checkpoint.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/checkpoint.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/bio.h>
  10. #include <linux/mpage.h>
  11. #include <linux/writeback.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/f2fs_fs.h>
  14. #include <linux/pagevec.h>
  15. #include <linux/swap.h>
  16. #include <linux/kthread.h>
  17. #include "f2fs.h"
  18. #include "node.h"
  19. #include "segment.h"
  20. #include "iostat.h"
  21. #include <trace/events/f2fs.h>
  22. #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
  23. static struct kmem_cache *ino_entry_slab;
  24. struct kmem_cache *f2fs_inode_entry_slab;
  25. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
  26. unsigned char reason)
  27. {
  28. f2fs_build_fault_attr(sbi, 0, 0);
  29. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  30. if (!end_io) {
  31. f2fs_flush_merged_writes(sbi);
  32. f2fs_handle_stop(sbi, reason);
  33. }
  34. }
  35. /*
  36. * We guarantee no failure on the returned page.
  37. */
  38. struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  39. {
  40. struct address_space *mapping = META_MAPPING(sbi);
  41. struct page *page;
  42. repeat:
  43. page = f2fs_grab_cache_page(mapping, index, false);
  44. if (!page) {
  45. cond_resched();
  46. goto repeat;
  47. }
  48. f2fs_wait_on_page_writeback(page, META, true, true);
  49. if (!PageUptodate(page))
  50. SetPageUptodate(page);
  51. return page;
  52. }
  53. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  54. bool is_meta)
  55. {
  56. struct address_space *mapping = META_MAPPING(sbi);
  57. struct page *page;
  58. struct f2fs_io_info fio = {
  59. .sbi = sbi,
  60. .type = META,
  61. .op = REQ_OP_READ,
  62. .op_flags = REQ_META | REQ_PRIO,
  63. .old_blkaddr = index,
  64. .new_blkaddr = index,
  65. .encrypted_page = NULL,
  66. .is_por = !is_meta ? 1 : 0,
  67. };
  68. int err;
  69. if (unlikely(!is_meta))
  70. fio.op_flags &= ~REQ_META;
  71. repeat:
  72. page = f2fs_grab_cache_page(mapping, index, false);
  73. if (!page) {
  74. cond_resched();
  75. goto repeat;
  76. }
  77. if (PageUptodate(page))
  78. goto out;
  79. fio.page = page;
  80. err = f2fs_submit_page_bio(&fio);
  81. if (err) {
  82. f2fs_put_page(page, 1);
  83. return ERR_PTR(err);
  84. }
  85. f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
  86. lock_page(page);
  87. if (unlikely(page->mapping != mapping)) {
  88. f2fs_put_page(page, 1);
  89. goto repeat;
  90. }
  91. if (unlikely(!PageUptodate(page))) {
  92. f2fs_handle_page_eio(sbi, page->index, META);
  93. f2fs_put_page(page, 1);
  94. return ERR_PTR(-EIO);
  95. }
  96. out:
  97. return page;
  98. }
  99. struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  100. {
  101. return __get_meta_page(sbi, index, true);
  102. }
  103. struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
  104. {
  105. struct page *page;
  106. int count = 0;
  107. retry:
  108. page = __get_meta_page(sbi, index, true);
  109. if (IS_ERR(page)) {
  110. if (PTR_ERR(page) == -EIO &&
  111. ++count <= DEFAULT_RETRY_IO_COUNT)
  112. goto retry;
  113. f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
  114. }
  115. return page;
  116. }
  117. /* for POR only */
  118. struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  119. {
  120. return __get_meta_page(sbi, index, false);
  121. }
  122. static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
  123. int type)
  124. {
  125. struct seg_entry *se;
  126. unsigned int segno, offset;
  127. bool exist;
  128. if (type == DATA_GENERIC)
  129. return true;
  130. segno = GET_SEGNO(sbi, blkaddr);
  131. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  132. se = get_seg_entry(sbi, segno);
  133. exist = f2fs_test_bit(offset, se->cur_valid_map);
  134. /* skip data, if we already have an error in checkpoint. */
  135. if (unlikely(f2fs_cp_error(sbi)))
  136. return exist;
  137. if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
  138. f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
  139. blkaddr, exist);
  140. set_sbi_flag(sbi, SBI_NEED_FSCK);
  141. return exist;
  142. }
  143. if (!exist && type == DATA_GENERIC_ENHANCE) {
  144. f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
  145. blkaddr, exist);
  146. set_sbi_flag(sbi, SBI_NEED_FSCK);
  147. dump_stack();
  148. }
  149. return exist;
  150. }
  151. static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
  152. block_t blkaddr, int type)
  153. {
  154. switch (type) {
  155. case META_NAT:
  156. break;
  157. case META_SIT:
  158. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  159. return false;
  160. break;
  161. case META_SSA:
  162. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  163. blkaddr < SM_I(sbi)->ssa_blkaddr))
  164. return false;
  165. break;
  166. case META_CP:
  167. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  168. blkaddr < __start_cp_addr(sbi)))
  169. return false;
  170. break;
  171. case META_POR:
  172. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  173. blkaddr < MAIN_BLKADDR(sbi)))
  174. return false;
  175. break;
  176. case DATA_GENERIC:
  177. case DATA_GENERIC_ENHANCE:
  178. case DATA_GENERIC_ENHANCE_READ:
  179. case DATA_GENERIC_ENHANCE_UPDATE:
  180. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  181. blkaddr < MAIN_BLKADDR(sbi))) {
  182. /* Skip to emit an error message. */
  183. if (unlikely(f2fs_cp_error(sbi)))
  184. return false;
  185. f2fs_warn(sbi, "access invalid blkaddr:%u",
  186. blkaddr);
  187. set_sbi_flag(sbi, SBI_NEED_FSCK);
  188. dump_stack();
  189. return false;
  190. } else {
  191. return __is_bitmap_valid(sbi, blkaddr, type);
  192. }
  193. break;
  194. case META_GENERIC:
  195. if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
  196. blkaddr >= MAIN_BLKADDR(sbi)))
  197. return false;
  198. break;
  199. default:
  200. BUG();
  201. }
  202. return true;
  203. }
  204. bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
  205. block_t blkaddr, int type)
  206. {
  207. if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
  208. return false;
  209. return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
  210. }
  211. bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
  212. block_t blkaddr, int type)
  213. {
  214. return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
  215. }
  216. /*
  217. * Readahead CP/NAT/SIT/SSA/POR pages
  218. */
  219. int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  220. int type, bool sync)
  221. {
  222. struct page *page;
  223. block_t blkno = start;
  224. struct f2fs_io_info fio = {
  225. .sbi = sbi,
  226. .type = META,
  227. .op = REQ_OP_READ,
  228. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  229. .encrypted_page = NULL,
  230. .in_list = 0,
  231. .is_por = (type == META_POR) ? 1 : 0,
  232. };
  233. struct blk_plug plug;
  234. int err;
  235. if (unlikely(type == META_POR))
  236. fio.op_flags &= ~REQ_META;
  237. blk_start_plug(&plug);
  238. for (; nrpages-- > 0; blkno++) {
  239. if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
  240. goto out;
  241. switch (type) {
  242. case META_NAT:
  243. if (unlikely(blkno >=
  244. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  245. blkno = 0;
  246. /* get nat block addr */
  247. fio.new_blkaddr = current_nat_addr(sbi,
  248. blkno * NAT_ENTRY_PER_BLOCK);
  249. break;
  250. case META_SIT:
  251. if (unlikely(blkno >= TOTAL_SEGS(sbi)))
  252. goto out;
  253. /* get sit block addr */
  254. fio.new_blkaddr = current_sit_addr(sbi,
  255. blkno * SIT_ENTRY_PER_BLOCK);
  256. break;
  257. case META_SSA:
  258. case META_CP:
  259. case META_POR:
  260. fio.new_blkaddr = blkno;
  261. break;
  262. default:
  263. BUG();
  264. }
  265. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  266. fio.new_blkaddr, false);
  267. if (!page)
  268. continue;
  269. if (PageUptodate(page)) {
  270. f2fs_put_page(page, 1);
  271. continue;
  272. }
  273. fio.page = page;
  274. err = f2fs_submit_page_bio(&fio);
  275. f2fs_put_page(page, err ? 1 : 0);
  276. if (!err)
  277. f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
  278. F2FS_BLKSIZE);
  279. }
  280. out:
  281. blk_finish_plug(&plug);
  282. return blkno - start;
  283. }
  284. void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
  285. unsigned int ra_blocks)
  286. {
  287. struct page *page;
  288. bool readahead = false;
  289. if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
  290. return;
  291. page = find_get_page(META_MAPPING(sbi), index);
  292. if (!page || !PageUptodate(page))
  293. readahead = true;
  294. f2fs_put_page(page, 0);
  295. if (readahead)
  296. f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
  297. }
  298. static int __f2fs_write_meta_page(struct page *page,
  299. struct writeback_control *wbc,
  300. enum iostat_type io_type)
  301. {
  302. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  303. trace_f2fs_writepage(page, META);
  304. if (unlikely(f2fs_cp_error(sbi))) {
  305. if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
  306. ClearPageUptodate(page);
  307. dec_page_count(sbi, F2FS_DIRTY_META);
  308. unlock_page(page);
  309. return 0;
  310. }
  311. goto redirty_out;
  312. }
  313. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  314. goto redirty_out;
  315. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  316. goto redirty_out;
  317. f2fs_do_write_meta_page(sbi, page, io_type);
  318. dec_page_count(sbi, F2FS_DIRTY_META);
  319. if (wbc->for_reclaim)
  320. f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
  321. unlock_page(page);
  322. if (unlikely(f2fs_cp_error(sbi)))
  323. f2fs_submit_merged_write(sbi, META);
  324. return 0;
  325. redirty_out:
  326. redirty_page_for_writepage(wbc, page);
  327. return AOP_WRITEPAGE_ACTIVATE;
  328. }
  329. static int f2fs_write_meta_page(struct page *page,
  330. struct writeback_control *wbc)
  331. {
  332. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  333. }
  334. static int f2fs_write_meta_pages(struct address_space *mapping,
  335. struct writeback_control *wbc)
  336. {
  337. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  338. long diff, written;
  339. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  340. goto skip_write;
  341. /* collect a number of dirty meta pages and write together */
  342. if (wbc->sync_mode != WB_SYNC_ALL &&
  343. get_pages(sbi, F2FS_DIRTY_META) <
  344. nr_pages_to_skip(sbi, META))
  345. goto skip_write;
  346. /* if locked failed, cp will flush dirty pages instead */
  347. if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
  348. goto skip_write;
  349. trace_f2fs_writepages(mapping->host, wbc, META);
  350. diff = nr_pages_to_write(sbi, META, wbc);
  351. written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  352. f2fs_up_write(&sbi->cp_global_sem);
  353. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  354. return 0;
  355. skip_write:
  356. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  357. trace_f2fs_writepages(mapping->host, wbc, META);
  358. return 0;
  359. }
  360. long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  361. long nr_to_write, enum iostat_type io_type)
  362. {
  363. struct address_space *mapping = META_MAPPING(sbi);
  364. pgoff_t index = 0, prev = ULONG_MAX;
  365. struct pagevec pvec;
  366. long nwritten = 0;
  367. int nr_pages;
  368. struct writeback_control wbc = {
  369. .for_reclaim = 0,
  370. };
  371. struct blk_plug plug;
  372. pagevec_init(&pvec);
  373. blk_start_plug(&plug);
  374. while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  375. PAGECACHE_TAG_DIRTY))) {
  376. int i;
  377. for (i = 0; i < nr_pages; i++) {
  378. struct page *page = pvec.pages[i];
  379. if (prev == ULONG_MAX)
  380. prev = page->index - 1;
  381. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  382. pagevec_release(&pvec);
  383. goto stop;
  384. }
  385. lock_page(page);
  386. if (unlikely(page->mapping != mapping)) {
  387. continue_unlock:
  388. unlock_page(page);
  389. continue;
  390. }
  391. if (!PageDirty(page)) {
  392. /* someone wrote it for us */
  393. goto continue_unlock;
  394. }
  395. f2fs_wait_on_page_writeback(page, META, true, true);
  396. if (!clear_page_dirty_for_io(page))
  397. goto continue_unlock;
  398. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  399. unlock_page(page);
  400. break;
  401. }
  402. nwritten++;
  403. prev = page->index;
  404. if (unlikely(nwritten >= nr_to_write))
  405. break;
  406. }
  407. pagevec_release(&pvec);
  408. cond_resched();
  409. }
  410. stop:
  411. if (nwritten)
  412. f2fs_submit_merged_write(sbi, type);
  413. blk_finish_plug(&plug);
  414. return nwritten;
  415. }
  416. static bool f2fs_dirty_meta_folio(struct address_space *mapping,
  417. struct folio *folio)
  418. {
  419. trace_f2fs_set_page_dirty(&folio->page, META);
  420. if (!folio_test_uptodate(folio))
  421. folio_mark_uptodate(folio);
  422. if (filemap_dirty_folio(mapping, folio)) {
  423. inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
  424. set_page_private_reference(&folio->page);
  425. return true;
  426. }
  427. return false;
  428. }
  429. const struct address_space_operations f2fs_meta_aops = {
  430. .writepage = f2fs_write_meta_page,
  431. .writepages = f2fs_write_meta_pages,
  432. .dirty_folio = f2fs_dirty_meta_folio,
  433. .invalidate_folio = f2fs_invalidate_folio,
  434. .release_folio = f2fs_release_folio,
  435. .migrate_folio = filemap_migrate_folio,
  436. };
  437. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
  438. unsigned int devidx, int type)
  439. {
  440. struct inode_management *im = &sbi->im[type];
  441. struct ino_entry *e = NULL, *new = NULL;
  442. if (type == FLUSH_INO) {
  443. rcu_read_lock();
  444. e = radix_tree_lookup(&im->ino_root, ino);
  445. rcu_read_unlock();
  446. }
  447. retry:
  448. if (!e)
  449. new = f2fs_kmem_cache_alloc(ino_entry_slab,
  450. GFP_NOFS, true, NULL);
  451. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  452. spin_lock(&im->ino_lock);
  453. e = radix_tree_lookup(&im->ino_root, ino);
  454. if (!e) {
  455. if (!new) {
  456. spin_unlock(&im->ino_lock);
  457. radix_tree_preload_end();
  458. goto retry;
  459. }
  460. e = new;
  461. if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
  462. f2fs_bug_on(sbi, 1);
  463. memset(e, 0, sizeof(struct ino_entry));
  464. e->ino = ino;
  465. list_add_tail(&e->list, &im->ino_list);
  466. if (type != ORPHAN_INO)
  467. im->ino_num++;
  468. }
  469. if (type == FLUSH_INO)
  470. f2fs_set_bit(devidx, (char *)&e->dirty_device);
  471. spin_unlock(&im->ino_lock);
  472. radix_tree_preload_end();
  473. if (new && e != new)
  474. kmem_cache_free(ino_entry_slab, new);
  475. }
  476. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  477. {
  478. struct inode_management *im = &sbi->im[type];
  479. struct ino_entry *e;
  480. spin_lock(&im->ino_lock);
  481. e = radix_tree_lookup(&im->ino_root, ino);
  482. if (e) {
  483. list_del(&e->list);
  484. radix_tree_delete(&im->ino_root, ino);
  485. im->ino_num--;
  486. spin_unlock(&im->ino_lock);
  487. kmem_cache_free(ino_entry_slab, e);
  488. return;
  489. }
  490. spin_unlock(&im->ino_lock);
  491. }
  492. void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  493. {
  494. /* add new dirty ino entry into list */
  495. __add_ino_entry(sbi, ino, 0, type);
  496. }
  497. void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  498. {
  499. /* remove dirty ino entry from list */
  500. __remove_ino_entry(sbi, ino, type);
  501. }
  502. /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
  503. bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  504. {
  505. struct inode_management *im = &sbi->im[mode];
  506. struct ino_entry *e;
  507. spin_lock(&im->ino_lock);
  508. e = radix_tree_lookup(&im->ino_root, ino);
  509. spin_unlock(&im->ino_lock);
  510. return e ? true : false;
  511. }
  512. void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  513. {
  514. struct ino_entry *e, *tmp;
  515. int i;
  516. for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
  517. struct inode_management *im = &sbi->im[i];
  518. spin_lock(&im->ino_lock);
  519. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  520. list_del(&e->list);
  521. radix_tree_delete(&im->ino_root, e->ino);
  522. kmem_cache_free(ino_entry_slab, e);
  523. im->ino_num--;
  524. }
  525. spin_unlock(&im->ino_lock);
  526. }
  527. }
  528. void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  529. unsigned int devidx, int type)
  530. {
  531. __add_ino_entry(sbi, ino, devidx, type);
  532. }
  533. bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  534. unsigned int devidx, int type)
  535. {
  536. struct inode_management *im = &sbi->im[type];
  537. struct ino_entry *e;
  538. bool is_dirty = false;
  539. spin_lock(&im->ino_lock);
  540. e = radix_tree_lookup(&im->ino_root, ino);
  541. if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
  542. is_dirty = true;
  543. spin_unlock(&im->ino_lock);
  544. return is_dirty;
  545. }
  546. int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
  547. {
  548. struct inode_management *im = &sbi->im[ORPHAN_INO];
  549. int err = 0;
  550. spin_lock(&im->ino_lock);
  551. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  552. spin_unlock(&im->ino_lock);
  553. return -ENOSPC;
  554. }
  555. if (unlikely(im->ino_num >= sbi->max_orphans))
  556. err = -ENOSPC;
  557. else
  558. im->ino_num++;
  559. spin_unlock(&im->ino_lock);
  560. return err;
  561. }
  562. void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
  563. {
  564. struct inode_management *im = &sbi->im[ORPHAN_INO];
  565. spin_lock(&im->ino_lock);
  566. f2fs_bug_on(sbi, im->ino_num == 0);
  567. im->ino_num--;
  568. spin_unlock(&im->ino_lock);
  569. }
  570. void f2fs_add_orphan_inode(struct inode *inode)
  571. {
  572. /* add new orphan ino entry into list */
  573. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
  574. f2fs_update_inode_page(inode);
  575. }
  576. void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  577. {
  578. /* remove orphan entry from orphan list */
  579. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  580. }
  581. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  582. {
  583. struct inode *inode;
  584. struct node_info ni;
  585. int err;
  586. inode = f2fs_iget_retry(sbi->sb, ino);
  587. if (IS_ERR(inode)) {
  588. /*
  589. * there should be a bug that we can't find the entry
  590. * to orphan inode.
  591. */
  592. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  593. return PTR_ERR(inode);
  594. }
  595. err = f2fs_dquot_initialize(inode);
  596. if (err) {
  597. iput(inode);
  598. goto err_out;
  599. }
  600. clear_nlink(inode);
  601. /* truncate all the data during iput */
  602. iput(inode);
  603. err = f2fs_get_node_info(sbi, ino, &ni, false);
  604. if (err)
  605. goto err_out;
  606. /* ENOMEM was fully retried in f2fs_evict_inode. */
  607. if (ni.blk_addr != NULL_ADDR) {
  608. err = -EIO;
  609. goto err_out;
  610. }
  611. return 0;
  612. err_out:
  613. set_sbi_flag(sbi, SBI_NEED_FSCK);
  614. f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
  615. __func__, ino);
  616. return err;
  617. }
  618. int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
  619. {
  620. block_t start_blk, orphan_blocks, i, j;
  621. int err = 0;
  622. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  623. return 0;
  624. if (f2fs_hw_is_readonly(sbi)) {
  625. f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
  626. return 0;
  627. }
  628. if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
  629. f2fs_info(sbi, "orphan cleanup on readonly fs");
  630. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  631. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  632. f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  633. for (i = 0; i < orphan_blocks; i++) {
  634. struct page *page;
  635. struct f2fs_orphan_block *orphan_blk;
  636. page = f2fs_get_meta_page(sbi, start_blk + i);
  637. if (IS_ERR(page)) {
  638. err = PTR_ERR(page);
  639. goto out;
  640. }
  641. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  642. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  643. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  644. err = recover_orphan_inode(sbi, ino);
  645. if (err) {
  646. f2fs_put_page(page, 1);
  647. goto out;
  648. }
  649. }
  650. f2fs_put_page(page, 1);
  651. }
  652. /* clear Orphan Flag */
  653. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  654. out:
  655. set_sbi_flag(sbi, SBI_IS_RECOVERED);
  656. return err;
  657. }
  658. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  659. {
  660. struct list_head *head;
  661. struct f2fs_orphan_block *orphan_blk = NULL;
  662. unsigned int nentries = 0;
  663. unsigned short index = 1;
  664. unsigned short orphan_blocks;
  665. struct page *page = NULL;
  666. struct ino_entry *orphan = NULL;
  667. struct inode_management *im = &sbi->im[ORPHAN_INO];
  668. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  669. /*
  670. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  671. * orphan inode operations are covered under f2fs_lock_op().
  672. * And, spin_lock should be avoided due to page operations below.
  673. */
  674. head = &im->ino_list;
  675. /* loop for each orphan inode entry and write them in journal block */
  676. list_for_each_entry(orphan, head, list) {
  677. if (!page) {
  678. page = f2fs_grab_meta_page(sbi, start_blk++);
  679. orphan_blk =
  680. (struct f2fs_orphan_block *)page_address(page);
  681. memset(orphan_blk, 0, sizeof(*orphan_blk));
  682. }
  683. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  684. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  685. /*
  686. * an orphan block is full of 1020 entries,
  687. * then we need to flush current orphan blocks
  688. * and bring another one in memory
  689. */
  690. orphan_blk->blk_addr = cpu_to_le16(index);
  691. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  692. orphan_blk->entry_count = cpu_to_le32(nentries);
  693. set_page_dirty(page);
  694. f2fs_put_page(page, 1);
  695. index++;
  696. nentries = 0;
  697. page = NULL;
  698. }
  699. }
  700. if (page) {
  701. orphan_blk->blk_addr = cpu_to_le16(index);
  702. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  703. orphan_blk->entry_count = cpu_to_le32(nentries);
  704. set_page_dirty(page);
  705. f2fs_put_page(page, 1);
  706. }
  707. }
  708. static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
  709. struct f2fs_checkpoint *ckpt)
  710. {
  711. unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
  712. __u32 chksum;
  713. chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
  714. if (chksum_ofs < CP_CHKSUM_OFFSET) {
  715. chksum_ofs += sizeof(chksum);
  716. chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
  717. F2FS_BLKSIZE - chksum_ofs);
  718. }
  719. return chksum;
  720. }
  721. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  722. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  723. unsigned long long *version)
  724. {
  725. size_t crc_offset = 0;
  726. __u32 crc;
  727. *cp_page = f2fs_get_meta_page(sbi, cp_addr);
  728. if (IS_ERR(*cp_page))
  729. return PTR_ERR(*cp_page);
  730. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  731. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  732. if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
  733. crc_offset > CP_CHKSUM_OFFSET) {
  734. f2fs_put_page(*cp_page, 1);
  735. f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
  736. return -EINVAL;
  737. }
  738. crc = f2fs_checkpoint_chksum(sbi, *cp_block);
  739. if (crc != cur_cp_crc(*cp_block)) {
  740. f2fs_put_page(*cp_page, 1);
  741. f2fs_warn(sbi, "invalid crc value");
  742. return -EINVAL;
  743. }
  744. *version = cur_cp_version(*cp_block);
  745. return 0;
  746. }
  747. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  748. block_t cp_addr, unsigned long long *version)
  749. {
  750. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  751. struct f2fs_checkpoint *cp_block = NULL;
  752. unsigned long long cur_version = 0, pre_version = 0;
  753. unsigned int cp_blocks;
  754. int err;
  755. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  756. &cp_page_1, version);
  757. if (err)
  758. return NULL;
  759. cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
  760. if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
  761. f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
  762. le32_to_cpu(cp_block->cp_pack_total_block_count));
  763. goto invalid_cp;
  764. }
  765. pre_version = *version;
  766. cp_addr += cp_blocks - 1;
  767. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  768. &cp_page_2, version);
  769. if (err)
  770. goto invalid_cp;
  771. cur_version = *version;
  772. if (cur_version == pre_version) {
  773. *version = cur_version;
  774. f2fs_put_page(cp_page_2, 1);
  775. return cp_page_1;
  776. }
  777. f2fs_put_page(cp_page_2, 1);
  778. invalid_cp:
  779. f2fs_put_page(cp_page_1, 1);
  780. return NULL;
  781. }
  782. int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
  783. {
  784. struct f2fs_checkpoint *cp_block;
  785. struct f2fs_super_block *fsb = sbi->raw_super;
  786. struct page *cp1, *cp2, *cur_page;
  787. unsigned long blk_size = sbi->blocksize;
  788. unsigned long long cp1_version = 0, cp2_version = 0;
  789. unsigned long long cp_start_blk_no;
  790. unsigned int cp_blks = 1 + __cp_payload(sbi);
  791. block_t cp_blk_no;
  792. int i;
  793. int err;
  794. sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
  795. GFP_KERNEL);
  796. if (!sbi->ckpt)
  797. return -ENOMEM;
  798. /*
  799. * Finding out valid cp block involves read both
  800. * sets( cp pack 1 and cp pack 2)
  801. */
  802. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  803. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  804. /* The second checkpoint pack should start at the next segment */
  805. cp_start_blk_no += ((unsigned long long)1) <<
  806. le32_to_cpu(fsb->log_blocks_per_seg);
  807. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  808. if (cp1 && cp2) {
  809. if (ver_after(cp2_version, cp1_version))
  810. cur_page = cp2;
  811. else
  812. cur_page = cp1;
  813. } else if (cp1) {
  814. cur_page = cp1;
  815. } else if (cp2) {
  816. cur_page = cp2;
  817. } else {
  818. err = -EFSCORRUPTED;
  819. goto fail_no_cp;
  820. }
  821. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  822. memcpy(sbi->ckpt, cp_block, blk_size);
  823. if (cur_page == cp1)
  824. sbi->cur_cp_pack = 1;
  825. else
  826. sbi->cur_cp_pack = 2;
  827. /* Sanity checking of checkpoint */
  828. if (f2fs_sanity_check_ckpt(sbi)) {
  829. err = -EFSCORRUPTED;
  830. goto free_fail_no_cp;
  831. }
  832. if (cp_blks <= 1)
  833. goto done;
  834. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  835. if (cur_page == cp2)
  836. cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
  837. for (i = 1; i < cp_blks; i++) {
  838. void *sit_bitmap_ptr;
  839. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  840. cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
  841. if (IS_ERR(cur_page)) {
  842. err = PTR_ERR(cur_page);
  843. goto free_fail_no_cp;
  844. }
  845. sit_bitmap_ptr = page_address(cur_page);
  846. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  847. f2fs_put_page(cur_page, 1);
  848. }
  849. done:
  850. f2fs_put_page(cp1, 1);
  851. f2fs_put_page(cp2, 1);
  852. return 0;
  853. free_fail_no_cp:
  854. f2fs_put_page(cp1, 1);
  855. f2fs_put_page(cp2, 1);
  856. fail_no_cp:
  857. kvfree(sbi->ckpt);
  858. return err;
  859. }
  860. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  861. {
  862. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  863. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  864. if (is_inode_flag_set(inode, flag))
  865. return;
  866. set_inode_flag(inode, flag);
  867. list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
  868. stat_inc_dirty_inode(sbi, type);
  869. }
  870. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  871. {
  872. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  873. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  874. return;
  875. list_del_init(&F2FS_I(inode)->dirty_list);
  876. clear_inode_flag(inode, flag);
  877. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  878. }
  879. void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
  880. {
  881. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  882. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  883. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  884. !S_ISLNK(inode->i_mode))
  885. return;
  886. spin_lock(&sbi->inode_lock[type]);
  887. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  888. __add_dirty_inode(inode, type);
  889. inode_inc_dirty_pages(inode);
  890. spin_unlock(&sbi->inode_lock[type]);
  891. set_page_private_reference(&folio->page);
  892. }
  893. void f2fs_remove_dirty_inode(struct inode *inode)
  894. {
  895. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  896. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  897. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  898. !S_ISLNK(inode->i_mode))
  899. return;
  900. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  901. return;
  902. spin_lock(&sbi->inode_lock[type]);
  903. __remove_dirty_inode(inode, type);
  904. spin_unlock(&sbi->inode_lock[type]);
  905. }
  906. int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
  907. bool from_cp)
  908. {
  909. struct list_head *head;
  910. struct inode *inode;
  911. struct f2fs_inode_info *fi;
  912. bool is_dir = (type == DIR_INODE);
  913. unsigned long ino = 0;
  914. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  915. get_pages(sbi, is_dir ?
  916. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  917. retry:
  918. if (unlikely(f2fs_cp_error(sbi))) {
  919. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  920. get_pages(sbi, is_dir ?
  921. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  922. return -EIO;
  923. }
  924. spin_lock(&sbi->inode_lock[type]);
  925. head = &sbi->inode_list[type];
  926. if (list_empty(head)) {
  927. spin_unlock(&sbi->inode_lock[type]);
  928. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  929. get_pages(sbi, is_dir ?
  930. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  931. return 0;
  932. }
  933. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  934. inode = igrab(&fi->vfs_inode);
  935. spin_unlock(&sbi->inode_lock[type]);
  936. if (inode) {
  937. unsigned long cur_ino = inode->i_ino;
  938. if (from_cp)
  939. F2FS_I(inode)->cp_task = current;
  940. F2FS_I(inode)->wb_task = current;
  941. filemap_fdatawrite(inode->i_mapping);
  942. F2FS_I(inode)->wb_task = NULL;
  943. if (from_cp)
  944. F2FS_I(inode)->cp_task = NULL;
  945. iput(inode);
  946. /* We need to give cpu to another writers. */
  947. if (ino == cur_ino)
  948. cond_resched();
  949. else
  950. ino = cur_ino;
  951. } else {
  952. /*
  953. * We should submit bio, since it exists several
  954. * writebacking dentry pages in the freeing inode.
  955. */
  956. f2fs_submit_merged_write(sbi, DATA);
  957. cond_resched();
  958. }
  959. goto retry;
  960. }
  961. static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  962. {
  963. struct list_head *head = &sbi->inode_list[DIRTY_META];
  964. struct inode *inode;
  965. struct f2fs_inode_info *fi;
  966. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  967. while (total--) {
  968. if (unlikely(f2fs_cp_error(sbi)))
  969. return -EIO;
  970. spin_lock(&sbi->inode_lock[DIRTY_META]);
  971. if (list_empty(head)) {
  972. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  973. return 0;
  974. }
  975. fi = list_first_entry(head, struct f2fs_inode_info,
  976. gdirty_list);
  977. inode = igrab(&fi->vfs_inode);
  978. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  979. if (inode) {
  980. sync_inode_metadata(inode, 0);
  981. /* it's on eviction */
  982. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  983. f2fs_update_inode_page(inode);
  984. iput(inode);
  985. }
  986. }
  987. return 0;
  988. }
  989. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  990. {
  991. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  992. struct f2fs_nm_info *nm_i = NM_I(sbi);
  993. nid_t last_nid = nm_i->next_scan_nid;
  994. next_free_nid(sbi, &last_nid);
  995. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  996. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  997. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  998. ckpt->next_free_nid = cpu_to_le32(last_nid);
  999. }
  1000. static bool __need_flush_quota(struct f2fs_sb_info *sbi)
  1001. {
  1002. bool ret = false;
  1003. if (!is_journalled_quota(sbi))
  1004. return false;
  1005. if (!f2fs_down_write_trylock(&sbi->quota_sem))
  1006. return true;
  1007. if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
  1008. ret = false;
  1009. } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
  1010. ret = false;
  1011. } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
  1012. clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
  1013. ret = true;
  1014. } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
  1015. ret = true;
  1016. }
  1017. f2fs_up_write(&sbi->quota_sem);
  1018. return ret;
  1019. }
  1020. /*
  1021. * Freeze all the FS-operations for checkpoint.
  1022. */
  1023. static int block_operations(struct f2fs_sb_info *sbi)
  1024. {
  1025. struct writeback_control wbc = {
  1026. .sync_mode = WB_SYNC_ALL,
  1027. .nr_to_write = LONG_MAX,
  1028. .for_reclaim = 0,
  1029. };
  1030. int err = 0, cnt = 0;
  1031. /*
  1032. * Let's flush inline_data in dirty node pages.
  1033. */
  1034. f2fs_flush_inline_data(sbi);
  1035. retry_flush_quotas:
  1036. f2fs_lock_all(sbi);
  1037. if (__need_flush_quota(sbi)) {
  1038. int locked;
  1039. if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
  1040. set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
  1041. set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
  1042. goto retry_flush_dents;
  1043. }
  1044. f2fs_unlock_all(sbi);
  1045. /* only failed during mount/umount/freeze/quotactl */
  1046. locked = down_read_trylock(&sbi->sb->s_umount);
  1047. f2fs_quota_sync(sbi->sb, -1);
  1048. if (locked)
  1049. up_read(&sbi->sb->s_umount);
  1050. cond_resched();
  1051. goto retry_flush_quotas;
  1052. }
  1053. retry_flush_dents:
  1054. /* write all the dirty dentry pages */
  1055. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  1056. f2fs_unlock_all(sbi);
  1057. err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
  1058. if (err)
  1059. return err;
  1060. cond_resched();
  1061. goto retry_flush_quotas;
  1062. }
  1063. /*
  1064. * POR: we should ensure that there are no dirty node pages
  1065. * until finishing nat/sit flush. inode->i_blocks can be updated.
  1066. */
  1067. f2fs_down_write(&sbi->node_change);
  1068. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  1069. f2fs_up_write(&sbi->node_change);
  1070. f2fs_unlock_all(sbi);
  1071. err = f2fs_sync_inode_meta(sbi);
  1072. if (err)
  1073. return err;
  1074. cond_resched();
  1075. goto retry_flush_quotas;
  1076. }
  1077. retry_flush_nodes:
  1078. f2fs_down_write(&sbi->node_write);
  1079. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  1080. f2fs_up_write(&sbi->node_write);
  1081. atomic_inc(&sbi->wb_sync_req[NODE]);
  1082. err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  1083. atomic_dec(&sbi->wb_sync_req[NODE]);
  1084. if (err) {
  1085. f2fs_up_write(&sbi->node_change);
  1086. f2fs_unlock_all(sbi);
  1087. return err;
  1088. }
  1089. cond_resched();
  1090. goto retry_flush_nodes;
  1091. }
  1092. /*
  1093. * sbi->node_change is used only for AIO write_begin path which produces
  1094. * dirty node blocks and some checkpoint values by block allocation.
  1095. */
  1096. __prepare_cp_block(sbi);
  1097. f2fs_up_write(&sbi->node_change);
  1098. return err;
  1099. }
  1100. static void unblock_operations(struct f2fs_sb_info *sbi)
  1101. {
  1102. f2fs_up_write(&sbi->node_write);
  1103. f2fs_unlock_all(sbi);
  1104. }
  1105. void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
  1106. {
  1107. DEFINE_WAIT(wait);
  1108. for (;;) {
  1109. if (!get_pages(sbi, type))
  1110. break;
  1111. if (unlikely(f2fs_cp_error(sbi) &&
  1112. !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
  1113. break;
  1114. if (type == F2FS_DIRTY_META)
  1115. f2fs_sync_meta_pages(sbi, META, LONG_MAX,
  1116. FS_CP_META_IO);
  1117. else if (type == F2FS_WB_CP_DATA)
  1118. f2fs_submit_merged_write(sbi, DATA);
  1119. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  1120. io_schedule_timeout(DEFAULT_IO_TIMEOUT);
  1121. }
  1122. finish_wait(&sbi->cp_wait, &wait);
  1123. }
  1124. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1125. {
  1126. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  1127. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1128. unsigned long flags;
  1129. if (cpc->reason & CP_UMOUNT) {
  1130. if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
  1131. NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
  1132. clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
  1133. f2fs_notice(sbi, "Disable nat_bits due to no space");
  1134. } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
  1135. f2fs_nat_bitmap_enabled(sbi)) {
  1136. f2fs_enable_nat_bits(sbi);
  1137. set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
  1138. f2fs_notice(sbi, "Rebuild and enable nat_bits");
  1139. }
  1140. }
  1141. spin_lock_irqsave(&sbi->cp_lock, flags);
  1142. if (cpc->reason & CP_TRIMMED)
  1143. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  1144. else
  1145. __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  1146. if (cpc->reason & CP_UMOUNT)
  1147. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  1148. else
  1149. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  1150. if (cpc->reason & CP_FASTBOOT)
  1151. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  1152. else
  1153. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  1154. if (orphan_num)
  1155. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  1156. else
  1157. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  1158. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  1159. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  1160. if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
  1161. __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
  1162. else
  1163. __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
  1164. if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
  1165. __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
  1166. else
  1167. __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
  1168. if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
  1169. __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
  1170. else
  1171. __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
  1172. if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
  1173. __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
  1174. else
  1175. __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
  1176. if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
  1177. __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
  1178. /* set this flag to activate crc|cp_ver for recovery */
  1179. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  1180. __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
  1181. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1182. }
  1183. static void commit_checkpoint(struct f2fs_sb_info *sbi,
  1184. void *src, block_t blk_addr)
  1185. {
  1186. struct writeback_control wbc = {
  1187. .for_reclaim = 0,
  1188. };
  1189. /*
  1190. * pagevec_lookup_tag and lock_page again will take
  1191. * some extra time. Therefore, f2fs_update_meta_pages and
  1192. * f2fs_sync_meta_pages are combined in this function.
  1193. */
  1194. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1195. int err;
  1196. f2fs_wait_on_page_writeback(page, META, true, true);
  1197. memcpy(page_address(page), src, PAGE_SIZE);
  1198. set_page_dirty(page);
  1199. if (unlikely(!clear_page_dirty_for_io(page)))
  1200. f2fs_bug_on(sbi, 1);
  1201. /* writeout cp pack 2 page */
  1202. err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
  1203. if (unlikely(err && f2fs_cp_error(sbi))) {
  1204. f2fs_put_page(page, 1);
  1205. return;
  1206. }
  1207. f2fs_bug_on(sbi, err);
  1208. f2fs_put_page(page, 0);
  1209. /* submit checkpoint (with barrier if NOBARRIER is not set) */
  1210. f2fs_submit_merged_write(sbi, META_FLUSH);
  1211. }
  1212. static inline u64 get_sectors_written(struct block_device *bdev)
  1213. {
  1214. return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
  1215. }
  1216. u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
  1217. {
  1218. if (f2fs_is_multi_device(sbi)) {
  1219. u64 sectors = 0;
  1220. int i;
  1221. for (i = 0; i < sbi->s_ndevs; i++)
  1222. sectors += get_sectors_written(FDEV(i).bdev);
  1223. return sectors;
  1224. }
  1225. return get_sectors_written(sbi->sb->s_bdev);
  1226. }
  1227. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1228. {
  1229. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1230. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1231. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  1232. block_t start_blk;
  1233. unsigned int data_sum_blocks, orphan_blocks;
  1234. __u32 crc32 = 0;
  1235. int i;
  1236. int cp_payload_blks = __cp_payload(sbi);
  1237. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  1238. u64 kbytes_written;
  1239. int err;
  1240. /* Flush all the NAT/SIT pages */
  1241. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1242. /* start to update checkpoint, cp ver is already updated previously */
  1243. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
  1244. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  1245. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  1246. struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
  1247. ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
  1248. ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
  1249. ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
  1250. }
  1251. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  1252. struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
  1253. ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
  1254. ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
  1255. ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
  1256. }
  1257. /* 2 cp + n data seg summary + orphan inode blocks */
  1258. data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
  1259. spin_lock_irqsave(&sbi->cp_lock, flags);
  1260. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1261. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1262. else
  1263. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1264. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1265. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1266. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1267. orphan_blocks);
  1268. if (__remain_node_summaries(cpc->reason))
  1269. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1270. cp_payload_blks + data_sum_blocks +
  1271. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1272. else
  1273. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1274. cp_payload_blks + data_sum_blocks +
  1275. orphan_blocks);
  1276. /* update ckpt flag for checkpoint */
  1277. update_ckpt_flags(sbi, cpc);
  1278. /* update SIT/NAT bitmap */
  1279. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1280. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1281. crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
  1282. *((__le32 *)((unsigned char *)ckpt +
  1283. le32_to_cpu(ckpt->checksum_offset)))
  1284. = cpu_to_le32(crc32);
  1285. start_blk = __start_cp_next_addr(sbi);
  1286. /* write nat bits */
  1287. if ((cpc->reason & CP_UMOUNT) &&
  1288. is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
  1289. __u64 cp_ver = cur_cp_version(ckpt);
  1290. block_t blk;
  1291. cp_ver |= ((__u64)crc32 << 32);
  1292. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1293. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1294. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1295. f2fs_update_meta_page(sbi, nm_i->nat_bits +
  1296. (i << F2FS_BLKSIZE_BITS), blk + i);
  1297. }
  1298. /* write out checkpoint buffer at block 0 */
  1299. f2fs_update_meta_page(sbi, ckpt, start_blk++);
  1300. for (i = 1; i < 1 + cp_payload_blks; i++)
  1301. f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1302. start_blk++);
  1303. if (orphan_num) {
  1304. write_orphan_inodes(sbi, start_blk);
  1305. start_blk += orphan_blocks;
  1306. }
  1307. f2fs_write_data_summaries(sbi, start_blk);
  1308. start_blk += data_sum_blocks;
  1309. /* Record write statistics in the hot node summary */
  1310. kbytes_written = sbi->kbytes_written;
  1311. kbytes_written += (f2fs_get_sectors_written(sbi) -
  1312. sbi->sectors_written_start) >> 1;
  1313. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1314. if (__remain_node_summaries(cpc->reason)) {
  1315. f2fs_write_node_summaries(sbi, start_blk);
  1316. start_blk += NR_CURSEG_NODE_TYPE;
  1317. }
  1318. /* update user_block_counts */
  1319. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1320. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1321. percpu_counter_set(&sbi->rf_node_block_count, 0);
  1322. /* Here, we have one bio having CP pack except cp pack 2 page */
  1323. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1324. /* Wait for all dirty meta pages to be submitted for IO */
  1325. f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
  1326. /* wait for previous submitted meta pages writeback */
  1327. f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
  1328. /* flush all device cache */
  1329. err = f2fs_flush_device_cache(sbi);
  1330. if (err)
  1331. return err;
  1332. /* barrier and flush checkpoint cp pack 2 page if it can */
  1333. commit_checkpoint(sbi, ckpt, start_blk);
  1334. f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
  1335. /*
  1336. * invalidate intermediate page cache borrowed from meta inode which are
  1337. * used for migration of encrypted, verity or compressed inode's blocks.
  1338. */
  1339. if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
  1340. f2fs_sb_has_compression(sbi))
  1341. invalidate_mapping_pages(META_MAPPING(sbi),
  1342. MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
  1343. f2fs_release_ino_entry(sbi, false);
  1344. f2fs_reset_fsync_node_info(sbi);
  1345. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1346. clear_sbi_flag(sbi, SBI_NEED_CP);
  1347. clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
  1348. spin_lock(&sbi->stat_lock);
  1349. sbi->unusable_block_count = 0;
  1350. spin_unlock(&sbi->stat_lock);
  1351. __set_cp_next_pack(sbi);
  1352. /*
  1353. * redirty superblock if metadata like node page or inode cache is
  1354. * updated during writing checkpoint.
  1355. */
  1356. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1357. get_pages(sbi, F2FS_DIRTY_IMETA))
  1358. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1359. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1360. return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
  1361. }
  1362. int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1363. {
  1364. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1365. unsigned long long ckpt_ver;
  1366. int err = 0;
  1367. if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
  1368. return -EROFS;
  1369. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
  1370. if (cpc->reason != CP_PAUSE)
  1371. return 0;
  1372. f2fs_warn(sbi, "Start checkpoint disabled!");
  1373. }
  1374. if (cpc->reason != CP_RESIZE)
  1375. f2fs_down_write(&sbi->cp_global_sem);
  1376. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1377. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1378. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1379. goto out;
  1380. if (unlikely(f2fs_cp_error(sbi))) {
  1381. err = -EIO;
  1382. goto out;
  1383. }
  1384. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1385. err = block_operations(sbi);
  1386. if (err)
  1387. goto out;
  1388. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1389. f2fs_flush_merged_writes(sbi);
  1390. /* this is the case of multiple fstrims without any changes */
  1391. if (cpc->reason & CP_DISCARD) {
  1392. if (!f2fs_exist_trim_candidates(sbi, cpc)) {
  1393. unblock_operations(sbi);
  1394. goto out;
  1395. }
  1396. if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
  1397. SIT_I(sbi)->dirty_sentries == 0 &&
  1398. prefree_segments(sbi) == 0) {
  1399. f2fs_flush_sit_entries(sbi, cpc);
  1400. f2fs_clear_prefree_segments(sbi, cpc);
  1401. unblock_operations(sbi);
  1402. goto out;
  1403. }
  1404. }
  1405. /*
  1406. * update checkpoint pack index
  1407. * Increase the version number so that
  1408. * SIT entries and seg summaries are written at correct place
  1409. */
  1410. ckpt_ver = cur_cp_version(ckpt);
  1411. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1412. /* write cached NAT/SIT entries to NAT/SIT area */
  1413. err = f2fs_flush_nat_entries(sbi, cpc);
  1414. if (err) {
  1415. f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
  1416. f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
  1417. goto stop;
  1418. }
  1419. f2fs_flush_sit_entries(sbi, cpc);
  1420. /* save inmem log status */
  1421. f2fs_save_inmem_curseg(sbi);
  1422. err = do_checkpoint(sbi, cpc);
  1423. if (err) {
  1424. f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
  1425. f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
  1426. f2fs_release_discard_addrs(sbi);
  1427. } else {
  1428. f2fs_clear_prefree_segments(sbi, cpc);
  1429. }
  1430. f2fs_restore_inmem_curseg(sbi);
  1431. stop:
  1432. unblock_operations(sbi);
  1433. stat_inc_cp_count(sbi->stat_info);
  1434. if (cpc->reason & CP_RECOVERY)
  1435. f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
  1436. /* update CP_TIME to trigger checkpoint periodically */
  1437. f2fs_update_time(sbi, CP_TIME);
  1438. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1439. out:
  1440. if (cpc->reason != CP_RESIZE)
  1441. f2fs_up_write(&sbi->cp_global_sem);
  1442. return err;
  1443. }
  1444. void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
  1445. {
  1446. int i;
  1447. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1448. struct inode_management *im = &sbi->im[i];
  1449. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1450. spin_lock_init(&im->ino_lock);
  1451. INIT_LIST_HEAD(&im->ino_list);
  1452. im->ino_num = 0;
  1453. }
  1454. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1455. NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
  1456. F2FS_ORPHANS_PER_BLOCK;
  1457. }
  1458. int __init f2fs_create_checkpoint_caches(void)
  1459. {
  1460. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1461. sizeof(struct ino_entry));
  1462. if (!ino_entry_slab)
  1463. return -ENOMEM;
  1464. f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1465. sizeof(struct inode_entry));
  1466. if (!f2fs_inode_entry_slab) {
  1467. kmem_cache_destroy(ino_entry_slab);
  1468. return -ENOMEM;
  1469. }
  1470. return 0;
  1471. }
  1472. void f2fs_destroy_checkpoint_caches(void)
  1473. {
  1474. kmem_cache_destroy(ino_entry_slab);
  1475. kmem_cache_destroy(f2fs_inode_entry_slab);
  1476. }
  1477. static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
  1478. {
  1479. struct cp_control cpc = { .reason = CP_SYNC, };
  1480. int err;
  1481. f2fs_down_write(&sbi->gc_lock);
  1482. err = f2fs_write_checkpoint(sbi, &cpc);
  1483. f2fs_up_write(&sbi->gc_lock);
  1484. return err;
  1485. }
  1486. static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
  1487. {
  1488. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1489. struct ckpt_req *req, *next;
  1490. struct llist_node *dispatch_list;
  1491. u64 sum_diff = 0, diff, count = 0;
  1492. int ret;
  1493. dispatch_list = llist_del_all(&cprc->issue_list);
  1494. if (!dispatch_list)
  1495. return;
  1496. dispatch_list = llist_reverse_order(dispatch_list);
  1497. ret = __write_checkpoint_sync(sbi);
  1498. atomic_inc(&cprc->issued_ckpt);
  1499. llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
  1500. diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
  1501. req->ret = ret;
  1502. complete(&req->wait);
  1503. sum_diff += diff;
  1504. count++;
  1505. }
  1506. atomic_sub(count, &cprc->queued_ckpt);
  1507. atomic_add(count, &cprc->total_ckpt);
  1508. spin_lock(&cprc->stat_lock);
  1509. cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
  1510. if (cprc->peak_time < cprc->cur_time)
  1511. cprc->peak_time = cprc->cur_time;
  1512. spin_unlock(&cprc->stat_lock);
  1513. }
  1514. static int issue_checkpoint_thread(void *data)
  1515. {
  1516. struct f2fs_sb_info *sbi = data;
  1517. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1518. wait_queue_head_t *q = &cprc->ckpt_wait_queue;
  1519. repeat:
  1520. if (kthread_should_stop())
  1521. return 0;
  1522. if (!llist_empty(&cprc->issue_list))
  1523. __checkpoint_and_complete_reqs(sbi);
  1524. wait_event_interruptible(*q,
  1525. kthread_should_stop() || !llist_empty(&cprc->issue_list));
  1526. goto repeat;
  1527. }
  1528. static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
  1529. struct ckpt_req *wait_req)
  1530. {
  1531. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1532. if (!llist_empty(&cprc->issue_list)) {
  1533. __checkpoint_and_complete_reqs(sbi);
  1534. } else {
  1535. /* already dispatched by issue_checkpoint_thread */
  1536. if (wait_req)
  1537. wait_for_completion(&wait_req->wait);
  1538. }
  1539. }
  1540. static void init_ckpt_req(struct ckpt_req *req)
  1541. {
  1542. memset(req, 0, sizeof(struct ckpt_req));
  1543. init_completion(&req->wait);
  1544. req->queue_time = ktime_get();
  1545. }
  1546. int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
  1547. {
  1548. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1549. struct ckpt_req req;
  1550. struct cp_control cpc;
  1551. cpc.reason = __get_cp_reason(sbi);
  1552. if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
  1553. int ret;
  1554. f2fs_down_write(&sbi->gc_lock);
  1555. ret = f2fs_write_checkpoint(sbi, &cpc);
  1556. f2fs_up_write(&sbi->gc_lock);
  1557. return ret;
  1558. }
  1559. if (!cprc->f2fs_issue_ckpt)
  1560. return __write_checkpoint_sync(sbi);
  1561. init_ckpt_req(&req);
  1562. llist_add(&req.llnode, &cprc->issue_list);
  1563. atomic_inc(&cprc->queued_ckpt);
  1564. /*
  1565. * update issue_list before we wake up issue_checkpoint thread,
  1566. * this smp_mb() pairs with another barrier in ___wait_event(),
  1567. * see more details in comments of waitqueue_active().
  1568. */
  1569. smp_mb();
  1570. if (waitqueue_active(&cprc->ckpt_wait_queue))
  1571. wake_up(&cprc->ckpt_wait_queue);
  1572. if (cprc->f2fs_issue_ckpt)
  1573. wait_for_completion(&req.wait);
  1574. else
  1575. flush_remained_ckpt_reqs(sbi, &req);
  1576. return req.ret;
  1577. }
  1578. int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
  1579. {
  1580. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1581. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1582. if (cprc->f2fs_issue_ckpt)
  1583. return 0;
  1584. cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
  1585. "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
  1586. if (IS_ERR(cprc->f2fs_issue_ckpt)) {
  1587. int err = PTR_ERR(cprc->f2fs_issue_ckpt);
  1588. cprc->f2fs_issue_ckpt = NULL;
  1589. return err;
  1590. }
  1591. set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
  1592. return 0;
  1593. }
  1594. void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
  1595. {
  1596. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1597. struct task_struct *ckpt_task;
  1598. if (!cprc->f2fs_issue_ckpt)
  1599. return;
  1600. ckpt_task = cprc->f2fs_issue_ckpt;
  1601. cprc->f2fs_issue_ckpt = NULL;
  1602. kthread_stop(ckpt_task);
  1603. f2fs_flush_ckpt_thread(sbi);
  1604. }
  1605. void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
  1606. {
  1607. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1608. flush_remained_ckpt_reqs(sbi, NULL);
  1609. /* Let's wait for the previous dispatched checkpoint. */
  1610. while (atomic_read(&cprc->queued_ckpt))
  1611. io_schedule_timeout(DEFAULT_IO_TIMEOUT);
  1612. }
  1613. void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
  1614. {
  1615. struct ckpt_req_control *cprc = &sbi->cprc_info;
  1616. atomic_set(&cprc->issued_ckpt, 0);
  1617. atomic_set(&cprc->total_ckpt, 0);
  1618. atomic_set(&cprc->queued_ckpt, 0);
  1619. cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
  1620. init_waitqueue_head(&cprc->ckpt_wait_queue);
  1621. init_llist_head(&cprc->issue_list);
  1622. spin_lock_init(&cprc->stat_lock);
  1623. }