123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- // SPDX-License-Identifier: GPL-2.0+
- /*
- * Copyright (C) 2019 Oracle. All Rights Reserved.
- * Author: Darrick J. Wong <[email protected]>
- */
- #include "xfs.h"
- #include "xfs_fs.h"
- #include "xfs_shared.h"
- #include "xfs_format.h"
- #include "xfs_btree.h"
- #include "xfs_trans_resv.h"
- #include "xfs_mount.h"
- #include "xfs_ag.h"
- #include "xfs_health.h"
- #include "scrub/scrub.h"
- #include "scrub/health.h"
- /*
- * Scrub and In-Core Filesystem Health Assessments
- * ===============================================
- *
- * Online scrub and repair have the time and the ability to perform stronger
- * checks than we can do from the metadata verifiers, because they can
- * cross-reference records between data structures. Therefore, scrub is in a
- * good position to update the online filesystem health assessments to reflect
- * the good/bad state of the data structure.
- *
- * We therefore extend scrub in the following ways to achieve this:
- *
- * 1. Create a "sick_mask" field in the scrub context. When we're setting up a
- * scrub call, set this to the default XFS_SICK_* flag(s) for the selected
- * scrub type (call it A). Scrub and repair functions can override the default
- * sick_mask value if they choose.
- *
- * 2. If the scrubber returns a runtime error code, we exit making no changes
- * to the incore sick state.
- *
- * 3. If the scrubber finds that A is clean, use sick_mask to clear the incore
- * sick flags before exiting.
- *
- * 4. If the scrubber finds that A is corrupt, use sick_mask to set the incore
- * sick flags. If the user didn't want to repair then we exit, leaving the
- * metadata structure unfixed and the sick flag set.
- *
- * 5. Now we know that A is corrupt and the user wants to repair, so run the
- * repairer. If the repairer returns an error code, we exit with that error
- * code, having made no further changes to the incore sick state.
- *
- * 6. If repair rebuilds A correctly and the subsequent re-scrub of A is clean,
- * use sick_mask to clear the incore sick flags. This should have the effect
- * that A is no longer marked sick.
- *
- * 7. If repair rebuilds A incorrectly, the re-scrub will find it corrupt and
- * use sick_mask to set the incore sick flags. This should have no externally
- * visible effect since we already set them in step (4).
- *
- * There are some complications to this story, however. For certain types of
- * complementary metadata indices (e.g. inobt/finobt), it is easier to rebuild
- * both structures at the same time. The following principles apply to this
- * type of repair strategy:
- *
- * 8. Any repair function that rebuilds multiple structures should update
- * sick_mask_visible to reflect whatever other structures are rebuilt, and
- * verify that all the rebuilt structures can pass a scrub check. The outcomes
- * of 5-7 still apply, but with a sick_mask that covers everything being
- * rebuilt.
- */
- /* Map our scrub type to a sick mask and a set of health update functions. */
- enum xchk_health_group {
- XHG_FS = 1,
- XHG_RT,
- XHG_AG,
- XHG_INO,
- };
- struct xchk_health_map {
- enum xchk_health_group group;
- unsigned int sick_mask;
- };
- static const struct xchk_health_map type_to_health_flag[XFS_SCRUB_TYPE_NR] = {
- [XFS_SCRUB_TYPE_SB] = { XHG_AG, XFS_SICK_AG_SB },
- [XFS_SCRUB_TYPE_AGF] = { XHG_AG, XFS_SICK_AG_AGF },
- [XFS_SCRUB_TYPE_AGFL] = { XHG_AG, XFS_SICK_AG_AGFL },
- [XFS_SCRUB_TYPE_AGI] = { XHG_AG, XFS_SICK_AG_AGI },
- [XFS_SCRUB_TYPE_BNOBT] = { XHG_AG, XFS_SICK_AG_BNOBT },
- [XFS_SCRUB_TYPE_CNTBT] = { XHG_AG, XFS_SICK_AG_CNTBT },
- [XFS_SCRUB_TYPE_INOBT] = { XHG_AG, XFS_SICK_AG_INOBT },
- [XFS_SCRUB_TYPE_FINOBT] = { XHG_AG, XFS_SICK_AG_FINOBT },
- [XFS_SCRUB_TYPE_RMAPBT] = { XHG_AG, XFS_SICK_AG_RMAPBT },
- [XFS_SCRUB_TYPE_REFCNTBT] = { XHG_AG, XFS_SICK_AG_REFCNTBT },
- [XFS_SCRUB_TYPE_INODE] = { XHG_INO, XFS_SICK_INO_CORE },
- [XFS_SCRUB_TYPE_BMBTD] = { XHG_INO, XFS_SICK_INO_BMBTD },
- [XFS_SCRUB_TYPE_BMBTA] = { XHG_INO, XFS_SICK_INO_BMBTA },
- [XFS_SCRUB_TYPE_BMBTC] = { XHG_INO, XFS_SICK_INO_BMBTC },
- [XFS_SCRUB_TYPE_DIR] = { XHG_INO, XFS_SICK_INO_DIR },
- [XFS_SCRUB_TYPE_XATTR] = { XHG_INO, XFS_SICK_INO_XATTR },
- [XFS_SCRUB_TYPE_SYMLINK] = { XHG_INO, XFS_SICK_INO_SYMLINK },
- [XFS_SCRUB_TYPE_PARENT] = { XHG_INO, XFS_SICK_INO_PARENT },
- [XFS_SCRUB_TYPE_RTBITMAP] = { XHG_RT, XFS_SICK_RT_BITMAP },
- [XFS_SCRUB_TYPE_RTSUM] = { XHG_RT, XFS_SICK_RT_SUMMARY },
- [XFS_SCRUB_TYPE_UQUOTA] = { XHG_FS, XFS_SICK_FS_UQUOTA },
- [XFS_SCRUB_TYPE_GQUOTA] = { XHG_FS, XFS_SICK_FS_GQUOTA },
- [XFS_SCRUB_TYPE_PQUOTA] = { XHG_FS, XFS_SICK_FS_PQUOTA },
- [XFS_SCRUB_TYPE_FSCOUNTERS] = { XHG_FS, XFS_SICK_FS_COUNTERS },
- };
- /* Return the health status mask for this scrub type. */
- unsigned int
- xchk_health_mask_for_scrub_type(
- __u32 scrub_type)
- {
- return type_to_health_flag[scrub_type].sick_mask;
- }
- /*
- * Update filesystem health assessments based on what we found and did.
- *
- * If the scrubber finds errors, we mark sick whatever's mentioned in
- * sick_mask, no matter whether this is a first scan or an
- * evaluation of repair effectiveness.
- *
- * Otherwise, no direct corruption was found, so mark whatever's in
- * sick_mask as healthy.
- */
- void
- xchk_update_health(
- struct xfs_scrub *sc)
- {
- struct xfs_perag *pag;
- bool bad;
- if (!sc->sick_mask)
- return;
- bad = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
- XFS_SCRUB_OFLAG_XCORRUPT));
- switch (type_to_health_flag[sc->sm->sm_type].group) {
- case XHG_AG:
- pag = xfs_perag_get(sc->mp, sc->sm->sm_agno);
- if (bad)
- xfs_ag_mark_sick(pag, sc->sick_mask);
- else
- xfs_ag_mark_healthy(pag, sc->sick_mask);
- xfs_perag_put(pag);
- break;
- case XHG_INO:
- if (!sc->ip)
- return;
- if (bad)
- xfs_inode_mark_sick(sc->ip, sc->sick_mask);
- else
- xfs_inode_mark_healthy(sc->ip, sc->sick_mask);
- break;
- case XHG_FS:
- if (bad)
- xfs_fs_mark_sick(sc->mp, sc->sick_mask);
- else
- xfs_fs_mark_healthy(sc->mp, sc->sick_mask);
- break;
- case XHG_RT:
- if (bad)
- xfs_rt_mark_sick(sc->mp, sc->sick_mask);
- else
- xfs_rt_mark_healthy(sc->mp, sc->sick_mask);
- break;
- default:
- ASSERT(0);
- break;
- }
- }
- /* Is the given per-AG btree healthy enough for scanning? */
- bool
- xchk_ag_btree_healthy_enough(
- struct xfs_scrub *sc,
- struct xfs_perag *pag,
- xfs_btnum_t btnum)
- {
- unsigned int mask = 0;
- /*
- * We always want the cursor if it's the same type as whatever we're
- * scrubbing, even if we already know the structure is corrupt.
- *
- * Otherwise, we're only interested in the btree for cross-referencing.
- * If we know the btree is bad then don't bother, just set XFAIL.
- */
- switch (btnum) {
- case XFS_BTNUM_BNO:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_BNOBT)
- return true;
- mask = XFS_SICK_AG_BNOBT;
- break;
- case XFS_BTNUM_CNT:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_CNTBT)
- return true;
- mask = XFS_SICK_AG_CNTBT;
- break;
- case XFS_BTNUM_INO:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_INOBT)
- return true;
- mask = XFS_SICK_AG_INOBT;
- break;
- case XFS_BTNUM_FINO:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_FINOBT)
- return true;
- mask = XFS_SICK_AG_FINOBT;
- break;
- case XFS_BTNUM_RMAP:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_RMAPBT)
- return true;
- mask = XFS_SICK_AG_RMAPBT;
- break;
- case XFS_BTNUM_REFC:
- if (sc->sm->sm_type == XFS_SCRUB_TYPE_REFCNTBT)
- return true;
- mask = XFS_SICK_AG_REFCNTBT;
- break;
- default:
- ASSERT(0);
- return true;
- }
- if (xfs_ag_has_sickness(pag, mask)) {
- sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
- return false;
- }
- return true;
- }
|