dir.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/dir.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <asm/unaligned.h>
  9. #include <linux/fs.h>
  10. #include <linux/f2fs_fs.h>
  11. #include <linux/sched/signal.h>
  12. #include <linux/unicode.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. #include <trace/events/f2fs.h>
  18. #if IS_ENABLED(CONFIG_UNICODE)
  19. extern struct kmem_cache *f2fs_cf_name_slab;
  20. #endif
  21. static unsigned long dir_blocks(struct inode *inode)
  22. {
  23. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  24. >> PAGE_SHIFT;
  25. }
  26. static unsigned int dir_buckets(unsigned int level, int dir_level)
  27. {
  28. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  29. return BIT(level + dir_level);
  30. else
  31. return MAX_DIR_BUCKETS;
  32. }
  33. static unsigned int bucket_blocks(unsigned int level)
  34. {
  35. if (level < MAX_DIR_HASH_DEPTH / 2)
  36. return 2;
  37. else
  38. return 4;
  39. }
  40. /* If @dir is casefolded, initialize @fname->cf_name from @fname->usr_fname. */
  41. int f2fs_init_casefolded_name(const struct inode *dir,
  42. struct f2fs_filename *fname)
  43. {
  44. #if IS_ENABLED(CONFIG_UNICODE)
  45. struct super_block *sb = dir->i_sb;
  46. if (IS_CASEFOLDED(dir) &&
  47. !is_dot_dotdot(fname->usr_fname->name, fname->usr_fname->len)) {
  48. fname->cf_name.name = f2fs_kmem_cache_alloc(f2fs_cf_name_slab,
  49. GFP_NOFS, false, F2FS_SB(sb));
  50. if (!fname->cf_name.name)
  51. return -ENOMEM;
  52. fname->cf_name.len = utf8_casefold(sb->s_encoding,
  53. fname->usr_fname,
  54. fname->cf_name.name,
  55. F2FS_NAME_LEN);
  56. if ((int)fname->cf_name.len <= 0) {
  57. kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
  58. fname->cf_name.name = NULL;
  59. if (sb_has_strict_encoding(sb))
  60. return -EINVAL;
  61. /* fall back to treating name as opaque byte sequence */
  62. }
  63. }
  64. #endif
  65. return 0;
  66. }
  67. static int __f2fs_setup_filename(const struct inode *dir,
  68. const struct fscrypt_name *crypt_name,
  69. struct f2fs_filename *fname)
  70. {
  71. int err;
  72. memset(fname, 0, sizeof(*fname));
  73. fname->usr_fname = crypt_name->usr_fname;
  74. fname->disk_name = crypt_name->disk_name;
  75. #ifdef CONFIG_FS_ENCRYPTION
  76. fname->crypto_buf = crypt_name->crypto_buf;
  77. #endif
  78. if (crypt_name->is_nokey_name) {
  79. /* hash was decoded from the no-key name */
  80. fname->hash = cpu_to_le32(crypt_name->hash);
  81. } else {
  82. err = f2fs_init_casefolded_name(dir, fname);
  83. if (err) {
  84. f2fs_free_filename(fname);
  85. return err;
  86. }
  87. f2fs_hash_filename(dir, fname);
  88. }
  89. return 0;
  90. }
  91. /*
  92. * Prepare to search for @iname in @dir. This is similar to
  93. * fscrypt_setup_filename(), but this also handles computing the casefolded name
  94. * and the f2fs dirhash if needed, then packing all the information about this
  95. * filename up into a 'struct f2fs_filename'.
  96. */
  97. int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
  98. int lookup, struct f2fs_filename *fname)
  99. {
  100. struct fscrypt_name crypt_name;
  101. int err;
  102. err = fscrypt_setup_filename(dir, iname, lookup, &crypt_name);
  103. if (err)
  104. return err;
  105. return __f2fs_setup_filename(dir, &crypt_name, fname);
  106. }
  107. /*
  108. * Prepare to look up @dentry in @dir. This is similar to
  109. * fscrypt_prepare_lookup(), but this also handles computing the casefolded name
  110. * and the f2fs dirhash if needed, then packing all the information about this
  111. * filename up into a 'struct f2fs_filename'.
  112. */
  113. int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
  114. struct f2fs_filename *fname)
  115. {
  116. struct fscrypt_name crypt_name;
  117. int err;
  118. err = fscrypt_prepare_lookup(dir, dentry, &crypt_name);
  119. if (err)
  120. return err;
  121. return __f2fs_setup_filename(dir, &crypt_name, fname);
  122. }
  123. void f2fs_free_filename(struct f2fs_filename *fname)
  124. {
  125. #ifdef CONFIG_FS_ENCRYPTION
  126. kfree(fname->crypto_buf.name);
  127. fname->crypto_buf.name = NULL;
  128. #endif
  129. #if IS_ENABLED(CONFIG_UNICODE)
  130. if (fname->cf_name.name) {
  131. kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
  132. fname->cf_name.name = NULL;
  133. }
  134. #endif
  135. }
  136. static unsigned long dir_block_index(unsigned int level,
  137. int dir_level, unsigned int idx)
  138. {
  139. unsigned long i;
  140. unsigned long bidx = 0;
  141. for (i = 0; i < level; i++)
  142. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  143. bidx += idx * bucket_blocks(level);
  144. return bidx;
  145. }
  146. static struct f2fs_dir_entry *find_in_block(struct inode *dir,
  147. struct page *dentry_page,
  148. const struct f2fs_filename *fname,
  149. int *max_slots)
  150. {
  151. struct f2fs_dentry_block *dentry_blk;
  152. struct f2fs_dentry_ptr d;
  153. dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
  154. make_dentry_ptr_block(dir, &d, dentry_blk);
  155. return f2fs_find_target_dentry(&d, fname, max_slots);
  156. }
  157. #if IS_ENABLED(CONFIG_UNICODE)
  158. /*
  159. * Test whether a case-insensitive directory entry matches the filename
  160. * being searched for.
  161. *
  162. * Returns 1 for a match, 0 for no match, and -errno on an error.
  163. */
  164. static int f2fs_match_ci_name(const struct inode *dir, const struct qstr *name,
  165. const u8 *de_name, u32 de_name_len)
  166. {
  167. const struct super_block *sb = dir->i_sb;
  168. const struct unicode_map *um = sb->s_encoding;
  169. struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
  170. struct qstr entry = QSTR_INIT(de_name, de_name_len);
  171. int res;
  172. if (IS_ENCRYPTED(dir)) {
  173. const struct fscrypt_str encrypted_name =
  174. FSTR_INIT((u8 *)de_name, de_name_len);
  175. if (WARN_ON_ONCE(!fscrypt_has_encryption_key(dir)))
  176. return -EINVAL;
  177. decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
  178. if (!decrypted_name.name)
  179. return -ENOMEM;
  180. res = fscrypt_fname_disk_to_usr(dir, 0, 0, &encrypted_name,
  181. &decrypted_name);
  182. if (res < 0)
  183. goto out;
  184. entry.name = decrypted_name.name;
  185. entry.len = decrypted_name.len;
  186. }
  187. res = utf8_strncasecmp_folded(um, name, &entry);
  188. /*
  189. * In strict mode, ignore invalid names. In non-strict mode,
  190. * fall back to treating them as opaque byte sequences.
  191. */
  192. if (res < 0 && !sb_has_strict_encoding(sb)) {
  193. res = name->len == entry.len &&
  194. memcmp(name->name, entry.name, name->len) == 0;
  195. } else {
  196. /* utf8_strncasecmp_folded returns 0 on match */
  197. res = (res == 0);
  198. }
  199. out:
  200. kfree(decrypted_name.name);
  201. return res;
  202. }
  203. #endif /* CONFIG_UNICODE */
  204. static inline int f2fs_match_name(const struct inode *dir,
  205. const struct f2fs_filename *fname,
  206. const u8 *de_name, u32 de_name_len)
  207. {
  208. struct fscrypt_name f;
  209. #if IS_ENABLED(CONFIG_UNICODE)
  210. if (fname->cf_name.name) {
  211. struct qstr cf = FSTR_TO_QSTR(&fname->cf_name);
  212. return f2fs_match_ci_name(dir, &cf, de_name, de_name_len);
  213. }
  214. #endif
  215. f.usr_fname = fname->usr_fname;
  216. f.disk_name = fname->disk_name;
  217. #ifdef CONFIG_FS_ENCRYPTION
  218. f.crypto_buf = fname->crypto_buf;
  219. #endif
  220. return fscrypt_match_name(&f, de_name, de_name_len);
  221. }
  222. struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
  223. const struct f2fs_filename *fname, int *max_slots)
  224. {
  225. struct f2fs_dir_entry *de;
  226. unsigned long bit_pos = 0;
  227. int max_len = 0;
  228. int res = 0;
  229. if (max_slots)
  230. *max_slots = 0;
  231. while (bit_pos < d->max) {
  232. if (!test_bit_le(bit_pos, d->bitmap)) {
  233. bit_pos++;
  234. max_len++;
  235. continue;
  236. }
  237. de = &d->dentry[bit_pos];
  238. if (unlikely(!de->name_len)) {
  239. bit_pos++;
  240. continue;
  241. }
  242. if (de->hash_code == fname->hash) {
  243. res = f2fs_match_name(d->inode, fname,
  244. d->filename[bit_pos],
  245. le16_to_cpu(de->name_len));
  246. if (res < 0)
  247. return ERR_PTR(res);
  248. if (res)
  249. goto found;
  250. }
  251. if (max_slots && max_len > *max_slots)
  252. *max_slots = max_len;
  253. max_len = 0;
  254. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  255. }
  256. de = NULL;
  257. found:
  258. if (max_slots && max_len > *max_slots)
  259. *max_slots = max_len;
  260. return de;
  261. }
  262. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  263. unsigned int level,
  264. const struct f2fs_filename *fname,
  265. struct page **res_page)
  266. {
  267. int s = GET_DENTRY_SLOTS(fname->disk_name.len);
  268. unsigned int nbucket, nblock;
  269. unsigned int bidx, end_block;
  270. struct page *dentry_page;
  271. struct f2fs_dir_entry *de = NULL;
  272. pgoff_t next_pgofs;
  273. bool room = false;
  274. int max_slots;
  275. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  276. nblock = bucket_blocks(level);
  277. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  278. le32_to_cpu(fname->hash) % nbucket);
  279. end_block = bidx + nblock;
  280. while (bidx < end_block) {
  281. /* no need to allocate new dentry pages to all the indices */
  282. dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs);
  283. if (IS_ERR(dentry_page)) {
  284. if (PTR_ERR(dentry_page) == -ENOENT) {
  285. room = true;
  286. bidx = next_pgofs;
  287. continue;
  288. } else {
  289. *res_page = dentry_page;
  290. break;
  291. }
  292. }
  293. de = find_in_block(dir, dentry_page, fname, &max_slots);
  294. if (IS_ERR(de)) {
  295. *res_page = ERR_CAST(de);
  296. de = NULL;
  297. break;
  298. } else if (de) {
  299. *res_page = dentry_page;
  300. break;
  301. }
  302. if (max_slots >= s)
  303. room = true;
  304. f2fs_put_page(dentry_page, 0);
  305. bidx++;
  306. }
  307. if (!de && room && F2FS_I(dir)->chash != fname->hash) {
  308. F2FS_I(dir)->chash = fname->hash;
  309. F2FS_I(dir)->clevel = level;
  310. }
  311. return de;
  312. }
  313. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  314. const struct f2fs_filename *fname,
  315. struct page **res_page)
  316. {
  317. unsigned long npages = dir_blocks(dir);
  318. struct f2fs_dir_entry *de = NULL;
  319. unsigned int max_depth;
  320. unsigned int level;
  321. *res_page = NULL;
  322. if (f2fs_has_inline_dentry(dir)) {
  323. de = f2fs_find_in_inline_dir(dir, fname, res_page);
  324. goto out;
  325. }
  326. if (npages == 0)
  327. goto out;
  328. max_depth = F2FS_I(dir)->i_current_depth;
  329. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  330. f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u",
  331. dir->i_ino, max_depth);
  332. max_depth = MAX_DIR_HASH_DEPTH;
  333. f2fs_i_depth_write(dir, max_depth);
  334. }
  335. for (level = 0; level < max_depth; level++) {
  336. de = find_in_level(dir, level, fname, res_page);
  337. if (de || IS_ERR(*res_page))
  338. break;
  339. }
  340. out:
  341. /* This is to increase the speed of f2fs_create */
  342. if (!de)
  343. F2FS_I(dir)->task = current;
  344. return de;
  345. }
  346. /*
  347. * Find an entry in the specified directory with the wanted name.
  348. * It returns the page where the entry was found (as a parameter - res_page),
  349. * and the entry itself. Page is returned mapped and unlocked.
  350. * Entry is guaranteed to be valid.
  351. */
  352. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  353. const struct qstr *child, struct page **res_page)
  354. {
  355. struct f2fs_dir_entry *de = NULL;
  356. struct f2fs_filename fname;
  357. int err;
  358. err = f2fs_setup_filename(dir, child, 1, &fname);
  359. if (err) {
  360. if (err == -ENOENT)
  361. *res_page = NULL;
  362. else
  363. *res_page = ERR_PTR(err);
  364. return NULL;
  365. }
  366. de = __f2fs_find_entry(dir, &fname, res_page);
  367. f2fs_free_filename(&fname);
  368. return de;
  369. }
  370. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  371. {
  372. return f2fs_find_entry(dir, &dotdot_name, p);
  373. }
  374. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  375. struct page **page)
  376. {
  377. ino_t res = 0;
  378. struct f2fs_dir_entry *de;
  379. de = f2fs_find_entry(dir, qstr, page);
  380. if (de) {
  381. res = le32_to_cpu(de->ino);
  382. f2fs_put_page(*page, 0);
  383. }
  384. return res;
  385. }
  386. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  387. struct page *page, struct inode *inode)
  388. {
  389. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  390. lock_page(page);
  391. f2fs_wait_on_page_writeback(page, type, true, true);
  392. de->ino = cpu_to_le32(inode->i_ino);
  393. de->file_type = fs_umode_to_ftype(inode->i_mode);
  394. set_page_dirty(page);
  395. dir->i_mtime = dir->i_ctime = current_time(dir);
  396. f2fs_mark_inode_dirty_sync(dir, false);
  397. f2fs_put_page(page, 1);
  398. }
  399. static void init_dent_inode(struct inode *dir, struct inode *inode,
  400. const struct f2fs_filename *fname,
  401. struct page *ipage)
  402. {
  403. struct f2fs_inode *ri;
  404. if (!fname) /* tmpfile case? */
  405. return;
  406. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  407. /* copy name info. to this inode page */
  408. ri = F2FS_INODE(ipage);
  409. ri->i_namelen = cpu_to_le32(fname->disk_name.len);
  410. memcpy(ri->i_name, fname->disk_name.name, fname->disk_name.len);
  411. if (IS_ENCRYPTED(dir)) {
  412. file_set_enc_name(inode);
  413. /*
  414. * Roll-forward recovery doesn't have encryption keys available,
  415. * so it can't compute the dirhash for encrypted+casefolded
  416. * filenames. Append it to i_name if possible. Else, disable
  417. * roll-forward recovery of the dentry (i.e., make fsync'ing the
  418. * file force a checkpoint) by setting LOST_PINO.
  419. */
  420. if (IS_CASEFOLDED(dir)) {
  421. if (fname->disk_name.len + sizeof(f2fs_hash_t) <=
  422. F2FS_NAME_LEN)
  423. put_unaligned(fname->hash, (f2fs_hash_t *)
  424. &ri->i_name[fname->disk_name.len]);
  425. else
  426. file_lost_pino(inode);
  427. }
  428. }
  429. set_page_dirty(ipage);
  430. }
  431. void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
  432. struct f2fs_dentry_ptr *d)
  433. {
  434. struct fscrypt_str dot = FSTR_INIT(".", 1);
  435. struct fscrypt_str dotdot = FSTR_INIT("..", 2);
  436. /* update dirent of "." */
  437. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  438. /* update dirent of ".." */
  439. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  440. }
  441. static int make_empty_dir(struct inode *inode,
  442. struct inode *parent, struct page *page)
  443. {
  444. struct page *dentry_page;
  445. struct f2fs_dentry_block *dentry_blk;
  446. struct f2fs_dentry_ptr d;
  447. if (f2fs_has_inline_dentry(inode))
  448. return f2fs_make_empty_inline_dir(inode, parent, page);
  449. dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
  450. if (IS_ERR(dentry_page))
  451. return PTR_ERR(dentry_page);
  452. dentry_blk = page_address(dentry_page);
  453. make_dentry_ptr_block(NULL, &d, dentry_blk);
  454. f2fs_do_make_empty_dir(inode, parent, &d);
  455. set_page_dirty(dentry_page);
  456. f2fs_put_page(dentry_page, 1);
  457. return 0;
  458. }
  459. struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
  460. const struct f2fs_filename *fname, struct page *dpage)
  461. {
  462. struct page *page;
  463. int err;
  464. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  465. page = f2fs_new_inode_page(inode);
  466. if (IS_ERR(page))
  467. return page;
  468. if (S_ISDIR(inode->i_mode)) {
  469. /* in order to handle error case */
  470. get_page(page);
  471. err = make_empty_dir(inode, dir, page);
  472. if (err) {
  473. lock_page(page);
  474. goto put_error;
  475. }
  476. put_page(page);
  477. }
  478. err = f2fs_init_acl(inode, dir, page, dpage);
  479. if (err)
  480. goto put_error;
  481. err = f2fs_init_security(inode, dir,
  482. fname ? fname->usr_fname : NULL, page);
  483. if (err)
  484. goto put_error;
  485. if (IS_ENCRYPTED(inode)) {
  486. err = fscrypt_set_context(inode, page);
  487. if (err)
  488. goto put_error;
  489. }
  490. } else {
  491. page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
  492. if (IS_ERR(page))
  493. return page;
  494. }
  495. init_dent_inode(dir, inode, fname, page);
  496. /*
  497. * This file should be checkpointed during fsync.
  498. * We lost i_pino from now on.
  499. */
  500. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  501. if (!S_ISDIR(inode->i_mode))
  502. file_lost_pino(inode);
  503. /*
  504. * If link the tmpfile to alias through linkat path,
  505. * we should remove this inode from orphan list.
  506. */
  507. if (inode->i_nlink == 0)
  508. f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  509. f2fs_i_links_write(inode, true);
  510. }
  511. return page;
  512. put_error:
  513. clear_nlink(inode);
  514. f2fs_update_inode(inode, page);
  515. f2fs_put_page(page, 1);
  516. return ERR_PTR(err);
  517. }
  518. void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
  519. unsigned int current_depth)
  520. {
  521. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  522. if (S_ISDIR(inode->i_mode))
  523. f2fs_i_links_write(dir, true);
  524. clear_inode_flag(inode, FI_NEW_INODE);
  525. }
  526. dir->i_mtime = dir->i_ctime = current_time(dir);
  527. f2fs_mark_inode_dirty_sync(dir, false);
  528. if (F2FS_I(dir)->i_current_depth != current_depth)
  529. f2fs_i_depth_write(dir, current_depth);
  530. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  531. clear_inode_flag(inode, FI_INC_LINK);
  532. }
  533. int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
  534. {
  535. int bit_start = 0;
  536. int zero_start, zero_end;
  537. next:
  538. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  539. if (zero_start >= max_slots)
  540. return max_slots;
  541. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  542. if (zero_end - zero_start >= slots)
  543. return zero_start;
  544. bit_start = zero_end + 1;
  545. if (zero_end + 1 >= max_slots)
  546. return max_slots;
  547. goto next;
  548. }
  549. bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
  550. const struct f2fs_filename *fname)
  551. {
  552. struct f2fs_dentry_ptr d;
  553. unsigned int bit_pos;
  554. int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
  555. make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage));
  556. bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
  557. return bit_pos < d.max;
  558. }
  559. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  560. const struct fscrypt_str *name, f2fs_hash_t name_hash,
  561. unsigned int bit_pos)
  562. {
  563. struct f2fs_dir_entry *de;
  564. int slots = GET_DENTRY_SLOTS(name->len);
  565. int i;
  566. de = &d->dentry[bit_pos];
  567. de->hash_code = name_hash;
  568. de->name_len = cpu_to_le16(name->len);
  569. memcpy(d->filename[bit_pos], name->name, name->len);
  570. de->ino = cpu_to_le32(ino);
  571. de->file_type = fs_umode_to_ftype(mode);
  572. for (i = 0; i < slots; i++) {
  573. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  574. /* avoid wrong garbage data for readdir */
  575. if (i)
  576. (de + i)->name_len = 0;
  577. }
  578. }
  579. int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
  580. struct inode *inode, nid_t ino, umode_t mode)
  581. {
  582. unsigned int bit_pos;
  583. unsigned int level;
  584. unsigned int current_depth;
  585. unsigned long bidx, block;
  586. unsigned int nbucket, nblock;
  587. struct page *dentry_page = NULL;
  588. struct f2fs_dentry_block *dentry_blk = NULL;
  589. struct f2fs_dentry_ptr d;
  590. struct page *page = NULL;
  591. int slots, err = 0;
  592. level = 0;
  593. slots = GET_DENTRY_SLOTS(fname->disk_name.len);
  594. current_depth = F2FS_I(dir)->i_current_depth;
  595. if (F2FS_I(dir)->chash == fname->hash) {
  596. level = F2FS_I(dir)->clevel;
  597. F2FS_I(dir)->chash = 0;
  598. }
  599. start:
  600. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH))
  601. return -ENOSPC;
  602. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  603. return -ENOSPC;
  604. /* Increase the depth, if required */
  605. if (level == current_depth)
  606. ++current_depth;
  607. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  608. nblock = bucket_blocks(level);
  609. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  610. (le32_to_cpu(fname->hash) % nbucket));
  611. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  612. dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
  613. if (IS_ERR(dentry_page))
  614. return PTR_ERR(dentry_page);
  615. dentry_blk = page_address(dentry_page);
  616. bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
  617. slots, NR_DENTRY_IN_BLOCK);
  618. if (bit_pos < NR_DENTRY_IN_BLOCK)
  619. goto add_dentry;
  620. f2fs_put_page(dentry_page, 1);
  621. }
  622. /* Move to next level to find the empty slot for new dentry */
  623. ++level;
  624. goto start;
  625. add_dentry:
  626. f2fs_wait_on_page_writeback(dentry_page, DATA, true, true);
  627. if (inode) {
  628. f2fs_down_write(&F2FS_I(inode)->i_sem);
  629. page = f2fs_init_inode_metadata(inode, dir, fname, NULL);
  630. if (IS_ERR(page)) {
  631. err = PTR_ERR(page);
  632. goto fail;
  633. }
  634. }
  635. make_dentry_ptr_block(NULL, &d, dentry_blk);
  636. f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
  637. bit_pos);
  638. set_page_dirty(dentry_page);
  639. if (inode) {
  640. f2fs_i_pino_write(inode, dir->i_ino);
  641. /* synchronize inode page's data from inode cache */
  642. if (is_inode_flag_set(inode, FI_NEW_INODE))
  643. f2fs_update_inode(inode, page);
  644. f2fs_put_page(page, 1);
  645. }
  646. f2fs_update_parent_metadata(dir, inode, current_depth);
  647. fail:
  648. if (inode)
  649. f2fs_up_write(&F2FS_I(inode)->i_sem);
  650. f2fs_put_page(dentry_page, 1);
  651. return err;
  652. }
  653. int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
  654. struct inode *inode, nid_t ino, umode_t mode)
  655. {
  656. int err = -EAGAIN;
  657. if (f2fs_has_inline_dentry(dir)) {
  658. /*
  659. * Should get i_xattr_sem to keep the lock order:
  660. * i_xattr_sem -> inode_page lock used by f2fs_setxattr.
  661. */
  662. f2fs_down_read(&F2FS_I(dir)->i_xattr_sem);
  663. err = f2fs_add_inline_entry(dir, fname, inode, ino, mode);
  664. f2fs_up_read(&F2FS_I(dir)->i_xattr_sem);
  665. }
  666. if (err == -EAGAIN)
  667. err = f2fs_add_regular_entry(dir, fname, inode, ino, mode);
  668. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  669. return err;
  670. }
  671. /*
  672. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  673. * f2fs_unlock_op().
  674. */
  675. int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
  676. struct inode *inode, nid_t ino, umode_t mode)
  677. {
  678. struct f2fs_filename fname;
  679. struct page *page = NULL;
  680. struct f2fs_dir_entry *de = NULL;
  681. int err;
  682. err = f2fs_setup_filename(dir, name, 0, &fname);
  683. if (err)
  684. return err;
  685. /*
  686. * An immature stackable filesystem shows a race condition between lookup
  687. * and create. If we have same task when doing lookup and create, it's
  688. * definitely fine as expected by VFS normally. Otherwise, let's just
  689. * verify on-disk dentry one more time, which guarantees filesystem
  690. * consistency more.
  691. */
  692. if (current != F2FS_I(dir)->task) {
  693. de = __f2fs_find_entry(dir, &fname, &page);
  694. F2FS_I(dir)->task = NULL;
  695. }
  696. if (de) {
  697. f2fs_put_page(page, 0);
  698. err = -EEXIST;
  699. } else if (IS_ERR(page)) {
  700. err = PTR_ERR(page);
  701. } else {
  702. err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
  703. }
  704. f2fs_free_filename(&fname);
  705. return err;
  706. }
  707. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  708. {
  709. struct page *page;
  710. int err = 0;
  711. f2fs_down_write(&F2FS_I(inode)->i_sem);
  712. page = f2fs_init_inode_metadata(inode, dir, NULL, NULL);
  713. if (IS_ERR(page)) {
  714. err = PTR_ERR(page);
  715. goto fail;
  716. }
  717. f2fs_put_page(page, 1);
  718. clear_inode_flag(inode, FI_NEW_INODE);
  719. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  720. fail:
  721. f2fs_up_write(&F2FS_I(inode)->i_sem);
  722. return err;
  723. }
  724. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  725. {
  726. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  727. f2fs_down_write(&F2FS_I(inode)->i_sem);
  728. if (S_ISDIR(inode->i_mode))
  729. f2fs_i_links_write(dir, false);
  730. inode->i_ctime = current_time(inode);
  731. f2fs_i_links_write(inode, false);
  732. if (S_ISDIR(inode->i_mode)) {
  733. f2fs_i_links_write(inode, false);
  734. f2fs_i_size_write(inode, 0);
  735. }
  736. f2fs_up_write(&F2FS_I(inode)->i_sem);
  737. if (inode->i_nlink == 0)
  738. f2fs_add_orphan_inode(inode);
  739. else
  740. f2fs_release_orphan_inode(sbi);
  741. }
  742. /*
  743. * It only removes the dentry from the dentry page, corresponding name
  744. * entry in name page does not need to be touched during deletion.
  745. */
  746. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  747. struct inode *dir, struct inode *inode)
  748. {
  749. struct f2fs_dentry_block *dentry_blk;
  750. unsigned int bit_pos;
  751. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  752. int i;
  753. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  754. if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
  755. f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
  756. if (f2fs_has_inline_dentry(dir))
  757. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  758. lock_page(page);
  759. f2fs_wait_on_page_writeback(page, DATA, true, true);
  760. dentry_blk = page_address(page);
  761. bit_pos = dentry - dentry_blk->dentry;
  762. for (i = 0; i < slots; i++)
  763. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  764. /* Let's check and deallocate this dentry page */
  765. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  766. NR_DENTRY_IN_BLOCK,
  767. 0);
  768. set_page_dirty(page);
  769. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  770. !f2fs_truncate_hole(dir, page->index, page->index + 1)) {
  771. f2fs_clear_page_cache_dirty_tag(page);
  772. clear_page_dirty_for_io(page);
  773. ClearPageUptodate(page);
  774. clear_page_private_all(page);
  775. inode_dec_dirty_pages(dir);
  776. f2fs_remove_dirty_inode(dir);
  777. }
  778. f2fs_put_page(page, 1);
  779. dir->i_ctime = dir->i_mtime = current_time(dir);
  780. f2fs_mark_inode_dirty_sync(dir, false);
  781. if (inode)
  782. f2fs_drop_nlink(dir, inode);
  783. }
  784. bool f2fs_empty_dir(struct inode *dir)
  785. {
  786. unsigned long bidx = 0;
  787. struct page *dentry_page;
  788. unsigned int bit_pos;
  789. struct f2fs_dentry_block *dentry_blk;
  790. unsigned long nblock = dir_blocks(dir);
  791. if (f2fs_has_inline_dentry(dir))
  792. return f2fs_empty_inline_dir(dir);
  793. while (bidx < nblock) {
  794. pgoff_t next_pgofs;
  795. dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs);
  796. if (IS_ERR(dentry_page)) {
  797. if (PTR_ERR(dentry_page) == -ENOENT) {
  798. bidx = next_pgofs;
  799. continue;
  800. } else {
  801. return false;
  802. }
  803. }
  804. dentry_blk = page_address(dentry_page);
  805. if (bidx == 0)
  806. bit_pos = 2;
  807. else
  808. bit_pos = 0;
  809. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  810. NR_DENTRY_IN_BLOCK,
  811. bit_pos);
  812. f2fs_put_page(dentry_page, 0);
  813. if (bit_pos < NR_DENTRY_IN_BLOCK)
  814. return false;
  815. bidx++;
  816. }
  817. return true;
  818. }
  819. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  820. unsigned int start_pos, struct fscrypt_str *fstr)
  821. {
  822. unsigned char d_type = DT_UNKNOWN;
  823. unsigned int bit_pos;
  824. struct f2fs_dir_entry *de = NULL;
  825. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  826. struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
  827. struct blk_plug plug;
  828. bool readdir_ra = sbi->readdir_ra;
  829. bool found_valid_dirent = false;
  830. int err = 0;
  831. bit_pos = ((unsigned long)ctx->pos % d->max);
  832. if (readdir_ra)
  833. blk_start_plug(&plug);
  834. while (bit_pos < d->max) {
  835. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  836. if (bit_pos >= d->max)
  837. break;
  838. de = &d->dentry[bit_pos];
  839. if (de->name_len == 0) {
  840. if (found_valid_dirent || !bit_pos) {
  841. printk_ratelimited(
  842. "%sF2FS-fs (%s): invalid namelen(0), ino:%u, run fsck to fix.",
  843. KERN_WARNING, sbi->sb->s_id,
  844. le32_to_cpu(de->ino));
  845. set_sbi_flag(sbi, SBI_NEED_FSCK);
  846. }
  847. bit_pos++;
  848. ctx->pos = start_pos + bit_pos;
  849. continue;
  850. }
  851. d_type = fs_ftype_to_dtype(de->file_type);
  852. de_name.name = d->filename[bit_pos];
  853. de_name.len = le16_to_cpu(de->name_len);
  854. /* check memory boundary before moving forward */
  855. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  856. if (unlikely(bit_pos > d->max ||
  857. le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
  858. f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.",
  859. __func__, le16_to_cpu(de->name_len));
  860. set_sbi_flag(sbi, SBI_NEED_FSCK);
  861. err = -EFSCORRUPTED;
  862. f2fs_handle_error(sbi, ERROR_CORRUPTED_DIRENT);
  863. goto out;
  864. }
  865. if (IS_ENCRYPTED(d->inode)) {
  866. int save_len = fstr->len;
  867. err = fscrypt_fname_disk_to_usr(d->inode,
  868. (u32)le32_to_cpu(de->hash_code),
  869. 0, &de_name, fstr);
  870. if (err)
  871. goto out;
  872. de_name = *fstr;
  873. fstr->len = save_len;
  874. }
  875. if (!dir_emit(ctx, de_name.name, de_name.len,
  876. le32_to_cpu(de->ino), d_type)) {
  877. err = 1;
  878. goto out;
  879. }
  880. if (readdir_ra)
  881. f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
  882. ctx->pos = start_pos + bit_pos;
  883. found_valid_dirent = true;
  884. }
  885. out:
  886. if (readdir_ra)
  887. blk_finish_plug(&plug);
  888. return err;
  889. }
  890. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  891. {
  892. struct inode *inode = file_inode(file);
  893. unsigned long npages = dir_blocks(inode);
  894. struct f2fs_dentry_block *dentry_blk = NULL;
  895. struct page *dentry_page = NULL;
  896. struct file_ra_state *ra = &file->f_ra;
  897. loff_t start_pos = ctx->pos;
  898. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  899. struct f2fs_dentry_ptr d;
  900. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  901. int err = 0;
  902. if (IS_ENCRYPTED(inode)) {
  903. err = fscrypt_prepare_readdir(inode);
  904. if (err)
  905. goto out;
  906. err = fscrypt_fname_alloc_buffer(F2FS_NAME_LEN, &fstr);
  907. if (err < 0)
  908. goto out;
  909. }
  910. if (f2fs_has_inline_dentry(inode)) {
  911. err = f2fs_read_inline_dir(file, ctx, &fstr);
  912. goto out_free;
  913. }
  914. for (; n < npages; ctx->pos = n * NR_DENTRY_IN_BLOCK) {
  915. pgoff_t next_pgofs;
  916. /* allow readdir() to be interrupted */
  917. if (fatal_signal_pending(current)) {
  918. err = -ERESTARTSYS;
  919. goto out_free;
  920. }
  921. cond_resched();
  922. /* readahead for multi pages of dir */
  923. if (npages - n > 1 && !ra_has_index(ra, n))
  924. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  925. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  926. dentry_page = f2fs_find_data_page(inode, n, &next_pgofs);
  927. if (IS_ERR(dentry_page)) {
  928. err = PTR_ERR(dentry_page);
  929. if (err == -ENOENT) {
  930. err = 0;
  931. n = next_pgofs;
  932. continue;
  933. } else {
  934. goto out_free;
  935. }
  936. }
  937. dentry_blk = page_address(dentry_page);
  938. make_dentry_ptr_block(inode, &d, dentry_blk);
  939. err = f2fs_fill_dentries(ctx, &d,
  940. n * NR_DENTRY_IN_BLOCK, &fstr);
  941. if (err) {
  942. f2fs_put_page(dentry_page, 0);
  943. break;
  944. }
  945. f2fs_put_page(dentry_page, 0);
  946. n++;
  947. }
  948. out_free:
  949. fscrypt_fname_free_buffer(&fstr);
  950. out:
  951. trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
  952. return err < 0 ? err : 0;
  953. }
  954. const struct file_operations f2fs_dir_operations = {
  955. .llseek = generic_file_llseek,
  956. .read = generic_read_dir,
  957. .iterate_shared = f2fs_readdir,
  958. .fsync = f2fs_sync_file,
  959. .unlocked_ioctl = f2fs_ioctl,
  960. #ifdef CONFIG_COMPAT
  961. .compat_ioctl = f2fs_compat_ioctl,
  962. #endif
  963. };