task_mmu.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/pagewalk.h>
  3. #include <linux/mm_inline.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/pkeys.h>
  22. #include <trace/hooks/mm.h>
  23. #include <asm/elf.h>
  24. #include <asm/tlb.h>
  25. #include <asm/tlbflush.h>
  26. #include "internal.h"
  27. #define SEQ_PUT_DEC(str, val) \
  28. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  29. void task_mem(struct seq_file *m, struct mm_struct *mm)
  30. {
  31. unsigned long text, lib, swap, anon, file, shmem;
  32. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  33. anon = get_mm_counter(mm, MM_ANONPAGES);
  34. file = get_mm_counter(mm, MM_FILEPAGES);
  35. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  36. /*
  37. * Note: to minimize their overhead, mm maintains hiwater_vm and
  38. * hiwater_rss only when about to *lower* total_vm or rss. Any
  39. * collector of these hiwater stats must therefore get total_vm
  40. * and rss too, which will usually be the higher. Barriers? not
  41. * worth the effort, such snapshots can always be inconsistent.
  42. */
  43. hiwater_vm = total_vm = mm->total_vm;
  44. if (hiwater_vm < mm->hiwater_vm)
  45. hiwater_vm = mm->hiwater_vm;
  46. hiwater_rss = total_rss = anon + file + shmem;
  47. if (hiwater_rss < mm->hiwater_rss)
  48. hiwater_rss = mm->hiwater_rss;
  49. /* split executable areas between text and lib */
  50. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  51. text = min(text, mm->exec_vm << PAGE_SHIFT);
  52. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  53. swap = get_mm_counter(mm, MM_SWAPENTS);
  54. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  55. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  56. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  57. SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  58. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  59. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  60. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  61. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  62. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  63. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  64. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  65. seq_put_decimal_ull_width(m,
  66. " kB\nVmExe:\t", text >> 10, 8);
  67. seq_put_decimal_ull_width(m,
  68. " kB\nVmLib:\t", lib >> 10, 8);
  69. seq_put_decimal_ull_width(m,
  70. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  71. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  72. seq_puts(m, " kB\n");
  73. hugetlb_report_usage(m, mm);
  74. }
  75. #undef SEQ_PUT_DEC
  76. unsigned long task_vsize(struct mm_struct *mm)
  77. {
  78. return PAGE_SIZE * mm->total_vm;
  79. }
  80. unsigned long task_statm(struct mm_struct *mm,
  81. unsigned long *shared, unsigned long *text,
  82. unsigned long *data, unsigned long *resident)
  83. {
  84. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  85. get_mm_counter(mm, MM_SHMEMPAGES);
  86. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  87. >> PAGE_SHIFT;
  88. *data = mm->data_vm + mm->stack_vm;
  89. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  90. return mm->total_vm;
  91. }
  92. #ifdef CONFIG_NUMA
  93. /*
  94. * Save get_task_policy() for show_numa_map().
  95. */
  96. static void hold_task_mempolicy(struct proc_maps_private *priv)
  97. {
  98. struct task_struct *task = priv->task;
  99. task_lock(task);
  100. priv->task_mempolicy = get_task_policy(task);
  101. mpol_get(priv->task_mempolicy);
  102. task_unlock(task);
  103. }
  104. static void release_task_mempolicy(struct proc_maps_private *priv)
  105. {
  106. mpol_put(priv->task_mempolicy);
  107. }
  108. #else
  109. static void hold_task_mempolicy(struct proc_maps_private *priv)
  110. {
  111. }
  112. static void release_task_mempolicy(struct proc_maps_private *priv)
  113. {
  114. }
  115. #endif
  116. static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
  117. loff_t *ppos)
  118. {
  119. struct vm_area_struct *vma = vma_next(&priv->iter);
  120. if (vma) {
  121. *ppos = vma->vm_start;
  122. } else {
  123. *ppos = -2UL;
  124. vma = get_gate_vma(priv->mm);
  125. }
  126. return vma;
  127. }
  128. static void *m_start(struct seq_file *m, loff_t *ppos)
  129. {
  130. struct proc_maps_private *priv = m->private;
  131. unsigned long last_addr = *ppos;
  132. struct mm_struct *mm;
  133. /* See m_next(). Zero at the start or after lseek. */
  134. if (last_addr == -1UL)
  135. return NULL;
  136. priv->task = get_proc_task(priv->inode);
  137. if (!priv->task)
  138. return ERR_PTR(-ESRCH);
  139. mm = priv->mm;
  140. if (!mm || !mmget_not_zero(mm)) {
  141. put_task_struct(priv->task);
  142. priv->task = NULL;
  143. return NULL;
  144. }
  145. if (mmap_read_lock_killable(mm)) {
  146. mmput(mm);
  147. put_task_struct(priv->task);
  148. priv->task = NULL;
  149. return ERR_PTR(-EINTR);
  150. }
  151. vma_iter_init(&priv->iter, mm, last_addr);
  152. hold_task_mempolicy(priv);
  153. if (last_addr == -2UL)
  154. return get_gate_vma(mm);
  155. return proc_get_vma(priv, ppos);
  156. }
  157. static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
  158. {
  159. if (*ppos == -2UL) {
  160. *ppos = -1UL;
  161. return NULL;
  162. }
  163. return proc_get_vma(m->private, ppos);
  164. }
  165. static void m_stop(struct seq_file *m, void *v)
  166. {
  167. struct proc_maps_private *priv = m->private;
  168. struct mm_struct *mm = priv->mm;
  169. if (!priv->task)
  170. return;
  171. release_task_mempolicy(priv);
  172. mmap_read_unlock(mm);
  173. mmput(mm);
  174. put_task_struct(priv->task);
  175. priv->task = NULL;
  176. }
  177. static int proc_maps_open(struct inode *inode, struct file *file,
  178. const struct seq_operations *ops, int psize)
  179. {
  180. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  181. if (!priv)
  182. return -ENOMEM;
  183. priv->inode = inode;
  184. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  185. if (IS_ERR(priv->mm)) {
  186. int err = PTR_ERR(priv->mm);
  187. seq_release_private(inode, file);
  188. return err;
  189. }
  190. return 0;
  191. }
  192. static int proc_map_release(struct inode *inode, struct file *file)
  193. {
  194. struct seq_file *seq = file->private_data;
  195. struct proc_maps_private *priv = seq->private;
  196. if (priv->mm)
  197. mmdrop(priv->mm);
  198. return seq_release_private(inode, file);
  199. }
  200. static int do_maps_open(struct inode *inode, struct file *file,
  201. const struct seq_operations *ops)
  202. {
  203. return proc_maps_open(inode, file, ops,
  204. sizeof(struct proc_maps_private));
  205. }
  206. /*
  207. * Indicate if the VMA is a stack for the given task; for
  208. * /proc/PID/maps that is the stack of the main task.
  209. */
  210. static int is_stack(struct vm_area_struct *vma)
  211. {
  212. /*
  213. * We make no effort to guess what a given thread considers to be
  214. * its "stack". It's not even well-defined for programs written
  215. * languages like Go.
  216. */
  217. return vma->vm_start <= vma->vm_mm->start_stack &&
  218. vma->vm_end >= vma->vm_mm->start_stack;
  219. }
  220. static void show_vma_header_prefix(struct seq_file *m,
  221. unsigned long start, unsigned long end,
  222. vm_flags_t flags, unsigned long long pgoff,
  223. dev_t dev, unsigned long ino)
  224. {
  225. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  226. seq_put_hex_ll(m, NULL, start, 8);
  227. seq_put_hex_ll(m, "-", end, 8);
  228. seq_putc(m, ' ');
  229. seq_putc(m, flags & VM_READ ? 'r' : '-');
  230. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  231. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  232. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  233. seq_put_hex_ll(m, " ", pgoff, 8);
  234. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  235. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  236. seq_put_decimal_ull(m, " ", ino);
  237. seq_putc(m, ' ');
  238. }
  239. static void
  240. show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  241. {
  242. struct mm_struct *mm = vma->vm_mm;
  243. struct file *file = vma->vm_file;
  244. vm_flags_t flags = vma->vm_flags;
  245. unsigned long ino = 0;
  246. unsigned long long pgoff = 0;
  247. unsigned long start, end;
  248. dev_t dev = 0;
  249. const char *name = NULL;
  250. if (file) {
  251. struct inode *inode = file_inode(vma->vm_file);
  252. dev = inode->i_sb->s_dev;
  253. ino = inode->i_ino;
  254. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  255. }
  256. start = vma->vm_start;
  257. end = vma->vm_end;
  258. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  259. /*
  260. * Print the dentry name for named mappings, and a
  261. * special [heap] marker for the heap:
  262. */
  263. if (file) {
  264. seq_pad(m, ' ');
  265. seq_file_path(m, file, "\n");
  266. goto done;
  267. }
  268. if (vma->vm_ops && vma->vm_ops->name) {
  269. name = vma->vm_ops->name(vma);
  270. if (name)
  271. goto done;
  272. }
  273. name = arch_vma_name(vma);
  274. if (!name) {
  275. struct anon_vma_name *anon_name;
  276. if (!mm) {
  277. name = "[vdso]";
  278. goto done;
  279. }
  280. if (vma->vm_start <= mm->brk &&
  281. vma->vm_end >= mm->start_brk) {
  282. name = "[heap]";
  283. goto done;
  284. }
  285. if (is_stack(vma)) {
  286. name = "[stack]";
  287. goto done;
  288. }
  289. anon_name = anon_vma_name(vma);
  290. if (anon_name) {
  291. seq_pad(m, ' ');
  292. seq_printf(m, "[anon:%s]", anon_name->name);
  293. }
  294. }
  295. done:
  296. if (name) {
  297. seq_pad(m, ' ');
  298. seq_puts(m, name);
  299. }
  300. seq_putc(m, '\n');
  301. }
  302. static int show_map(struct seq_file *m, void *v)
  303. {
  304. show_map_vma(m, v);
  305. return 0;
  306. }
  307. static const struct seq_operations proc_pid_maps_op = {
  308. .start = m_start,
  309. .next = m_next,
  310. .stop = m_stop,
  311. .show = show_map
  312. };
  313. static int pid_maps_open(struct inode *inode, struct file *file)
  314. {
  315. return do_maps_open(inode, file, &proc_pid_maps_op);
  316. }
  317. const struct file_operations proc_pid_maps_operations = {
  318. .open = pid_maps_open,
  319. .read = seq_read,
  320. .llseek = seq_lseek,
  321. .release = proc_map_release,
  322. };
  323. /*
  324. * Proportional Set Size(PSS): my share of RSS.
  325. *
  326. * PSS of a process is the count of pages it has in memory, where each
  327. * page is divided by the number of processes sharing it. So if a
  328. * process has 1000 pages all to itself, and 1000 shared with one other
  329. * process, its PSS will be 1500.
  330. *
  331. * To keep (accumulated) division errors low, we adopt a 64bit
  332. * fixed-point pss counter to minimize division errors. So (pss >>
  333. * PSS_SHIFT) would be the real byte count.
  334. *
  335. * A shift of 12 before division means (assuming 4K page size):
  336. * - 1M 3-user-pages add up to 8KB errors;
  337. * - supports mapcount up to 2^24, or 16M;
  338. * - supports PSS up to 2^52 bytes, or 4PB.
  339. */
  340. #define PSS_SHIFT 12
  341. #ifdef CONFIG_PROC_PAGE_MONITOR
  342. struct mem_size_stats {
  343. unsigned long resident;
  344. unsigned long shared_clean;
  345. unsigned long shared_dirty;
  346. unsigned long private_clean;
  347. unsigned long private_dirty;
  348. unsigned long referenced;
  349. unsigned long anonymous;
  350. unsigned long lazyfree;
  351. unsigned long anonymous_thp;
  352. unsigned long shmem_thp;
  353. unsigned long file_thp;
  354. unsigned long swap;
  355. unsigned long writeback;
  356. unsigned long same;
  357. unsigned long huge;
  358. unsigned long shared_hugetlb;
  359. unsigned long private_hugetlb;
  360. u64 pss;
  361. u64 pss_anon;
  362. u64 pss_file;
  363. u64 pss_shmem;
  364. u64 pss_dirty;
  365. u64 pss_locked;
  366. u64 swap_pss;
  367. };
  368. static void smaps_page_accumulate(struct mem_size_stats *mss,
  369. struct page *page, unsigned long size, unsigned long pss,
  370. bool dirty, bool locked, bool private)
  371. {
  372. mss->pss += pss;
  373. if (PageAnon(page))
  374. mss->pss_anon += pss;
  375. else if (PageSwapBacked(page))
  376. mss->pss_shmem += pss;
  377. else
  378. mss->pss_file += pss;
  379. if (locked)
  380. mss->pss_locked += pss;
  381. if (dirty || PageDirty(page)) {
  382. mss->pss_dirty += pss;
  383. if (private)
  384. mss->private_dirty += size;
  385. else
  386. mss->shared_dirty += size;
  387. } else {
  388. if (private)
  389. mss->private_clean += size;
  390. else
  391. mss->shared_clean += size;
  392. }
  393. }
  394. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  395. bool compound, bool young, bool dirty, bool locked,
  396. bool migration)
  397. {
  398. int i, nr = compound ? compound_nr(page) : 1;
  399. unsigned long size = nr * PAGE_SIZE;
  400. /*
  401. * First accumulate quantities that depend only on |size| and the type
  402. * of the compound page.
  403. */
  404. if (PageAnon(page)) {
  405. mss->anonymous += size;
  406. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  407. mss->lazyfree += size;
  408. }
  409. mss->resident += size;
  410. /* Accumulate the size in pages that have been accessed. */
  411. if (young || page_is_young(page) || PageReferenced(page))
  412. mss->referenced += size;
  413. /*
  414. * Then accumulate quantities that may depend on sharing, or that may
  415. * differ page-by-page.
  416. *
  417. * page_count(page) == 1 guarantees the page is mapped exactly once.
  418. * If any subpage of the compound page mapped with PTE it would elevate
  419. * page_count().
  420. *
  421. * The page_mapcount() is called to get a snapshot of the mapcount.
  422. * Without holding the page lock this snapshot can be slightly wrong as
  423. * we cannot always read the mapcount atomically. It is not safe to
  424. * call page_mapcount() even with PTL held if the page is not mapped,
  425. * especially for migration entries. Treat regular migration entries
  426. * as mapcount == 1.
  427. */
  428. if ((page_count(page) == 1) || migration) {
  429. smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
  430. locked, true);
  431. return;
  432. }
  433. for (i = 0; i < nr; i++, page++) {
  434. int mapcount = page_mapcount(page);
  435. unsigned long pss = PAGE_SIZE << PSS_SHIFT;
  436. if (mapcount >= 2)
  437. pss /= mapcount;
  438. smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
  439. mapcount < 2);
  440. }
  441. }
  442. #ifdef CONFIG_SHMEM
  443. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  444. __always_unused int depth, struct mm_walk *walk)
  445. {
  446. struct mem_size_stats *mss = walk->private;
  447. struct vm_area_struct *vma = walk->vma;
  448. mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
  449. linear_page_index(vma, addr),
  450. linear_page_index(vma, end));
  451. return 0;
  452. }
  453. #else
  454. #define smaps_pte_hole NULL
  455. #endif /* CONFIG_SHMEM */
  456. static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
  457. {
  458. #ifdef CONFIG_SHMEM
  459. if (walk->ops->pte_hole) {
  460. /* depth is not used */
  461. smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
  462. }
  463. #endif
  464. }
  465. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  466. struct mm_walk *walk)
  467. {
  468. struct mem_size_stats *mss = walk->private;
  469. struct vm_area_struct *vma = walk->vma;
  470. bool locked = !!(vma->vm_flags & VM_LOCKED);
  471. struct page *page = NULL;
  472. bool migration = false, young = false, dirty = false;
  473. if (pte_present(*pte)) {
  474. page = vm_normal_page(vma, addr, *pte);
  475. young = pte_young(*pte);
  476. dirty = pte_dirty(*pte);
  477. } else if (is_swap_pte(*pte)) {
  478. swp_entry_t swpent = pte_to_swp_entry(*pte);
  479. if (!non_swap_entry(swpent)) {
  480. int mapcount;
  481. mss->swap += PAGE_SIZE;
  482. mapcount = swp_swapcount(swpent);
  483. if (mapcount >= 2) {
  484. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  485. do_div(pss_delta, mapcount);
  486. mss->swap_pss += pss_delta;
  487. } else {
  488. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  489. }
  490. trace_android_vh_smaps_pte_entry(swpent,
  491. &mss->writeback,
  492. &mss->same, &mss->huge);
  493. } else if (is_pfn_swap_entry(swpent)) {
  494. if (is_migration_entry(swpent))
  495. migration = true;
  496. page = pfn_swap_entry_to_page(swpent);
  497. }
  498. } else {
  499. smaps_pte_hole_lookup(addr, walk);
  500. return;
  501. }
  502. if (!page)
  503. return;
  504. smaps_account(mss, page, false, young, dirty, locked, migration);
  505. }
  506. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  507. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  508. struct mm_walk *walk)
  509. {
  510. struct mem_size_stats *mss = walk->private;
  511. struct vm_area_struct *vma = walk->vma;
  512. bool locked = !!(vma->vm_flags & VM_LOCKED);
  513. struct page *page = NULL;
  514. bool migration = false;
  515. if (pmd_present(*pmd)) {
  516. /* FOLL_DUMP will return -EFAULT on huge zero page */
  517. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  518. } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
  519. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  520. if (is_migration_entry(entry)) {
  521. migration = true;
  522. page = pfn_swap_entry_to_page(entry);
  523. }
  524. }
  525. if (IS_ERR_OR_NULL(page))
  526. return;
  527. if (PageAnon(page))
  528. mss->anonymous_thp += HPAGE_PMD_SIZE;
  529. else if (PageSwapBacked(page))
  530. mss->shmem_thp += HPAGE_PMD_SIZE;
  531. else if (is_zone_device_page(page))
  532. /* pass */;
  533. else
  534. mss->file_thp += HPAGE_PMD_SIZE;
  535. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
  536. locked, migration);
  537. }
  538. #else
  539. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  540. struct mm_walk *walk)
  541. {
  542. }
  543. #endif
  544. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  545. struct mm_walk *walk)
  546. {
  547. struct vm_area_struct *vma = walk->vma;
  548. pte_t *pte;
  549. spinlock_t *ptl;
  550. ptl = pmd_trans_huge_lock(pmd, vma);
  551. if (ptl) {
  552. smaps_pmd_entry(pmd, addr, walk);
  553. spin_unlock(ptl);
  554. goto out;
  555. }
  556. if (pmd_trans_unstable(pmd))
  557. goto out;
  558. /*
  559. * The mmap_lock held all the way back in m_start() is what
  560. * keeps khugepaged out of here and from collapsing things
  561. * in here.
  562. */
  563. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  564. for (; addr != end; pte++, addr += PAGE_SIZE)
  565. smaps_pte_entry(pte, addr, walk);
  566. pte_unmap_unlock(pte - 1, ptl);
  567. out:
  568. cond_resched();
  569. return 0;
  570. }
  571. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  572. {
  573. /*
  574. * Don't forget to update Documentation/ on changes.
  575. */
  576. static const char mnemonics[BITS_PER_LONG][2] = {
  577. /*
  578. * In case if we meet a flag we don't know about.
  579. */
  580. [0 ... (BITS_PER_LONG-1)] = "??",
  581. [ilog2(VM_READ)] = "rd",
  582. [ilog2(VM_WRITE)] = "wr",
  583. [ilog2(VM_EXEC)] = "ex",
  584. [ilog2(VM_SHARED)] = "sh",
  585. [ilog2(VM_MAYREAD)] = "mr",
  586. [ilog2(VM_MAYWRITE)] = "mw",
  587. [ilog2(VM_MAYEXEC)] = "me",
  588. [ilog2(VM_MAYSHARE)] = "ms",
  589. [ilog2(VM_GROWSDOWN)] = "gd",
  590. [ilog2(VM_PFNMAP)] = "pf",
  591. [ilog2(VM_LOCKED)] = "lo",
  592. [ilog2(VM_IO)] = "io",
  593. [ilog2(VM_SEQ_READ)] = "sr",
  594. [ilog2(VM_RAND_READ)] = "rr",
  595. [ilog2(VM_DONTCOPY)] = "dc",
  596. [ilog2(VM_DONTEXPAND)] = "de",
  597. [ilog2(VM_ACCOUNT)] = "ac",
  598. [ilog2(VM_NORESERVE)] = "nr",
  599. [ilog2(VM_HUGETLB)] = "ht",
  600. [ilog2(VM_SYNC)] = "sf",
  601. [ilog2(VM_ARCH_1)] = "ar",
  602. [ilog2(VM_WIPEONFORK)] = "wf",
  603. [ilog2(VM_DONTDUMP)] = "dd",
  604. #ifdef CONFIG_ARM64_BTI
  605. [ilog2(VM_ARM64_BTI)] = "bt",
  606. #endif
  607. #ifdef CONFIG_MEM_SOFT_DIRTY
  608. [ilog2(VM_SOFTDIRTY)] = "sd",
  609. #endif
  610. [ilog2(VM_MIXEDMAP)] = "mm",
  611. [ilog2(VM_HUGEPAGE)] = "hg",
  612. [ilog2(VM_NOHUGEPAGE)] = "nh",
  613. [ilog2(VM_MERGEABLE)] = "mg",
  614. [ilog2(VM_UFFD_MISSING)]= "um",
  615. [ilog2(VM_UFFD_WP)] = "uw",
  616. #ifdef CONFIG_ARM64_MTE
  617. [ilog2(VM_MTE)] = "mt",
  618. [ilog2(VM_MTE_ALLOWED)] = "",
  619. #endif
  620. #ifdef CONFIG_ARCH_HAS_PKEYS
  621. /* These come out via ProtectionKey: */
  622. [ilog2(VM_PKEY_BIT0)] = "",
  623. [ilog2(VM_PKEY_BIT1)] = "",
  624. [ilog2(VM_PKEY_BIT2)] = "",
  625. [ilog2(VM_PKEY_BIT3)] = "",
  626. #if VM_PKEY_BIT4
  627. [ilog2(VM_PKEY_BIT4)] = "",
  628. #endif
  629. #endif /* CONFIG_ARCH_HAS_PKEYS */
  630. #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
  631. [ilog2(VM_UFFD_MINOR)] = "ui",
  632. #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
  633. };
  634. size_t i;
  635. seq_puts(m, "VmFlags: ");
  636. for (i = 0; i < BITS_PER_LONG; i++) {
  637. if (!mnemonics[i][0])
  638. continue;
  639. if (vma->vm_flags & (1UL << i)) {
  640. seq_putc(m, mnemonics[i][0]);
  641. seq_putc(m, mnemonics[i][1]);
  642. seq_putc(m, ' ');
  643. }
  644. }
  645. seq_putc(m, '\n');
  646. }
  647. #ifdef CONFIG_HUGETLB_PAGE
  648. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  649. unsigned long addr, unsigned long end,
  650. struct mm_walk *walk)
  651. {
  652. struct mem_size_stats *mss = walk->private;
  653. struct vm_area_struct *vma = walk->vma;
  654. struct page *page = NULL;
  655. if (pte_present(*pte)) {
  656. page = vm_normal_page(vma, addr, *pte);
  657. } else if (is_swap_pte(*pte)) {
  658. swp_entry_t swpent = pte_to_swp_entry(*pte);
  659. if (is_pfn_swap_entry(swpent))
  660. page = pfn_swap_entry_to_page(swpent);
  661. }
  662. if (page) {
  663. if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
  664. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  665. else
  666. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  667. }
  668. return 0;
  669. }
  670. #else
  671. #define smaps_hugetlb_range NULL
  672. #endif /* HUGETLB_PAGE */
  673. static const struct mm_walk_ops smaps_walk_ops = {
  674. .pmd_entry = smaps_pte_range,
  675. .hugetlb_entry = smaps_hugetlb_range,
  676. .walk_lock = PGWALK_RDLOCK,
  677. };
  678. static const struct mm_walk_ops smaps_shmem_walk_ops = {
  679. .pmd_entry = smaps_pte_range,
  680. .hugetlb_entry = smaps_hugetlb_range,
  681. .pte_hole = smaps_pte_hole,
  682. .walk_lock = PGWALK_RDLOCK,
  683. };
  684. /*
  685. * Gather mem stats from @vma with the indicated beginning
  686. * address @start, and keep them in @mss.
  687. *
  688. * Use vm_start of @vma as the beginning address if @start is 0.
  689. */
  690. static void smap_gather_stats(struct vm_area_struct *vma,
  691. struct mem_size_stats *mss, unsigned long start)
  692. {
  693. const struct mm_walk_ops *ops = &smaps_walk_ops;
  694. /* Invalid start */
  695. if (start >= vma->vm_end)
  696. return;
  697. #ifdef CONFIG_SHMEM
  698. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  699. /*
  700. * For shared or readonly shmem mappings we know that all
  701. * swapped out pages belong to the shmem object, and we can
  702. * obtain the swap value much more efficiently. For private
  703. * writable mappings, we might have COW pages that are
  704. * not affected by the parent swapped out pages of the shmem
  705. * object, so we have to distinguish them during the page walk.
  706. * Unless we know that the shmem object (or the part mapped by
  707. * our VMA) has no swapped out pages at all.
  708. */
  709. unsigned long shmem_swapped = shmem_swap_usage(vma);
  710. if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  711. !(vma->vm_flags & VM_WRITE))) {
  712. mss->swap += shmem_swapped;
  713. } else {
  714. ops = &smaps_shmem_walk_ops;
  715. }
  716. }
  717. #endif
  718. /* mmap_lock is held in m_start */
  719. if (!start)
  720. walk_page_vma(vma, ops, mss);
  721. else
  722. walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
  723. }
  724. #define SEQ_PUT_DEC(str, val) \
  725. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  726. /* Show the contents common for smaps and smaps_rollup */
  727. static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
  728. bool rollup_mode)
  729. {
  730. SEQ_PUT_DEC("Rss: ", mss->resident);
  731. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  732. SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
  733. if (rollup_mode) {
  734. /*
  735. * These are meaningful only for smaps_rollup, otherwise two of
  736. * them are zero, and the other one is the same as Pss.
  737. */
  738. SEQ_PUT_DEC(" kB\nPss_Anon: ",
  739. mss->pss_anon >> PSS_SHIFT);
  740. SEQ_PUT_DEC(" kB\nPss_File: ",
  741. mss->pss_file >> PSS_SHIFT);
  742. SEQ_PUT_DEC(" kB\nPss_Shmem: ",
  743. mss->pss_shmem >> PSS_SHIFT);
  744. }
  745. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  746. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  747. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  748. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  749. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  750. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  751. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  752. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  753. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  754. SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
  755. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  756. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  757. mss->private_hugetlb >> 10, 7);
  758. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  759. SEQ_PUT_DEC(" kB\nSwapPss: ",
  760. mss->swap_pss >> PSS_SHIFT);
  761. SEQ_PUT_DEC(" kB\nLocked: ",
  762. mss->pss_locked >> PSS_SHIFT);
  763. seq_puts(m, " kB\n");
  764. trace_android_vh_show_smap(m, mss->writeback, mss->same, mss->huge);
  765. }
  766. static int show_smap(struct seq_file *m, void *v)
  767. {
  768. struct vm_area_struct *vma = v;
  769. struct mem_size_stats mss;
  770. memset(&mss, 0, sizeof(mss));
  771. smap_gather_stats(vma, &mss, 0);
  772. show_map_vma(m, vma);
  773. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  774. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  775. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  776. seq_puts(m, " kB\n");
  777. __show_smap(m, &mss, false);
  778. seq_printf(m, "THPeligible: %d\n",
  779. hugepage_vma_check(vma, vma->vm_flags, true, false, true));
  780. if (arch_pkeys_enabled())
  781. seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
  782. show_smap_vma_flags(m, vma);
  783. return 0;
  784. }
  785. static int show_smaps_rollup(struct seq_file *m, void *v)
  786. {
  787. struct proc_maps_private *priv = m->private;
  788. struct mem_size_stats mss;
  789. struct mm_struct *mm = priv->mm;
  790. struct vm_area_struct *vma;
  791. unsigned long vma_start = 0, last_vma_end = 0;
  792. int ret = 0;
  793. MA_STATE(mas, &mm->mm_mt, 0, 0);
  794. priv->task = get_proc_task(priv->inode);
  795. if (!priv->task)
  796. return -ESRCH;
  797. if (!mm || !mmget_not_zero(mm)) {
  798. ret = -ESRCH;
  799. goto out_put_task;
  800. }
  801. memset(&mss, 0, sizeof(mss));
  802. ret = mmap_read_lock_killable(mm);
  803. if (ret)
  804. goto out_put_mm;
  805. hold_task_mempolicy(priv);
  806. vma = mas_find(&mas, ULONG_MAX);
  807. if (unlikely(!vma))
  808. goto empty_set;
  809. vma_start = vma->vm_start;
  810. do {
  811. smap_gather_stats(vma, &mss, 0);
  812. last_vma_end = vma->vm_end;
  813. /*
  814. * Release mmap_lock temporarily if someone wants to
  815. * access it for write request.
  816. */
  817. if (mmap_lock_is_contended(mm)) {
  818. mas_pause(&mas);
  819. mmap_read_unlock(mm);
  820. ret = mmap_read_lock_killable(mm);
  821. if (ret) {
  822. release_task_mempolicy(priv);
  823. goto out_put_mm;
  824. }
  825. /*
  826. * After dropping the lock, there are four cases to
  827. * consider. See the following example for explanation.
  828. *
  829. * +------+------+-----------+
  830. * | VMA1 | VMA2 | VMA3 |
  831. * +------+------+-----------+
  832. * | | | |
  833. * 4k 8k 16k 400k
  834. *
  835. * Suppose we drop the lock after reading VMA2 due to
  836. * contention, then we get:
  837. *
  838. * last_vma_end = 16k
  839. *
  840. * 1) VMA2 is freed, but VMA3 exists:
  841. *
  842. * find_vma(mm, 16k - 1) will return VMA3.
  843. * In this case, just continue from VMA3.
  844. *
  845. * 2) VMA2 still exists:
  846. *
  847. * find_vma(mm, 16k - 1) will return VMA2.
  848. * Iterate the loop like the original one.
  849. *
  850. * 3) No more VMAs can be found:
  851. *
  852. * find_vma(mm, 16k - 1) will return NULL.
  853. * No more things to do, just break.
  854. *
  855. * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
  856. *
  857. * find_vma(mm, 16k - 1) will return VMA' whose range
  858. * contains last_vma_end.
  859. * Iterate VMA' from last_vma_end.
  860. */
  861. vma = mas_find(&mas, ULONG_MAX);
  862. /* Case 3 above */
  863. if (!vma)
  864. break;
  865. /* Case 1 above */
  866. if (vma->vm_start >= last_vma_end)
  867. continue;
  868. /* Case 4 above */
  869. if (vma->vm_end > last_vma_end)
  870. smap_gather_stats(vma, &mss, last_vma_end);
  871. }
  872. /* Case 2 above */
  873. } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
  874. empty_set:
  875. show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
  876. seq_pad(m, ' ');
  877. seq_puts(m, "[rollup]\n");
  878. __show_smap(m, &mss, true);
  879. release_task_mempolicy(priv);
  880. mmap_read_unlock(mm);
  881. out_put_mm:
  882. mmput(mm);
  883. out_put_task:
  884. put_task_struct(priv->task);
  885. priv->task = NULL;
  886. return ret;
  887. }
  888. #undef SEQ_PUT_DEC
  889. static const struct seq_operations proc_pid_smaps_op = {
  890. .start = m_start,
  891. .next = m_next,
  892. .stop = m_stop,
  893. .show = show_smap
  894. };
  895. static int pid_smaps_open(struct inode *inode, struct file *file)
  896. {
  897. return do_maps_open(inode, file, &proc_pid_smaps_op);
  898. }
  899. static int smaps_rollup_open(struct inode *inode, struct file *file)
  900. {
  901. int ret;
  902. struct proc_maps_private *priv;
  903. priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
  904. if (!priv)
  905. return -ENOMEM;
  906. ret = single_open(file, show_smaps_rollup, priv);
  907. if (ret)
  908. goto out_free;
  909. priv->inode = inode;
  910. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  911. if (IS_ERR(priv->mm)) {
  912. ret = PTR_ERR(priv->mm);
  913. single_release(inode, file);
  914. goto out_free;
  915. }
  916. return 0;
  917. out_free:
  918. kfree(priv);
  919. return ret;
  920. }
  921. static int smaps_rollup_release(struct inode *inode, struct file *file)
  922. {
  923. struct seq_file *seq = file->private_data;
  924. struct proc_maps_private *priv = seq->private;
  925. if (priv->mm)
  926. mmdrop(priv->mm);
  927. kfree(priv);
  928. return single_release(inode, file);
  929. }
  930. const struct file_operations proc_pid_smaps_operations = {
  931. .open = pid_smaps_open,
  932. .read = seq_read,
  933. .llseek = seq_lseek,
  934. .release = proc_map_release,
  935. };
  936. const struct file_operations proc_pid_smaps_rollup_operations = {
  937. .open = smaps_rollup_open,
  938. .read = seq_read,
  939. .llseek = seq_lseek,
  940. .release = smaps_rollup_release,
  941. };
  942. enum clear_refs_types {
  943. CLEAR_REFS_ALL = 1,
  944. CLEAR_REFS_ANON,
  945. CLEAR_REFS_MAPPED,
  946. CLEAR_REFS_SOFT_DIRTY,
  947. CLEAR_REFS_MM_HIWATER_RSS,
  948. CLEAR_REFS_LAST,
  949. };
  950. struct clear_refs_private {
  951. enum clear_refs_types type;
  952. };
  953. #ifdef CONFIG_MEM_SOFT_DIRTY
  954. static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  955. {
  956. struct page *page;
  957. if (!pte_write(pte))
  958. return false;
  959. if (!is_cow_mapping(vma->vm_flags))
  960. return false;
  961. if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
  962. return false;
  963. page = vm_normal_page(vma, addr, pte);
  964. if (!page)
  965. return false;
  966. return page_maybe_dma_pinned(page);
  967. }
  968. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  969. unsigned long addr, pte_t *pte)
  970. {
  971. /*
  972. * The soft-dirty tracker uses #PF-s to catch writes
  973. * to pages, so write-protect the pte as well. See the
  974. * Documentation/admin-guide/mm/soft-dirty.rst for full description
  975. * of how soft-dirty works.
  976. */
  977. pte_t ptent = *pte;
  978. if (pte_present(ptent)) {
  979. pte_t old_pte;
  980. if (pte_is_pinned(vma, addr, ptent))
  981. return;
  982. old_pte = ptep_modify_prot_start(vma, addr, pte);
  983. ptent = pte_wrprotect(old_pte);
  984. ptent = pte_clear_soft_dirty(ptent);
  985. ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
  986. } else if (is_swap_pte(ptent)) {
  987. ptent = pte_swp_clear_soft_dirty(ptent);
  988. set_pte_at(vma->vm_mm, addr, pte, ptent);
  989. }
  990. }
  991. #else
  992. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  993. unsigned long addr, pte_t *pte)
  994. {
  995. }
  996. #endif
  997. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  998. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  999. unsigned long addr, pmd_t *pmdp)
  1000. {
  1001. pmd_t old, pmd = *pmdp;
  1002. if (pmd_present(pmd)) {
  1003. /* See comment in change_huge_pmd() */
  1004. old = pmdp_invalidate(vma, addr, pmdp);
  1005. if (pmd_dirty(old))
  1006. pmd = pmd_mkdirty(pmd);
  1007. if (pmd_young(old))
  1008. pmd = pmd_mkyoung(pmd);
  1009. pmd = pmd_wrprotect(pmd);
  1010. pmd = pmd_clear_soft_dirty(pmd);
  1011. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  1012. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  1013. pmd = pmd_swp_clear_soft_dirty(pmd);
  1014. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  1015. }
  1016. }
  1017. #else
  1018. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  1019. unsigned long addr, pmd_t *pmdp)
  1020. {
  1021. }
  1022. #endif
  1023. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  1024. unsigned long end, struct mm_walk *walk)
  1025. {
  1026. struct clear_refs_private *cp = walk->private;
  1027. struct vm_area_struct *vma = walk->vma;
  1028. pte_t *pte, ptent;
  1029. spinlock_t *ptl;
  1030. struct page *page;
  1031. ptl = pmd_trans_huge_lock(pmd, vma);
  1032. if (ptl) {
  1033. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  1034. clear_soft_dirty_pmd(vma, addr, pmd);
  1035. goto out;
  1036. }
  1037. if (!pmd_present(*pmd))
  1038. goto out;
  1039. page = pmd_page(*pmd);
  1040. /* Clear accessed and referenced bits. */
  1041. pmdp_test_and_clear_young(vma, addr, pmd);
  1042. test_and_clear_page_young(page);
  1043. ClearPageReferenced(page);
  1044. out:
  1045. spin_unlock(ptl);
  1046. return 0;
  1047. }
  1048. if (pmd_trans_unstable(pmd))
  1049. return 0;
  1050. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  1051. for (; addr != end; pte++, addr += PAGE_SIZE) {
  1052. ptent = *pte;
  1053. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  1054. clear_soft_dirty(vma, addr, pte);
  1055. continue;
  1056. }
  1057. if (!pte_present(ptent))
  1058. continue;
  1059. page = vm_normal_page(vma, addr, ptent);
  1060. if (!page)
  1061. continue;
  1062. /* Clear accessed and referenced bits. */
  1063. ptep_test_and_clear_young(vma, addr, pte);
  1064. test_and_clear_page_young(page);
  1065. ClearPageReferenced(page);
  1066. }
  1067. pte_unmap_unlock(pte - 1, ptl);
  1068. cond_resched();
  1069. return 0;
  1070. }
  1071. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  1072. struct mm_walk *walk)
  1073. {
  1074. struct clear_refs_private *cp = walk->private;
  1075. struct vm_area_struct *vma = walk->vma;
  1076. if (vma->vm_flags & VM_PFNMAP)
  1077. return 1;
  1078. /*
  1079. * Writing 1 to /proc/pid/clear_refs affects all pages.
  1080. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  1081. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  1082. * Writing 4 to /proc/pid/clear_refs affects all pages.
  1083. */
  1084. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  1085. return 1;
  1086. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  1087. return 1;
  1088. return 0;
  1089. }
  1090. static const struct mm_walk_ops clear_refs_walk_ops = {
  1091. .pmd_entry = clear_refs_pte_range,
  1092. .test_walk = clear_refs_test_walk,
  1093. .walk_lock = PGWALK_WRLOCK,
  1094. };
  1095. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  1096. size_t count, loff_t *ppos)
  1097. {
  1098. struct task_struct *task;
  1099. char buffer[PROC_NUMBUF];
  1100. struct mm_struct *mm;
  1101. struct vm_area_struct *vma;
  1102. enum clear_refs_types type;
  1103. int itype;
  1104. int rv;
  1105. memset(buffer, 0, sizeof(buffer));
  1106. if (count > sizeof(buffer) - 1)
  1107. count = sizeof(buffer) - 1;
  1108. if (copy_from_user(buffer, buf, count))
  1109. return -EFAULT;
  1110. rv = kstrtoint(strstrip(buffer), 10, &itype);
  1111. if (rv < 0)
  1112. return rv;
  1113. type = (enum clear_refs_types)itype;
  1114. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  1115. return -EINVAL;
  1116. task = get_proc_task(file_inode(file));
  1117. if (!task)
  1118. return -ESRCH;
  1119. mm = get_task_mm(task);
  1120. if (mm) {
  1121. MA_STATE(mas, &mm->mm_mt, 0, 0);
  1122. struct mmu_notifier_range range;
  1123. struct clear_refs_private cp = {
  1124. .type = type,
  1125. };
  1126. if (mmap_write_lock_killable(mm)) {
  1127. count = -EINTR;
  1128. goto out_mm;
  1129. }
  1130. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  1131. /*
  1132. * Writing 5 to /proc/pid/clear_refs resets the peak
  1133. * resident set size to this mm's current rss value.
  1134. */
  1135. reset_mm_hiwater_rss(mm);
  1136. goto out_unlock;
  1137. }
  1138. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1139. mas_for_each(&mas, vma, ULONG_MAX) {
  1140. if (!(vma->vm_flags & VM_SOFTDIRTY))
  1141. continue;
  1142. vm_flags_clear(vma, VM_SOFTDIRTY);
  1143. vma_set_page_prot(vma);
  1144. }
  1145. inc_tlb_flush_pending(mm);
  1146. mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
  1147. 0, NULL, mm, 0, -1UL);
  1148. mmu_notifier_invalidate_range_start(&range);
  1149. }
  1150. walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
  1151. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1152. mmu_notifier_invalidate_range_end(&range);
  1153. flush_tlb_mm(mm);
  1154. dec_tlb_flush_pending(mm);
  1155. }
  1156. out_unlock:
  1157. mmap_write_unlock(mm);
  1158. out_mm:
  1159. mmput(mm);
  1160. }
  1161. put_task_struct(task);
  1162. return count;
  1163. }
  1164. const struct file_operations proc_clear_refs_operations = {
  1165. .write = clear_refs_write,
  1166. .llseek = noop_llseek,
  1167. };
  1168. typedef struct {
  1169. u64 pme;
  1170. } pagemap_entry_t;
  1171. struct pagemapread {
  1172. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1173. pagemap_entry_t *buffer;
  1174. bool show_pfn;
  1175. };
  1176. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1177. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1178. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1179. #define PM_PFRAME_BITS 55
  1180. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1181. #define PM_SOFT_DIRTY BIT_ULL(55)
  1182. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1183. #define PM_UFFD_WP BIT_ULL(57)
  1184. #define PM_FILE BIT_ULL(61)
  1185. #define PM_SWAP BIT_ULL(62)
  1186. #define PM_PRESENT BIT_ULL(63)
  1187. #define PM_END_OF_BUFFER 1
  1188. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1189. {
  1190. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1191. }
  1192. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1193. struct pagemapread *pm)
  1194. {
  1195. pm->buffer[pm->pos++] = *pme;
  1196. if (pm->pos >= pm->len)
  1197. return PM_END_OF_BUFFER;
  1198. return 0;
  1199. }
  1200. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1201. __always_unused int depth, struct mm_walk *walk)
  1202. {
  1203. struct pagemapread *pm = walk->private;
  1204. unsigned long addr = start;
  1205. int err = 0;
  1206. while (addr < end) {
  1207. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1208. pagemap_entry_t pme = make_pme(0, 0);
  1209. /* End of address space hole, which we mark as non-present. */
  1210. unsigned long hole_end;
  1211. if (vma)
  1212. hole_end = min(end, vma->vm_start);
  1213. else
  1214. hole_end = end;
  1215. for (; addr < hole_end; addr += PAGE_SIZE) {
  1216. err = add_to_pagemap(addr, &pme, pm);
  1217. if (err)
  1218. goto out;
  1219. }
  1220. if (!vma)
  1221. break;
  1222. /* Addresses in the VMA. */
  1223. if (vma->vm_flags & VM_SOFTDIRTY)
  1224. pme = make_pme(0, PM_SOFT_DIRTY);
  1225. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1226. err = add_to_pagemap(addr, &pme, pm);
  1227. if (err)
  1228. goto out;
  1229. }
  1230. }
  1231. out:
  1232. return err;
  1233. }
  1234. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1235. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1236. {
  1237. u64 frame = 0, flags = 0;
  1238. struct page *page = NULL;
  1239. bool migration = false;
  1240. if (pte_present(pte)) {
  1241. if (pm->show_pfn)
  1242. frame = pte_pfn(pte);
  1243. flags |= PM_PRESENT;
  1244. page = vm_normal_page(vma, addr, pte);
  1245. if (pte_soft_dirty(pte))
  1246. flags |= PM_SOFT_DIRTY;
  1247. if (pte_uffd_wp(pte))
  1248. flags |= PM_UFFD_WP;
  1249. } else if (is_swap_pte(pte)) {
  1250. swp_entry_t entry;
  1251. if (pte_swp_soft_dirty(pte))
  1252. flags |= PM_SOFT_DIRTY;
  1253. if (pte_swp_uffd_wp(pte))
  1254. flags |= PM_UFFD_WP;
  1255. entry = pte_to_swp_entry(pte);
  1256. if (pm->show_pfn) {
  1257. pgoff_t offset;
  1258. /*
  1259. * For PFN swap offsets, keeping the offset field
  1260. * to be PFN only to be compatible with old smaps.
  1261. */
  1262. if (is_pfn_swap_entry(entry))
  1263. offset = swp_offset_pfn(entry);
  1264. else
  1265. offset = swp_offset(entry);
  1266. frame = swp_type(entry) |
  1267. (offset << MAX_SWAPFILES_SHIFT);
  1268. }
  1269. flags |= PM_SWAP;
  1270. migration = is_migration_entry(entry);
  1271. if (is_pfn_swap_entry(entry))
  1272. page = pfn_swap_entry_to_page(entry);
  1273. if (pte_marker_entry_uffd_wp(entry))
  1274. flags |= PM_UFFD_WP;
  1275. }
  1276. if (page && !PageAnon(page))
  1277. flags |= PM_FILE;
  1278. if (page && !migration && page_mapcount(page) == 1)
  1279. flags |= PM_MMAP_EXCLUSIVE;
  1280. if (vma->vm_flags & VM_SOFTDIRTY)
  1281. flags |= PM_SOFT_DIRTY;
  1282. return make_pme(frame, flags);
  1283. }
  1284. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1285. struct mm_walk *walk)
  1286. {
  1287. struct vm_area_struct *vma = walk->vma;
  1288. struct pagemapread *pm = walk->private;
  1289. spinlock_t *ptl;
  1290. pte_t *pte, *orig_pte;
  1291. int err = 0;
  1292. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1293. bool migration = false;
  1294. ptl = pmd_trans_huge_lock(pmdp, vma);
  1295. if (ptl) {
  1296. u64 flags = 0, frame = 0;
  1297. pmd_t pmd = *pmdp;
  1298. struct page *page = NULL;
  1299. if (vma->vm_flags & VM_SOFTDIRTY)
  1300. flags |= PM_SOFT_DIRTY;
  1301. if (pmd_present(pmd)) {
  1302. page = pmd_page(pmd);
  1303. flags |= PM_PRESENT;
  1304. if (pmd_soft_dirty(pmd))
  1305. flags |= PM_SOFT_DIRTY;
  1306. if (pmd_uffd_wp(pmd))
  1307. flags |= PM_UFFD_WP;
  1308. if (pm->show_pfn)
  1309. frame = pmd_pfn(pmd) +
  1310. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1311. }
  1312. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1313. else if (is_swap_pmd(pmd)) {
  1314. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1315. unsigned long offset;
  1316. if (pm->show_pfn) {
  1317. if (is_pfn_swap_entry(entry))
  1318. offset = swp_offset_pfn(entry);
  1319. else
  1320. offset = swp_offset(entry);
  1321. offset = offset +
  1322. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1323. frame = swp_type(entry) |
  1324. (offset << MAX_SWAPFILES_SHIFT);
  1325. }
  1326. flags |= PM_SWAP;
  1327. if (pmd_swp_soft_dirty(pmd))
  1328. flags |= PM_SOFT_DIRTY;
  1329. if (pmd_swp_uffd_wp(pmd))
  1330. flags |= PM_UFFD_WP;
  1331. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1332. migration = is_migration_entry(entry);
  1333. page = pfn_swap_entry_to_page(entry);
  1334. }
  1335. #endif
  1336. if (page && !migration && page_mapcount(page) == 1)
  1337. flags |= PM_MMAP_EXCLUSIVE;
  1338. for (; addr != end; addr += PAGE_SIZE) {
  1339. pagemap_entry_t pme = make_pme(frame, flags);
  1340. err = add_to_pagemap(addr, &pme, pm);
  1341. if (err)
  1342. break;
  1343. if (pm->show_pfn) {
  1344. if (flags & PM_PRESENT)
  1345. frame++;
  1346. else if (flags & PM_SWAP)
  1347. frame += (1 << MAX_SWAPFILES_SHIFT);
  1348. }
  1349. }
  1350. spin_unlock(ptl);
  1351. return err;
  1352. }
  1353. if (pmd_trans_unstable(pmdp))
  1354. return 0;
  1355. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1356. /*
  1357. * We can assume that @vma always points to a valid one and @end never
  1358. * goes beyond vma->vm_end.
  1359. */
  1360. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1361. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1362. pagemap_entry_t pme;
  1363. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1364. err = add_to_pagemap(addr, &pme, pm);
  1365. if (err)
  1366. break;
  1367. }
  1368. pte_unmap_unlock(orig_pte, ptl);
  1369. cond_resched();
  1370. return err;
  1371. }
  1372. #ifdef CONFIG_HUGETLB_PAGE
  1373. /* This function walks within one hugetlb entry in the single call */
  1374. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1375. unsigned long addr, unsigned long end,
  1376. struct mm_walk *walk)
  1377. {
  1378. struct pagemapread *pm = walk->private;
  1379. struct vm_area_struct *vma = walk->vma;
  1380. u64 flags = 0, frame = 0;
  1381. int err = 0;
  1382. pte_t pte;
  1383. if (vma->vm_flags & VM_SOFTDIRTY)
  1384. flags |= PM_SOFT_DIRTY;
  1385. pte = huge_ptep_get(ptep);
  1386. if (pte_present(pte)) {
  1387. struct page *page = pte_page(pte);
  1388. if (!PageAnon(page))
  1389. flags |= PM_FILE;
  1390. if (page_mapcount(page) == 1)
  1391. flags |= PM_MMAP_EXCLUSIVE;
  1392. if (huge_pte_uffd_wp(pte))
  1393. flags |= PM_UFFD_WP;
  1394. flags |= PM_PRESENT;
  1395. if (pm->show_pfn)
  1396. frame = pte_pfn(pte) +
  1397. ((addr & ~hmask) >> PAGE_SHIFT);
  1398. } else if (pte_swp_uffd_wp_any(pte)) {
  1399. flags |= PM_UFFD_WP;
  1400. }
  1401. for (; addr != end; addr += PAGE_SIZE) {
  1402. pagemap_entry_t pme = make_pme(frame, flags);
  1403. err = add_to_pagemap(addr, &pme, pm);
  1404. if (err)
  1405. return err;
  1406. if (pm->show_pfn && (flags & PM_PRESENT))
  1407. frame++;
  1408. }
  1409. cond_resched();
  1410. return err;
  1411. }
  1412. #else
  1413. #define pagemap_hugetlb_range NULL
  1414. #endif /* HUGETLB_PAGE */
  1415. static const struct mm_walk_ops pagemap_ops = {
  1416. .pmd_entry = pagemap_pmd_range,
  1417. .pte_hole = pagemap_pte_hole,
  1418. .hugetlb_entry = pagemap_hugetlb_range,
  1419. .walk_lock = PGWALK_RDLOCK,
  1420. };
  1421. /*
  1422. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1423. *
  1424. * For each page in the address space, this file contains one 64-bit entry
  1425. * consisting of the following:
  1426. *
  1427. * Bits 0-54 page frame number (PFN) if present
  1428. * Bits 0-4 swap type if swapped
  1429. * Bits 5-54 swap offset if swapped
  1430. * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
  1431. * Bit 56 page exclusively mapped
  1432. * Bit 57 pte is uffd-wp write-protected
  1433. * Bits 58-60 zero
  1434. * Bit 61 page is file-page or shared-anon
  1435. * Bit 62 page swapped
  1436. * Bit 63 page present
  1437. *
  1438. * If the page is not present but in swap, then the PFN contains an
  1439. * encoding of the swap file number and the page's offset into the
  1440. * swap. Unmapped pages return a null PFN. This allows determining
  1441. * precisely which pages are mapped (or in swap) and comparing mapped
  1442. * pages between processes.
  1443. *
  1444. * Efficient users of this interface will use /proc/pid/maps to
  1445. * determine which areas of memory are actually mapped and llseek to
  1446. * skip over unmapped regions.
  1447. */
  1448. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1449. size_t count, loff_t *ppos)
  1450. {
  1451. struct mm_struct *mm = file->private_data;
  1452. struct pagemapread pm;
  1453. unsigned long src;
  1454. unsigned long svpfn;
  1455. unsigned long start_vaddr;
  1456. unsigned long end_vaddr;
  1457. int ret = 0, copied = 0;
  1458. if (!mm || !mmget_not_zero(mm))
  1459. goto out;
  1460. ret = -EINVAL;
  1461. /* file position must be aligned */
  1462. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1463. goto out_mm;
  1464. ret = 0;
  1465. if (!count)
  1466. goto out_mm;
  1467. /* do not disclose physical addresses: attack vector */
  1468. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1469. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1470. pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
  1471. ret = -ENOMEM;
  1472. if (!pm.buffer)
  1473. goto out_mm;
  1474. src = *ppos;
  1475. svpfn = src / PM_ENTRY_BYTES;
  1476. end_vaddr = mm->task_size;
  1477. /* watch out for wraparound */
  1478. start_vaddr = end_vaddr;
  1479. if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
  1480. start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
  1481. /* Ensure the address is inside the task */
  1482. if (start_vaddr > mm->task_size)
  1483. start_vaddr = end_vaddr;
  1484. /*
  1485. * The odds are that this will stop walking way
  1486. * before end_vaddr, because the length of the
  1487. * user buffer is tracked in "pm", and the walk
  1488. * will stop when we hit the end of the buffer.
  1489. */
  1490. ret = 0;
  1491. while (count && (start_vaddr < end_vaddr)) {
  1492. int len;
  1493. unsigned long end;
  1494. pm.pos = 0;
  1495. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1496. /* overflow ? */
  1497. if (end < start_vaddr || end > end_vaddr)
  1498. end = end_vaddr;
  1499. ret = mmap_read_lock_killable(mm);
  1500. if (ret)
  1501. goto out_free;
  1502. ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
  1503. mmap_read_unlock(mm);
  1504. start_vaddr = end;
  1505. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1506. if (copy_to_user(buf, pm.buffer, len)) {
  1507. ret = -EFAULT;
  1508. goto out_free;
  1509. }
  1510. copied += len;
  1511. buf += len;
  1512. count -= len;
  1513. }
  1514. *ppos += copied;
  1515. if (!ret || ret == PM_END_OF_BUFFER)
  1516. ret = copied;
  1517. out_free:
  1518. kfree(pm.buffer);
  1519. out_mm:
  1520. mmput(mm);
  1521. out:
  1522. return ret;
  1523. }
  1524. static int pagemap_open(struct inode *inode, struct file *file)
  1525. {
  1526. struct mm_struct *mm;
  1527. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1528. if (IS_ERR(mm))
  1529. return PTR_ERR(mm);
  1530. file->private_data = mm;
  1531. return 0;
  1532. }
  1533. static int pagemap_release(struct inode *inode, struct file *file)
  1534. {
  1535. struct mm_struct *mm = file->private_data;
  1536. if (mm)
  1537. mmdrop(mm);
  1538. return 0;
  1539. }
  1540. const struct file_operations proc_pagemap_operations = {
  1541. .llseek = mem_lseek, /* borrow this */
  1542. .read = pagemap_read,
  1543. .open = pagemap_open,
  1544. .release = pagemap_release,
  1545. };
  1546. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1547. #ifdef CONFIG_NUMA
  1548. struct numa_maps {
  1549. unsigned long pages;
  1550. unsigned long anon;
  1551. unsigned long active;
  1552. unsigned long writeback;
  1553. unsigned long mapcount_max;
  1554. unsigned long dirty;
  1555. unsigned long swapcache;
  1556. unsigned long node[MAX_NUMNODES];
  1557. };
  1558. struct numa_maps_private {
  1559. struct proc_maps_private proc_maps;
  1560. struct numa_maps md;
  1561. };
  1562. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1563. unsigned long nr_pages)
  1564. {
  1565. int count = page_mapcount(page);
  1566. md->pages += nr_pages;
  1567. if (pte_dirty || PageDirty(page))
  1568. md->dirty += nr_pages;
  1569. if (PageSwapCache(page))
  1570. md->swapcache += nr_pages;
  1571. if (PageActive(page) || PageUnevictable(page))
  1572. md->active += nr_pages;
  1573. if (PageWriteback(page))
  1574. md->writeback += nr_pages;
  1575. if (PageAnon(page))
  1576. md->anon += nr_pages;
  1577. if (count > md->mapcount_max)
  1578. md->mapcount_max = count;
  1579. md->node[page_to_nid(page)] += nr_pages;
  1580. }
  1581. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1582. unsigned long addr)
  1583. {
  1584. struct page *page;
  1585. int nid;
  1586. if (!pte_present(pte))
  1587. return NULL;
  1588. page = vm_normal_page(vma, addr, pte);
  1589. if (!page || is_zone_device_page(page))
  1590. return NULL;
  1591. if (PageReserved(page))
  1592. return NULL;
  1593. nid = page_to_nid(page);
  1594. if (!node_isset(nid, node_states[N_MEMORY]))
  1595. return NULL;
  1596. return page;
  1597. }
  1598. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1599. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1600. struct vm_area_struct *vma,
  1601. unsigned long addr)
  1602. {
  1603. struct page *page;
  1604. int nid;
  1605. if (!pmd_present(pmd))
  1606. return NULL;
  1607. page = vm_normal_page_pmd(vma, addr, pmd);
  1608. if (!page)
  1609. return NULL;
  1610. if (PageReserved(page))
  1611. return NULL;
  1612. nid = page_to_nid(page);
  1613. if (!node_isset(nid, node_states[N_MEMORY]))
  1614. return NULL;
  1615. return page;
  1616. }
  1617. #endif
  1618. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1619. unsigned long end, struct mm_walk *walk)
  1620. {
  1621. struct numa_maps *md = walk->private;
  1622. struct vm_area_struct *vma = walk->vma;
  1623. spinlock_t *ptl;
  1624. pte_t *orig_pte;
  1625. pte_t *pte;
  1626. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1627. ptl = pmd_trans_huge_lock(pmd, vma);
  1628. if (ptl) {
  1629. struct page *page;
  1630. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1631. if (page)
  1632. gather_stats(page, md, pmd_dirty(*pmd),
  1633. HPAGE_PMD_SIZE/PAGE_SIZE);
  1634. spin_unlock(ptl);
  1635. return 0;
  1636. }
  1637. if (pmd_trans_unstable(pmd))
  1638. return 0;
  1639. #endif
  1640. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1641. do {
  1642. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1643. if (!page)
  1644. continue;
  1645. gather_stats(page, md, pte_dirty(*pte), 1);
  1646. } while (pte++, addr += PAGE_SIZE, addr != end);
  1647. pte_unmap_unlock(orig_pte, ptl);
  1648. cond_resched();
  1649. return 0;
  1650. }
  1651. #ifdef CONFIG_HUGETLB_PAGE
  1652. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1653. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1654. {
  1655. pte_t huge_pte = huge_ptep_get(pte);
  1656. struct numa_maps *md;
  1657. struct page *page;
  1658. if (!pte_present(huge_pte))
  1659. return 0;
  1660. page = pte_page(huge_pte);
  1661. md = walk->private;
  1662. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1663. return 0;
  1664. }
  1665. #else
  1666. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1667. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1668. {
  1669. return 0;
  1670. }
  1671. #endif
  1672. static const struct mm_walk_ops show_numa_ops = {
  1673. .hugetlb_entry = gather_hugetlb_stats,
  1674. .pmd_entry = gather_pte_stats,
  1675. .walk_lock = PGWALK_RDLOCK,
  1676. };
  1677. /*
  1678. * Display pages allocated per node and memory policy via /proc.
  1679. */
  1680. static int show_numa_map(struct seq_file *m, void *v)
  1681. {
  1682. struct numa_maps_private *numa_priv = m->private;
  1683. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1684. struct vm_area_struct *vma = v;
  1685. struct numa_maps *md = &numa_priv->md;
  1686. struct file *file = vma->vm_file;
  1687. struct mm_struct *mm = vma->vm_mm;
  1688. struct mempolicy *pol;
  1689. char buffer[64];
  1690. int nid;
  1691. if (!mm)
  1692. return 0;
  1693. /* Ensure we start with an empty set of numa_maps statistics. */
  1694. memset(md, 0, sizeof(*md));
  1695. pol = __get_vma_policy(vma, vma->vm_start);
  1696. if (pol) {
  1697. mpol_to_str(buffer, sizeof(buffer), pol);
  1698. mpol_cond_put(pol);
  1699. } else {
  1700. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1701. }
  1702. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1703. if (file) {
  1704. seq_puts(m, " file=");
  1705. seq_file_path(m, file, "\n\t= ");
  1706. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1707. seq_puts(m, " heap");
  1708. } else if (is_stack(vma)) {
  1709. seq_puts(m, " stack");
  1710. }
  1711. if (is_vm_hugetlb_page(vma))
  1712. seq_puts(m, " huge");
  1713. /* mmap_lock is held by m_start */
  1714. walk_page_vma(vma, &show_numa_ops, md);
  1715. if (!md->pages)
  1716. goto out;
  1717. if (md->anon)
  1718. seq_printf(m, " anon=%lu", md->anon);
  1719. if (md->dirty)
  1720. seq_printf(m, " dirty=%lu", md->dirty);
  1721. if (md->pages != md->anon && md->pages != md->dirty)
  1722. seq_printf(m, " mapped=%lu", md->pages);
  1723. if (md->mapcount_max > 1)
  1724. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1725. if (md->swapcache)
  1726. seq_printf(m, " swapcache=%lu", md->swapcache);
  1727. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1728. seq_printf(m, " active=%lu", md->active);
  1729. if (md->writeback)
  1730. seq_printf(m, " writeback=%lu", md->writeback);
  1731. for_each_node_state(nid, N_MEMORY)
  1732. if (md->node[nid])
  1733. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1734. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1735. out:
  1736. seq_putc(m, '\n');
  1737. return 0;
  1738. }
  1739. static const struct seq_operations proc_pid_numa_maps_op = {
  1740. .start = m_start,
  1741. .next = m_next,
  1742. .stop = m_stop,
  1743. .show = show_numa_map,
  1744. };
  1745. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1746. {
  1747. return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
  1748. sizeof(struct numa_maps_private));
  1749. }
  1750. const struct file_operations proc_pid_numa_maps_operations = {
  1751. .open = pid_numa_maps_open,
  1752. .read = seq_read,
  1753. .llseek = seq_lseek,
  1754. .release = proc_map_release,
  1755. };
  1756. #endif /* CONFIG_NUMA */