required to have such a block. When the call completes,
- * we return the highest block we've found for each btree description; those
- * should be the roots.
- */
- struct xrep_findroot {
- struct xfs_scrub *sc;
- struct xfs_buf *agfl_bp;
- struct xfs_agf *agf;
- struct xrep_find_ag_btree *btree_info;
- };
- /* See if our block is in the AGFL. */
- STATIC int
- xrep_findroot_agfl_walk(
- struct xfs_mount *mp,
- xfs_agblock_t bno,
- void *priv)
- {
- xfs_agblock_t *agbno = priv;
- return (*agbno == bno) ? -ECANCELED : 0;
- }
- /* Does this block match the btree information passed in? */
- STATIC int
- xrep_findroot_block(
- struct xrep_findroot *ri,
- struct xrep_find_ag_btree *fab,
- uint64_t owner,
- xfs_agblock_t agbno,
- bool *done_with_block)
- {
- struct xfs_mount *mp = ri->sc->mp;
- struct xfs_buf *bp;
- struct xfs_btree_block *btblock;
- xfs_daddr_t daddr;
- int block_level;
- int error = 0;
- daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
- /*
- * Blocks in the AGFL have stale contents that might just happen to
- * have a matching magic and uuid. We don't want to pull these blocks
- * in as part of a tree root, so we have to filter out the AGFL stuff
- * here. If the AGFL looks insane we'll just refuse to repair.
- */
- if (owner == XFS_RMAP_OWN_AG) {
- error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
- xrep_findroot_agfl_walk, &agbno);
- if (error == -ECANCELED)
- return 0;
- if (error)
- return error;
- }
- /*
- * Read the buffer into memory so that we can see if it's a match for
- * our btree type. We have no clue if it is beforehand, and we want to
- * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
- * will cause needless disk reads in subsequent calls to this function)
- * and logging metadata verifier failures.
- *
- * Therefore, pass in NULL buffer ops. If the buffer was already in
- * memory from some other caller it will already have b_ops assigned.
- * If it was in memory from a previous unsuccessful findroot_block
- * call, the buffer won't have b_ops but it should be clean and ready
- * for us to try to verify if the read call succeeds. The same applies
- * if the buffer wasn't in memory at all.
- *
- * Note: If we never match a btree type with this buffer, it will be
- * left in memory with NULL b_ops. This shouldn't be a problem unless
- * the buffer gets written.
- */
- error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
- mp->m_bsize, 0, &bp, NULL);
- if (error)
- return error;
- /* Ensure the block magic matches the btree type we're looking for. */
- btblock = XFS_BUF_TO_BLOCK(bp);
- ASSERT(fab->buf_ops->magic[1] != 0);
- if (btblock->bb_magic != fab->buf_ops->magic[1])
- goto out;
- /*
- * If the buffer already has ops applied and they're not the ones for
- * this btree type, we know this block doesn't match the btree and we
- * can bail out.
- *
- * If the buffer ops match ours, someone else has already validated
- * the block for us, so we can move on to checking if this is a root
- * block candidate.
- *
- * If the buffer does not have ops, nobody has successfully validated
- * the contents and the buffer cannot be dirty. If the magic, uuid,
- * and structure match this btree type then we'll move on to checking
- * if it's a root block candidate. If there is no match, bail out.
- */
- if (bp->b_ops) {
- if (bp->b_ops != fab->buf_ops)
- goto out;
- } else {
- ASSERT(!xfs_trans_buf_is_dirty(bp));
- if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
- &mp->m_sb.sb_meta_uuid))
- goto out;
- /*
- * Read verifiers can reference b_ops, so we set the pointer
- * here. If the verifier fails we'll reset the buffer state
- * to what it was before we touched the buffer.
- */
- bp->b_ops = fab->buf_ops;
- fab->buf_ops->verify_read(bp);
- if (bp->b_error) {
- bp->b_ops = NULL;
- bp->b_error = 0;
- goto out;
- }
- /*
- * Some read verifiers will (re)set b_ops, so we must be
- * careful not to change b_ops after running the verifier.
- */
- }
- /*
- * This block passes the magic/uuid and verifier tests for this btree
- * type. We don't need the caller to try the other tree types.
- */
- *done_with_block = true;
- /*
- * Compare this btree block's level to the height of the current
- * candidate root block.
- *
- * If the level matches the root we found previously, throw away both
- * blocks because there can't be two candidate roots.
- *
- * If level is lower in the tree than the root we found previously,
- * ignore this block.
- */
- block_level = xfs_btree_get_level(btblock);
- if (block_level + 1 == fab->height) {
- fab->root = NULLAGBLOCK;
- goto out;
- } else if (block_level < fab->height) {
- goto out;
- }
- /*
- * This is the highest block in the tree that we've found so far.
- * Update the btree height to reflect what we've learned from this
- * block.
- */
- fab->height = block_level + 1;
- /*
- * If this block doesn't have sibling pointers, then it's the new root
- * block candidate. Otherwise, the root will be found farther up the
- * tree.
- */
- if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
- btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
- fab->root = agbno;
- else
- fab->root = NULLAGBLOCK;
- trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
- be32_to_cpu(btblock->bb_magic), fab->height - 1);
- out:
- xfs_trans_brelse(ri->sc->tp, bp);
- return error;
- }
- /*
- * Do any of the blocks in this rmap record match one of the btrees we're
- * looking for?
- */
- STATIC int
- xrep_findroot_rmap(
- struct xfs_btree_cur *cur,
- const struct xfs_rmap_irec *rec,
- void *priv)
- {
- struct xrep_findroot *ri = priv;
- struct xrep_find_ag_btree *fab;
- xfs_agblock_t b;
- bool done;
- int error = 0;
- /* Ignore anything that isn't AG metadata. */
- if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
- return 0;
- /* Otherwise scan each block + btree type. */
- for (b = 0; b < rec->rm_blockcount; b++) {
- done = false;
- for (fab = ri->btree_info; fab->buf_ops; fab++) {
- if (rec->rm_owner != fab->rmap_owner)
- continue;
- error = xrep_findroot_block(ri, fab,
- rec->rm_owner, rec->rm_startblock + b,
- &done);
- if (error)
- return error;
- if (done)
- break;
- }
- }
- return 0;
- }
- /* Find the roots of the per-AG btrees described in btree_info. */
- int
- xrep_find_ag_btree_roots(
- struct xfs_scrub *sc,
- struct xfs_buf *agf_bp,
- struct xrep_find_ag_btree *btree_info,
- struct xfs_buf *agfl_bp)
- {
- struct xfs_mount *mp = sc->mp;
- struct xrep_findroot ri;
- struct xrep_find_ag_btree *fab;
- struct xfs_btree_cur *cur;
- int error;
- ASSERT(xfs_buf_islocked(agf_bp));
- ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
- ri.sc = sc;
- ri.btree_info = btree_info;
- ri.agf = agf_bp->b_addr;
- ri.agfl_bp = agfl_bp;
- for (fab = btree_info; fab->buf_ops; fab++) {
- ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
- ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
- fab->root = NULLAGBLOCK;
- fab->height = 0;
- }
- cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
- error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
- xfs_btree_del_cursor(cur, error);
- return error;
- }
- /* Force a quotacheck the next time we mount. */
- void
- xrep_force_quotacheck(
- struct xfs_scrub *sc,
- xfs_dqtype_t type)
- {
- uint flag;
- flag = xfs_quota_chkd_flag(type);
- if (!(flag & sc->mp->m_qflags))
- return;
- mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock);
- sc->mp->m_qflags &= ~flag;
- spin_lock(&sc->mp->m_sb_lock);
- sc->mp->m_sb.sb_qflags &= ~flag;
- spin_unlock(&sc->mp->m_sb_lock);
- xfs_log_sb(sc->tp);
- mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
- }
- /*
- * Attach dquots to this inode, or schedule quotacheck to fix them.
- *
- * This function ensures that the appropriate dquots are attached to an inode.
- * We cannot allow the dquot code to allocate an on-disk dquot block here
- * because we're already in transaction context with the inode locked. The
- * on-disk dquot should already exist anyway. If the quota code signals
- * corruption or missing quota information, schedule quotacheck, which will
- * repair corruptions in the quota metadata.
- */
- int
- xrep_ino_dqattach(
- struct xfs_scrub *sc)
- {
- int error;
- error = xfs_qm_dqattach_locked(sc->ip, false);
- switch (error) {
- case -EFSBADCRC:
- case -EFSCORRUPTED:
- case -ENOENT:
- xfs_err_ratelimited(sc->mp,
- "inode %llu repair encountered quota error %d, quotacheck forced.",
- (unsigned long long)sc->ip->i_ino, error);
- if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
- xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
- if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
- xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
- if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
- xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
- fallthrough;
- case -ESRCH:
- error = 0;
- break;
- default:
- break;
- }
- return error;
- }
|