123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright (c) 2014 SGI.
- * All rights reserved.
- */
- #include "utf8n.h"
- int utf8version_is_supported(const struct unicode_map *um, unsigned int version)
- {
- int i = um->tables->utf8agetab_size - 1;
- while (i >= 0 && um->tables->utf8agetab[i] != 0) {
- if (version == um->tables->utf8agetab[i])
- return 1;
- i--;
- }
- return 0;
- }
- /*
- * UTF-8 valid ranges.
- *
- * The UTF-8 encoding spreads the bits of a 32bit word over several
- * bytes. This table gives the ranges that can be held and how they'd
- * be represented.
- *
- * 0x00000000 0x0000007F: 0xxxxxxx
- * 0x00000000 0x000007FF: 110xxxxx 10xxxxxx
- * 0x00000000 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
- * 0x00000000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 0x00000000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 0x00000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
- *
- * There is an additional requirement on UTF-8, in that only the
- * shortest representation of a 32bit value is to be used. A decoder
- * must not decode sequences that do not satisfy this requirement.
- * Thus the allowed ranges have a lower bound.
- *
- * 0x00000000 0x0000007F: 0xxxxxxx
- * 0x00000080 0x000007FF: 110xxxxx 10xxxxxx
- * 0x00000800 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
- * 0x00010000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 0x00200000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 0x04000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
- *
- * Actual unicode characters are limited to the range 0x0 - 0x10FFFF,
- * 17 planes of 65536 values. This limits the sequences actually seen
- * even more, to just the following.
- *
- * 0 - 0x7F: 0 - 0x7F
- * 0x80 - 0x7FF: 0xC2 0x80 - 0xDF 0xBF
- * 0x800 - 0xFFFF: 0xE0 0xA0 0x80 - 0xEF 0xBF 0xBF
- * 0x10000 - 0x10FFFF: 0xF0 0x90 0x80 0x80 - 0xF4 0x8F 0xBF 0xBF
- *
- * Within those ranges the surrogates 0xD800 - 0xDFFF are not allowed.
- *
- * Note that the longest sequence seen with valid usage is 4 bytes,
- * the same a single UTF-32 character. This makes the UTF-8
- * representation of Unicode strictly smaller than UTF-32.
- *
- * The shortest sequence requirement was introduced by:
- * Corrigendum #1: UTF-8 Shortest Form
- * It can be found here:
- * http://www.unicode.org/versions/corrigendum1.html
- *
- */
- /*
- * Return the number of bytes used by the current UTF-8 sequence.
- * Assumes the input points to the first byte of a valid UTF-8
- * sequence.
- */
- static inline int utf8clen(const char *s)
- {
- unsigned char c = *s;
- return 1 + (c >= 0xC0) + (c >= 0xE0) + (c >= 0xF0);
- }
- /*
- * Decode a 3-byte UTF-8 sequence.
- */
- static unsigned int
- utf8decode3(const char *str)
- {
- unsigned int uc;
- uc = *str++ & 0x0F;
- uc <<= 6;
- uc |= *str++ & 0x3F;
- uc <<= 6;
- uc |= *str++ & 0x3F;
- return uc;
- }
- /*
- * Encode a 3-byte UTF-8 sequence.
- */
- static int
- utf8encode3(char *str, unsigned int val)
- {
- str[2] = (val & 0x3F) | 0x80;
- val >>= 6;
- str[1] = (val & 0x3F) | 0x80;
- val >>= 6;
- str[0] = val | 0xE0;
- return 3;
- }
- /*
- * utf8trie_t
- *
- * A compact binary tree, used to decode UTF-8 characters.
- *
- * Internal nodes are one byte for the node itself, and up to three
- * bytes for an offset into the tree. The first byte contains the
- * following information:
- * NEXTBYTE - flag - advance to next byte if set
- * BITNUM - 3 bit field - the bit number to tested
- * OFFLEN - 2 bit field - number of bytes in the offset
- * if offlen == 0 (non-branching node)
- * RIGHTPATH - 1 bit field - set if the following node is for the
- * right-hand path (tested bit is set)
- * TRIENODE - 1 bit field - set if the following node is an internal
- * node, otherwise it is a leaf node
- * if offlen != 0 (branching node)
- * LEFTNODE - 1 bit field - set if the left-hand node is internal
- * RIGHTNODE - 1 bit field - set if the right-hand node is internal
- *
- * Due to the way utf8 works, there cannot be branching nodes with
- * NEXTBYTE set, and moreover those nodes always have a righthand
- * descendant.
- */
- typedef const unsigned char utf8trie_t;
- #define BITNUM 0x07
- #define NEXTBYTE 0x08
- #define OFFLEN 0x30
- #define OFFLEN_SHIFT 4
- #define RIGHTPATH 0x40
- #define TRIENODE 0x80
- #define RIGHTNODE 0x40
- #define LEFTNODE 0x80
- /*
- * utf8leaf_t
- *
- * The leaves of the trie are embedded in the trie, and so the same
- * underlying datatype: unsigned char.
- *
- * leaf[0]: The unicode version, stored as a generation number that is
- * an index into ->utf8agetab[]. With this we can filter code
- * points based on the unicode version in which they were
- * defined. The CCC of a non-defined code point is 0.
- * leaf[1]: Canonical Combining Class. During normalization, we need
- * to do a stable sort into ascending order of all characters
- * with a non-zero CCC that occur between two characters with
- * a CCC of 0, or at the begin or end of a string.
- * The unicode standard guarantees that all CCC values are
- * between 0 and 254 inclusive, which leaves 255 available as
- * a special value.
- * Code points with CCC 0 are known as stoppers.
- * leaf[2]: Decomposition. If leaf[1] == 255, then leaf[2] is the
- * start of a NUL-terminated string that is the decomposition
- * of the character.
- * The CCC of a decomposable character is the same as the CCC
- * of the first character of its decomposition.
- * Some characters decompose as the empty string: these are
- * characters with the Default_Ignorable_Code_Point property.
- * These do affect normalization, as they all have CCC 0.
- *
- * The decompositions in the trie have been fully expanded, with the
- * exception of Hangul syllables, which are decomposed algorithmically.
- *
- * Casefolding, if applicable, is also done using decompositions.
- *
- * The trie is constructed in such a way that leaves exist for all
- * UTF-8 sequences that match the criteria from the "UTF-8 valid
- * ranges" comment above, and only for those sequences. Therefore a
- * lookup in the trie can be used to validate the UTF-8 input.
- */
- typedef const unsigned char utf8leaf_t;
- #define LEAF_GEN(LEAF) ((LEAF)[0])
- #define LEAF_CCC(LEAF) ((LEAF)[1])
- #define LEAF_STR(LEAF) ((const char *)((LEAF) + 2))
- #define MINCCC (0)
- #define MAXCCC (254)
- #define STOPPER (0)
- #define DECOMPOSE (255)
- /* Marker for hangul syllable decomposition. */
- #define HANGUL ((char)(255))
- /* Size of the synthesized leaf used for Hangul syllable decomposition. */
- #define UTF8HANGULLEAF (12)
- /*
- * Hangul decomposition (algorithm from Section 3.12 of Unicode 6.3.0)
- *
- * AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
- * D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;
- *
- * SBase = 0xAC00
- * LBase = 0x1100
- * VBase = 0x1161
- * TBase = 0x11A7
- * LCount = 19
- * VCount = 21
- * TCount = 28
- * NCount = 588 (VCount * TCount)
- * SCount = 11172 (LCount * NCount)
- *
- * Decomposition:
- * SIndex = s - SBase
- *
- * LV (Canonical/Full)
- * LIndex = SIndex / NCount
- * VIndex = (Sindex % NCount) / TCount
- * LPart = LBase + LIndex
- * VPart = VBase + VIndex
- *
- * LVT (Canonical)
- * LVIndex = (SIndex / TCount) * TCount
- * TIndex = (Sindex % TCount)
- * LVPart = SBase + LVIndex
- * TPart = TBase + TIndex
- *
- * LVT (Full)
- * LIndex = SIndex / NCount
- * VIndex = (Sindex % NCount) / TCount
- * TIndex = (Sindex % TCount)
- * LPart = LBase + LIndex
- * VPart = VBase + VIndex
- * if (TIndex == 0) {
- * d = <LPart, VPart>
- * } else {
- * TPart = TBase + TIndex
- * d = <LPart, TPart, VPart>
- * }
- */
- /* Constants */
- #define SB (0xAC00)
- #define LB (0x1100)
- #define VB (0x1161)
- #define TB (0x11A7)
- #define LC (19)
- #define VC (21)
- #define TC (28)
- #define NC (VC * TC)
- #define SC (LC * NC)
- /* Algorithmic decomposition of hangul syllable. */
- static utf8leaf_t *
- utf8hangul(const char *str, unsigned char *hangul)
- {
- unsigned int si;
- unsigned int li;
- unsigned int vi;
- unsigned int ti;
- unsigned char *h;
- /* Calculate the SI, LI, VI, and TI values. */
- si = utf8decode3(str) - SB;
- li = si / NC;
- vi = (si % NC) / TC;
- ti = si % TC;
- /* Fill in base of leaf. */
- h = hangul;
- LEAF_GEN(h) = 2;
- LEAF_CCC(h) = DECOMPOSE;
- h += 2;
- /* Add LPart, a 3-byte UTF-8 sequence. */
- h += utf8encode3((char *)h, li + LB);
- /* Add VPart, a 3-byte UTF-8 sequence. */
- h += utf8encode3((char *)h, vi + VB);
- /* Add TPart if required, also a 3-byte UTF-8 sequence. */
- if (ti)
- h += utf8encode3((char *)h, ti + TB);
- /* Terminate string. */
- h[0] = '\0';
- return hangul;
- }
- /*
- * Use trie to scan s, touching at most len bytes.
- * Returns the leaf if one exists, NULL otherwise.
- *
- * A non-NULL return guarantees that the UTF-8 sequence starting at s
- * is well-formed and corresponds to a known unicode code point. The
- * shorthand for this will be "is valid UTF-8 unicode".
- */
- static utf8leaf_t *utf8nlookup(const struct unicode_map *um,
- enum utf8_normalization n, unsigned char *hangul, const char *s,
- size_t len)
- {
- utf8trie_t *trie = um->tables->utf8data + um->ntab[n]->offset;
- int offlen;
- int offset;
- int mask;
- int node;
- if (len == 0)
- return NULL;
- node = 1;
- while (node) {
- offlen = (*trie & OFFLEN) >> OFFLEN_SHIFT;
- if (*trie & NEXTBYTE) {
- if (--len == 0)
- return NULL;
- s++;
- }
- mask = 1 << (*trie & BITNUM);
- if (*s & mask) {
- /* Right leg */
- if (offlen) {
- /* Right node at offset of trie */
- node = (*trie & RIGHTNODE);
- offset = trie[offlen];
- while (--offlen) {
- offset <<= 8;
- offset |= trie[offlen];
- }
- trie += offset;
- } else if (*trie & RIGHTPATH) {
- /* Right node after this node */
- node = (*trie & TRIENODE);
- trie++;
- } else {
- /* No right node. */
- return NULL;
- }
- } else {
- /* Left leg */
- if (offlen) {
- /* Left node after this node. */
- node = (*trie & LEFTNODE);
- trie += offlen + 1;
- } else if (*trie & RIGHTPATH) {
- /* No left node. */
- return NULL;
- } else {
- /* Left node after this node */
- node = (*trie & TRIENODE);
- trie++;
- }
- }
- }
- /*
- * Hangul decomposition is done algorithmically. These are the
- * codepoints >= 0xAC00 and <= 0xD7A3. Their UTF-8 encoding is
- * always 3 bytes long, so s has been advanced twice, and the
- * start of the sequence is at s-2.
- */
- if (LEAF_CCC(trie) == DECOMPOSE && LEAF_STR(trie)[0] == HANGUL)
- trie = utf8hangul(s - 2, hangul);
- return trie;
- }
- /*
- * Use trie to scan s.
- * Returns the leaf if one exists, NULL otherwise.
- *
- * Forwards to utf8nlookup().
- */
- static utf8leaf_t *utf8lookup(const struct unicode_map *um,
- enum utf8_normalization n, unsigned char *hangul, const char *s)
- {
- return utf8nlookup(um, n, hangul, s, (size_t)-1);
- }
- /*
- * Length of the normalization of s, touch at most len bytes.
- * Return -1 if s is not valid UTF-8 unicode.
- */
- ssize_t utf8nlen(const struct unicode_map *um, enum utf8_normalization n,
- const char *s, size_t len)
- {
- utf8leaf_t *leaf;
- size_t ret = 0;
- unsigned char hangul[UTF8HANGULLEAF];
- while (len && *s) {
- leaf = utf8nlookup(um, n, hangul, s, len);
- if (!leaf)
- return -1;
- if (um->tables->utf8agetab[LEAF_GEN(leaf)] >
- um->ntab[n]->maxage)
- ret += utf8clen(s);
- else if (LEAF_CCC(leaf) == DECOMPOSE)
- ret += strlen(LEAF_STR(leaf));
- else
- ret += utf8clen(s);
- len -= utf8clen(s);
- s += utf8clen(s);
- }
- return ret;
- }
- /*
- * Set up an utf8cursor for use by utf8byte().
- *
- * u8c : pointer to cursor.
- * data : const struct utf8data to use for normalization.
- * s : string.
- * len : length of s.
- *
- * Returns -1 on error, 0 on success.
- */
- int utf8ncursor(struct utf8cursor *u8c, const struct unicode_map *um,
- enum utf8_normalization n, const char *s, size_t len)
- {
- if (!s)
- return -1;
- u8c->um = um;
- u8c->n = n;
- u8c->s = s;
- u8c->p = NULL;
- u8c->ss = NULL;
- u8c->sp = NULL;
- u8c->len = len;
- u8c->slen = 0;
- u8c->ccc = STOPPER;
- u8c->nccc = STOPPER;
- /* Check we didn't clobber the maximum length. */
- if (u8c->len != len)
- return -1;
- /* The first byte of s may not be an utf8 continuation. */
- if (len > 0 && (*s & 0xC0) == 0x80)
- return -1;
- return 0;
- }
- /*
- * Get one byte from the normalized form of the string described by u8c.
- *
- * Returns the byte cast to an unsigned char on succes, and -1 on failure.
- *
- * The cursor keeps track of the location in the string in u8c->s.
- * When a character is decomposed, the current location is stored in
- * u8c->p, and u8c->s is set to the start of the decomposition. Note
- * that bytes from a decomposition do not count against u8c->len.
- *
- * Characters are emitted if they match the current CCC in u8c->ccc.
- * Hitting end-of-string while u8c->ccc == STOPPER means we're done,
- * and the function returns 0 in that case.
- *
- * Sorting by CCC is done by repeatedly scanning the string. The
- * values of u8c->s and u8c->p are stored in u8c->ss and u8c->sp at
- * the start of the scan. The first pass finds the lowest CCC to be
- * emitted and stores it in u8c->nccc, the second pass emits the
- * characters with this CCC and finds the next lowest CCC. This limits
- * the number of passes to 1 + the number of different CCCs in the
- * sequence being scanned.
- *
- * Therefore:
- * u8c->p != NULL -> a decomposition is being scanned.
- * u8c->ss != NULL -> this is a repeating scan.
- * u8c->ccc == -1 -> this is the first scan of a repeating scan.
- */
- int utf8byte(struct utf8cursor *u8c)
- {
- utf8leaf_t *leaf;
- int ccc;
- for (;;) {
- /* Check for the end of a decomposed character. */
- if (u8c->p && *u8c->s == '\0') {
- u8c->s = u8c->p;
- u8c->p = NULL;
- }
- /* Check for end-of-string. */
- if (!u8c->p && (u8c->len == 0 || *u8c->s == '\0')) {
- /* There is no next byte. */
- if (u8c->ccc == STOPPER)
- return 0;
- /* End-of-string during a scan counts as a stopper. */
- ccc = STOPPER;
- goto ccc_mismatch;
- } else if ((*u8c->s & 0xC0) == 0x80) {
- /* This is a continuation of the current character. */
- if (!u8c->p)
- u8c->len--;
- return (unsigned char)*u8c->s++;
- }
- /* Look up the data for the current character. */
- if (u8c->p) {
- leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
- } else {
- leaf = utf8nlookup(u8c->um, u8c->n, u8c->hangul,
- u8c->s, u8c->len);
- }
- /* No leaf found implies that the input is a binary blob. */
- if (!leaf)
- return -1;
- ccc = LEAF_CCC(leaf);
- /* Characters that are too new have CCC 0. */
- if (u8c->um->tables->utf8agetab[LEAF_GEN(leaf)] >
- u8c->um->ntab[u8c->n]->maxage) {
- ccc = STOPPER;
- } else if (ccc == DECOMPOSE) {
- u8c->len -= utf8clen(u8c->s);
- u8c->p = u8c->s + utf8clen(u8c->s);
- u8c->s = LEAF_STR(leaf);
- /* Empty decomposition implies CCC 0. */
- if (*u8c->s == '\0') {
- if (u8c->ccc == STOPPER)
- continue;
- ccc = STOPPER;
- goto ccc_mismatch;
- }
- leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
- if (!leaf)
- return -1;
- ccc = LEAF_CCC(leaf);
- }
- /*
- * If this is not a stopper, then see if it updates
- * the next canonical class to be emitted.
- */
- if (ccc != STOPPER && u8c->ccc < ccc && ccc < u8c->nccc)
- u8c->nccc = ccc;
- /*
- * Return the current byte if this is the current
- * combining class.
- */
- if (ccc == u8c->ccc) {
- if (!u8c->p)
- u8c->len--;
- return (unsigned char)*u8c->s++;
- }
- /* Current combining class mismatch. */
- ccc_mismatch:
- if (u8c->nccc == STOPPER) {
- /*
- * Scan forward for the first canonical class
- * to be emitted. Save the position from
- * which to restart.
- */
- u8c->ccc = MINCCC - 1;
- u8c->nccc = ccc;
- u8c->sp = u8c->p;
- u8c->ss = u8c->s;
- u8c->slen = u8c->len;
- if (!u8c->p)
- u8c->len -= utf8clen(u8c->s);
- u8c->s += utf8clen(u8c->s);
- } else if (ccc != STOPPER) {
- /* Not a stopper, and not the ccc we're emitting. */
- if (!u8c->p)
- u8c->len -= utf8clen(u8c->s);
- u8c->s += utf8clen(u8c->s);
- } else if (u8c->nccc != MAXCCC + 1) {
- /* At a stopper, restart for next ccc. */
- u8c->ccc = u8c->nccc;
- u8c->nccc = MAXCCC + 1;
- u8c->s = u8c->ss;
- u8c->p = u8c->sp;
- u8c->len = u8c->slen;
- } else {
- /* All done, proceed from here. */
- u8c->ccc = STOPPER;
- u8c->nccc = STOPPER;
- u8c->sp = NULL;
- u8c->ss = NULL;
- u8c->slen = 0;
- }
- }
- }
- #ifdef CONFIG_UNICODE_NORMALIZATION_SELFTEST_MODULE
- EXPORT_SYMBOL_GPL(utf8version_is_supported);
- EXPORT_SYMBOL_GPL(utf8nlen);
- EXPORT_SYMBOL_GPL(utf8ncursor);
- EXPORT_SYMBOL_GPL(utf8byte);
- #endif
|