mtu3_qmu.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * mtu3_qmu.c - Queue Management Unit driver for device controller
  4. *
  5. * Copyright (C) 2016 MediaTek Inc.
  6. *
  7. * Author: Chunfeng Yun <[email protected]>
  8. */
  9. /*
  10. * Queue Management Unit (QMU) is designed to unload SW effort
  11. * to serve DMA interrupts.
  12. * By preparing General Purpose Descriptor (GPD) and Buffer Descriptor (BD),
  13. * SW links data buffers and triggers QMU to send / receive data to
  14. * host / from device at a time.
  15. * And now only GPD is supported.
  16. *
  17. * For more detailed information, please refer to QMU Programming Guide
  18. */
  19. #include <linux/dmapool.h>
  20. #include <linux/iopoll.h>
  21. #include "mtu3.h"
  22. #include "mtu3_trace.h"
  23. #define QMU_CHECKSUM_LEN 16
  24. #define GPD_FLAGS_HWO BIT(0)
  25. #define GPD_FLAGS_BDP BIT(1)
  26. #define GPD_FLAGS_BPS BIT(2)
  27. #define GPD_FLAGS_ZLP BIT(6)
  28. #define GPD_FLAGS_IOC BIT(7)
  29. #define GET_GPD_HWO(gpd) (le32_to_cpu((gpd)->dw0_info) & GPD_FLAGS_HWO)
  30. #define GPD_RX_BUF_LEN_OG(x) (((x) & 0xffff) << 16)
  31. #define GPD_RX_BUF_LEN_EL(x) (((x) & 0xfffff) << 12)
  32. #define GPD_RX_BUF_LEN(mtu, x) \
  33. ({ \
  34. typeof(x) x_ = (x); \
  35. ((mtu)->gen2cp) ? GPD_RX_BUF_LEN_EL(x_) : GPD_RX_BUF_LEN_OG(x_); \
  36. })
  37. #define GPD_DATA_LEN_OG(x) ((x) & 0xffff)
  38. #define GPD_DATA_LEN_EL(x) ((x) & 0xfffff)
  39. #define GPD_DATA_LEN(mtu, x) \
  40. ({ \
  41. typeof(x) x_ = (x); \
  42. ((mtu)->gen2cp) ? GPD_DATA_LEN_EL(x_) : GPD_DATA_LEN_OG(x_); \
  43. })
  44. #define GPD_EXT_FLAG_ZLP BIT(29)
  45. #define GPD_EXT_NGP_OG(x) (((x) & 0xf) << 20)
  46. #define GPD_EXT_BUF_OG(x) (((x) & 0xf) << 16)
  47. #define GPD_EXT_NGP_EL(x) (((x) & 0xf) << 28)
  48. #define GPD_EXT_BUF_EL(x) (((x) & 0xf) << 24)
  49. #define GPD_EXT_NGP(mtu, x) \
  50. ({ \
  51. typeof(x) x_ = (x); \
  52. ((mtu)->gen2cp) ? GPD_EXT_NGP_EL(x_) : GPD_EXT_NGP_OG(x_); \
  53. })
  54. #define GPD_EXT_BUF(mtu, x) \
  55. ({ \
  56. typeof(x) x_ = (x); \
  57. ((mtu)->gen2cp) ? GPD_EXT_BUF_EL(x_) : GPD_EXT_BUF_OG(x_); \
  58. })
  59. #define HILO_GEN64(hi, lo) (((u64)(hi) << 32) + (lo))
  60. #define HILO_DMA(hi, lo) \
  61. ((dma_addr_t)HILO_GEN64((le32_to_cpu(hi)), (le32_to_cpu(lo))))
  62. static dma_addr_t read_txq_cur_addr(void __iomem *mbase, u8 epnum)
  63. {
  64. u32 txcpr;
  65. u32 txhiar;
  66. txcpr = mtu3_readl(mbase, USB_QMU_TQCPR(epnum));
  67. txhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum));
  68. return HILO_DMA(QMU_CUR_GPD_ADDR_HI(txhiar), txcpr);
  69. }
  70. static dma_addr_t read_rxq_cur_addr(void __iomem *mbase, u8 epnum)
  71. {
  72. u32 rxcpr;
  73. u32 rxhiar;
  74. rxcpr = mtu3_readl(mbase, USB_QMU_RQCPR(epnum));
  75. rxhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum));
  76. return HILO_DMA(QMU_CUR_GPD_ADDR_HI(rxhiar), rxcpr);
  77. }
  78. static void write_txq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma)
  79. {
  80. u32 tqhiar;
  81. mtu3_writel(mbase, USB_QMU_TQSAR(epnum),
  82. cpu_to_le32(lower_32_bits(dma)));
  83. tqhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum));
  84. tqhiar &= ~QMU_START_ADDR_HI_MSK;
  85. tqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma));
  86. mtu3_writel(mbase, USB_QMU_TQHIAR(epnum), tqhiar);
  87. }
  88. static void write_rxq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma)
  89. {
  90. u32 rqhiar;
  91. mtu3_writel(mbase, USB_QMU_RQSAR(epnum),
  92. cpu_to_le32(lower_32_bits(dma)));
  93. rqhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum));
  94. rqhiar &= ~QMU_START_ADDR_HI_MSK;
  95. rqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma));
  96. mtu3_writel(mbase, USB_QMU_RQHIAR(epnum), rqhiar);
  97. }
  98. static struct qmu_gpd *gpd_dma_to_virt(struct mtu3_gpd_ring *ring,
  99. dma_addr_t dma_addr)
  100. {
  101. dma_addr_t dma_base = ring->dma;
  102. struct qmu_gpd *gpd_head = ring->start;
  103. u32 offset = (dma_addr - dma_base) / sizeof(*gpd_head);
  104. if (offset >= MAX_GPD_NUM)
  105. return NULL;
  106. return gpd_head + offset;
  107. }
  108. static dma_addr_t gpd_virt_to_dma(struct mtu3_gpd_ring *ring,
  109. struct qmu_gpd *gpd)
  110. {
  111. dma_addr_t dma_base = ring->dma;
  112. struct qmu_gpd *gpd_head = ring->start;
  113. u32 offset;
  114. offset = gpd - gpd_head;
  115. if (offset >= MAX_GPD_NUM)
  116. return 0;
  117. return dma_base + (offset * sizeof(*gpd));
  118. }
  119. static void gpd_ring_init(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd)
  120. {
  121. ring->start = gpd;
  122. ring->enqueue = gpd;
  123. ring->dequeue = gpd;
  124. ring->end = gpd + MAX_GPD_NUM - 1;
  125. }
  126. static void reset_gpd_list(struct mtu3_ep *mep)
  127. {
  128. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  129. struct qmu_gpd *gpd = ring->start;
  130. if (gpd) {
  131. gpd->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO);
  132. gpd_ring_init(ring, gpd);
  133. }
  134. }
  135. int mtu3_gpd_ring_alloc(struct mtu3_ep *mep)
  136. {
  137. struct qmu_gpd *gpd;
  138. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  139. /* software own all gpds as default */
  140. gpd = dma_pool_zalloc(mep->mtu->qmu_gpd_pool, GFP_ATOMIC, &ring->dma);
  141. if (gpd == NULL)
  142. return -ENOMEM;
  143. gpd_ring_init(ring, gpd);
  144. return 0;
  145. }
  146. void mtu3_gpd_ring_free(struct mtu3_ep *mep)
  147. {
  148. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  149. dma_pool_free(mep->mtu->qmu_gpd_pool,
  150. ring->start, ring->dma);
  151. memset(ring, 0, sizeof(*ring));
  152. }
  153. void mtu3_qmu_resume(struct mtu3_ep *mep)
  154. {
  155. struct mtu3 *mtu = mep->mtu;
  156. void __iomem *mbase = mtu->mac_base;
  157. int epnum = mep->epnum;
  158. u32 offset;
  159. offset = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum);
  160. mtu3_writel(mbase, offset, QMU_Q_RESUME);
  161. if (!(mtu3_readl(mbase, offset) & QMU_Q_ACTIVE))
  162. mtu3_writel(mbase, offset, QMU_Q_RESUME);
  163. }
  164. static struct qmu_gpd *advance_enq_gpd(struct mtu3_gpd_ring *ring)
  165. {
  166. if (ring->enqueue < ring->end)
  167. ring->enqueue++;
  168. else
  169. ring->enqueue = ring->start;
  170. return ring->enqueue;
  171. }
  172. /* @dequeue may be NULL if ring is unallocated or freed */
  173. static struct qmu_gpd *advance_deq_gpd(struct mtu3_gpd_ring *ring)
  174. {
  175. if (ring->dequeue < ring->end)
  176. ring->dequeue++;
  177. else
  178. ring->dequeue = ring->start;
  179. return ring->dequeue;
  180. }
  181. /* check if a ring is emtpy */
  182. static int gpd_ring_empty(struct mtu3_gpd_ring *ring)
  183. {
  184. struct qmu_gpd *enq = ring->enqueue;
  185. struct qmu_gpd *next;
  186. if (ring->enqueue < ring->end)
  187. next = enq + 1;
  188. else
  189. next = ring->start;
  190. /* one gpd is reserved to simplify gpd preparation */
  191. return next == ring->dequeue;
  192. }
  193. int mtu3_prepare_transfer(struct mtu3_ep *mep)
  194. {
  195. return gpd_ring_empty(&mep->gpd_ring);
  196. }
  197. static int mtu3_prepare_tx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  198. {
  199. struct qmu_gpd *enq;
  200. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  201. struct qmu_gpd *gpd = ring->enqueue;
  202. struct usb_request *req = &mreq->request;
  203. struct mtu3 *mtu = mep->mtu;
  204. dma_addr_t enq_dma;
  205. u32 ext_addr;
  206. gpd->dw0_info = 0; /* SW own it */
  207. gpd->buffer = cpu_to_le32(lower_32_bits(req->dma));
  208. ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma));
  209. gpd->dw3_info = cpu_to_le32(GPD_DATA_LEN(mtu, req->length));
  210. /* get the next GPD */
  211. enq = advance_enq_gpd(ring);
  212. enq_dma = gpd_virt_to_dma(ring, enq);
  213. dev_dbg(mep->mtu->dev, "TX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n",
  214. mep->epnum, gpd, enq, &enq_dma);
  215. enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO);
  216. gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma));
  217. ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma));
  218. gpd->dw0_info = cpu_to_le32(ext_addr);
  219. if (req->zero) {
  220. if (mtu->gen2cp)
  221. gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_ZLP);
  222. else
  223. gpd->dw3_info |= cpu_to_le32(GPD_EXT_FLAG_ZLP);
  224. }
  225. /* prevent reorder, make sure GPD's HWO is set last */
  226. mb();
  227. gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO);
  228. mreq->gpd = gpd;
  229. trace_mtu3_prepare_gpd(mep, gpd);
  230. return 0;
  231. }
  232. static int mtu3_prepare_rx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  233. {
  234. struct qmu_gpd *enq;
  235. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  236. struct qmu_gpd *gpd = ring->enqueue;
  237. struct usb_request *req = &mreq->request;
  238. struct mtu3 *mtu = mep->mtu;
  239. dma_addr_t enq_dma;
  240. u32 ext_addr;
  241. gpd->dw0_info = 0; /* SW own it */
  242. gpd->buffer = cpu_to_le32(lower_32_bits(req->dma));
  243. ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma));
  244. gpd->dw0_info = cpu_to_le32(GPD_RX_BUF_LEN(mtu, req->length));
  245. /* get the next GPD */
  246. enq = advance_enq_gpd(ring);
  247. enq_dma = gpd_virt_to_dma(ring, enq);
  248. dev_dbg(mep->mtu->dev, "RX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n",
  249. mep->epnum, gpd, enq, &enq_dma);
  250. enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO);
  251. gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma));
  252. ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma));
  253. gpd->dw3_info = cpu_to_le32(ext_addr);
  254. /* prevent reorder, make sure GPD's HWO is set last */
  255. mb();
  256. gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO);
  257. mreq->gpd = gpd;
  258. trace_mtu3_prepare_gpd(mep, gpd);
  259. return 0;
  260. }
  261. void mtu3_insert_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  262. {
  263. if (mep->is_in)
  264. mtu3_prepare_tx_gpd(mep, mreq);
  265. else
  266. mtu3_prepare_rx_gpd(mep, mreq);
  267. }
  268. int mtu3_qmu_start(struct mtu3_ep *mep)
  269. {
  270. struct mtu3 *mtu = mep->mtu;
  271. void __iomem *mbase = mtu->mac_base;
  272. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  273. u8 epnum = mep->epnum;
  274. if (mep->is_in) {
  275. /* set QMU start address */
  276. write_txq_start_addr(mbase, epnum, ring->dma);
  277. mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_DMAREQEN);
  278. /* send zero length packet according to ZLP flag in GPD */
  279. mtu3_setbits(mbase, U3D_QCR1, QMU_TX_ZLP(epnum));
  280. mtu3_writel(mbase, U3D_TQERRIESR0,
  281. QMU_TX_LEN_ERR(epnum) | QMU_TX_CS_ERR(epnum));
  282. if (mtu3_readl(mbase, USB_QMU_TQCSR(epnum)) & QMU_Q_ACTIVE) {
  283. dev_warn(mtu->dev, "Tx %d Active Now!\n", epnum);
  284. return 0;
  285. }
  286. mtu3_writel(mbase, USB_QMU_TQCSR(epnum), QMU_Q_START);
  287. } else {
  288. write_rxq_start_addr(mbase, epnum, ring->dma);
  289. mtu3_setbits(mbase, MU3D_EP_RXCR0(epnum), RX_DMAREQEN);
  290. /* don't expect ZLP */
  291. mtu3_clrbits(mbase, U3D_QCR3, QMU_RX_ZLP(epnum));
  292. /* move to next GPD when receive ZLP */
  293. mtu3_setbits(mbase, U3D_QCR3, QMU_RX_COZ(epnum));
  294. mtu3_writel(mbase, U3D_RQERRIESR0,
  295. QMU_RX_LEN_ERR(epnum) | QMU_RX_CS_ERR(epnum));
  296. mtu3_writel(mbase, U3D_RQERRIESR1, QMU_RX_ZLP_ERR(epnum));
  297. if (mtu3_readl(mbase, USB_QMU_RQCSR(epnum)) & QMU_Q_ACTIVE) {
  298. dev_warn(mtu->dev, "Rx %d Active Now!\n", epnum);
  299. return 0;
  300. }
  301. mtu3_writel(mbase, USB_QMU_RQCSR(epnum), QMU_Q_START);
  302. }
  303. return 0;
  304. }
  305. /* may called in atomic context */
  306. void mtu3_qmu_stop(struct mtu3_ep *mep)
  307. {
  308. struct mtu3 *mtu = mep->mtu;
  309. void __iomem *mbase = mtu->mac_base;
  310. int epnum = mep->epnum;
  311. u32 value = 0;
  312. u32 qcsr;
  313. int ret;
  314. qcsr = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum);
  315. if (!(mtu3_readl(mbase, qcsr) & QMU_Q_ACTIVE)) {
  316. dev_dbg(mtu->dev, "%s's qmu is inactive now!\n", mep->name);
  317. return;
  318. }
  319. mtu3_writel(mbase, qcsr, QMU_Q_STOP);
  320. ret = readl_poll_timeout_atomic(mbase + qcsr, value,
  321. !(value & QMU_Q_ACTIVE), 1, 1000);
  322. if (ret) {
  323. dev_err(mtu->dev, "stop %s's qmu failed\n", mep->name);
  324. return;
  325. }
  326. dev_dbg(mtu->dev, "%s's qmu stop now!\n", mep->name);
  327. }
  328. void mtu3_qmu_flush(struct mtu3_ep *mep)
  329. {
  330. dev_dbg(mep->mtu->dev, "%s flush QMU %s\n", __func__,
  331. ((mep->is_in) ? "TX" : "RX"));
  332. /*Stop QMU */
  333. mtu3_qmu_stop(mep);
  334. reset_gpd_list(mep);
  335. }
  336. /*
  337. * QMU can't transfer zero length packet directly (a hardware limit
  338. * on old SoCs), so when needs to send ZLP, we intentionally trigger
  339. * a length error interrupt, and in the ISR sends a ZLP by BMU.
  340. */
  341. static void qmu_tx_zlp_error_handler(struct mtu3 *mtu, u8 epnum)
  342. {
  343. struct mtu3_ep *mep = mtu->in_eps + epnum;
  344. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  345. void __iomem *mbase = mtu->mac_base;
  346. struct qmu_gpd *gpd_current = NULL;
  347. struct mtu3_request *mreq;
  348. dma_addr_t cur_gpd_dma;
  349. u32 txcsr = 0;
  350. int ret;
  351. mreq = next_request(mep);
  352. if (mreq && mreq->request.length != 0)
  353. return;
  354. cur_gpd_dma = read_txq_cur_addr(mbase, epnum);
  355. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  356. if (GPD_DATA_LEN(mtu, le32_to_cpu(gpd_current->dw3_info)) != 0) {
  357. dev_err(mtu->dev, "TX EP%d buffer length error(!=0)\n", epnum);
  358. return;
  359. }
  360. dev_dbg(mtu->dev, "%s send ZLP for req=%p\n", __func__, mreq);
  361. trace_mtu3_zlp_exp_gpd(mep, gpd_current);
  362. mtu3_clrbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN);
  363. ret = readl_poll_timeout_atomic(mbase + MU3D_EP_TXCR0(mep->epnum),
  364. txcsr, !(txcsr & TX_FIFOFULL), 1, 1000);
  365. if (ret) {
  366. dev_err(mtu->dev, "%s wait for fifo empty fail\n", __func__);
  367. return;
  368. }
  369. mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_TXPKTRDY);
  370. /* prevent reorder, make sure GPD's HWO is set last */
  371. mb();
  372. /* by pass the current GDP */
  373. gpd_current->dw0_info |= cpu_to_le32(GPD_FLAGS_BPS | GPD_FLAGS_HWO);
  374. /*enable DMAREQEN, switch back to QMU mode */
  375. mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN);
  376. mtu3_qmu_resume(mep);
  377. }
  378. /*
  379. * NOTE: request list maybe is already empty as following case:
  380. * queue_tx --> qmu_interrupt(clear interrupt pending, schedule tasklet)-->
  381. * queue_tx --> process_tasklet(meanwhile, the second one is transferred,
  382. * tasklet process both of them)-->qmu_interrupt for second one.
  383. * To avoid upper case, put qmu_done_tx in ISR directly to process it.
  384. */
  385. static void qmu_done_tx(struct mtu3 *mtu, u8 epnum)
  386. {
  387. struct mtu3_ep *mep = mtu->in_eps + epnum;
  388. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  389. void __iomem *mbase = mtu->mac_base;
  390. struct qmu_gpd *gpd = ring->dequeue;
  391. struct qmu_gpd *gpd_current = NULL;
  392. struct usb_request *request = NULL;
  393. struct mtu3_request *mreq;
  394. dma_addr_t cur_gpd_dma;
  395. /*transfer phy address got from QMU register to virtual address */
  396. cur_gpd_dma = read_txq_cur_addr(mbase, epnum);
  397. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  398. dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n",
  399. __func__, epnum, gpd, gpd_current, ring->enqueue);
  400. while (gpd && gpd != gpd_current && !GET_GPD_HWO(gpd)) {
  401. mreq = next_request(mep);
  402. if (mreq == NULL || mreq->gpd != gpd) {
  403. dev_err(mtu->dev, "no correct TX req is found\n");
  404. break;
  405. }
  406. request = &mreq->request;
  407. request->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info));
  408. trace_mtu3_complete_gpd(mep, gpd);
  409. mtu3_req_complete(mep, request, 0);
  410. gpd = advance_deq_gpd(ring);
  411. }
  412. dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n",
  413. __func__, epnum, ring->dequeue, ring->enqueue);
  414. }
  415. static void qmu_done_rx(struct mtu3 *mtu, u8 epnum)
  416. {
  417. struct mtu3_ep *mep = mtu->out_eps + epnum;
  418. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  419. void __iomem *mbase = mtu->mac_base;
  420. struct qmu_gpd *gpd = ring->dequeue;
  421. struct qmu_gpd *gpd_current = NULL;
  422. struct usb_request *req = NULL;
  423. struct mtu3_request *mreq;
  424. dma_addr_t cur_gpd_dma;
  425. cur_gpd_dma = read_rxq_cur_addr(mbase, epnum);
  426. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  427. dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n",
  428. __func__, epnum, gpd, gpd_current, ring->enqueue);
  429. while (gpd && gpd != gpd_current && !GET_GPD_HWO(gpd)) {
  430. mreq = next_request(mep);
  431. if (mreq == NULL || mreq->gpd != gpd) {
  432. dev_err(mtu->dev, "no correct RX req is found\n");
  433. break;
  434. }
  435. req = &mreq->request;
  436. req->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info));
  437. trace_mtu3_complete_gpd(mep, gpd);
  438. mtu3_req_complete(mep, req, 0);
  439. gpd = advance_deq_gpd(ring);
  440. }
  441. dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n",
  442. __func__, epnum, ring->dequeue, ring->enqueue);
  443. }
  444. static void qmu_done_isr(struct mtu3 *mtu, u32 done_status)
  445. {
  446. int i;
  447. for (i = 1; i < mtu->num_eps; i++) {
  448. if (done_status & QMU_RX_DONE_INT(i))
  449. qmu_done_rx(mtu, i);
  450. if (done_status & QMU_TX_DONE_INT(i))
  451. qmu_done_tx(mtu, i);
  452. }
  453. }
  454. static void qmu_exception_isr(struct mtu3 *mtu, u32 qmu_status)
  455. {
  456. void __iomem *mbase = mtu->mac_base;
  457. u32 errval;
  458. int i;
  459. if ((qmu_status & RXQ_CSERR_INT) || (qmu_status & RXQ_LENERR_INT)) {
  460. errval = mtu3_readl(mbase, U3D_RQERRIR0);
  461. for (i = 1; i < mtu->num_eps; i++) {
  462. if (errval & QMU_RX_CS_ERR(i))
  463. dev_err(mtu->dev, "Rx %d CS error!\n", i);
  464. if (errval & QMU_RX_LEN_ERR(i))
  465. dev_err(mtu->dev, "RX %d Length error\n", i);
  466. }
  467. mtu3_writel(mbase, U3D_RQERRIR0, errval);
  468. }
  469. if (qmu_status & RXQ_ZLPERR_INT) {
  470. errval = mtu3_readl(mbase, U3D_RQERRIR1);
  471. for (i = 1; i < mtu->num_eps; i++) {
  472. if (errval & QMU_RX_ZLP_ERR(i))
  473. dev_dbg(mtu->dev, "RX EP%d Recv ZLP\n", i);
  474. }
  475. mtu3_writel(mbase, U3D_RQERRIR1, errval);
  476. }
  477. if ((qmu_status & TXQ_CSERR_INT) || (qmu_status & TXQ_LENERR_INT)) {
  478. errval = mtu3_readl(mbase, U3D_TQERRIR0);
  479. for (i = 1; i < mtu->num_eps; i++) {
  480. if (errval & QMU_TX_CS_ERR(i))
  481. dev_err(mtu->dev, "Tx %d checksum error!\n", i);
  482. if (errval & QMU_TX_LEN_ERR(i))
  483. qmu_tx_zlp_error_handler(mtu, i);
  484. }
  485. mtu3_writel(mbase, U3D_TQERRIR0, errval);
  486. }
  487. }
  488. irqreturn_t mtu3_qmu_isr(struct mtu3 *mtu)
  489. {
  490. void __iomem *mbase = mtu->mac_base;
  491. u32 qmu_status;
  492. u32 qmu_done_status;
  493. /* U3D_QISAR1 is read update */
  494. qmu_status = mtu3_readl(mbase, U3D_QISAR1);
  495. qmu_status &= mtu3_readl(mbase, U3D_QIER1);
  496. qmu_done_status = mtu3_readl(mbase, U3D_QISAR0);
  497. qmu_done_status &= mtu3_readl(mbase, U3D_QIER0);
  498. mtu3_writel(mbase, U3D_QISAR0, qmu_done_status); /* W1C */
  499. dev_dbg(mtu->dev, "=== QMUdone[tx=%x, rx=%x] QMUexp[%x] ===\n",
  500. (qmu_done_status & 0xFFFF), qmu_done_status >> 16,
  501. qmu_status);
  502. trace_mtu3_qmu_isr(qmu_done_status, qmu_status);
  503. if (qmu_done_status)
  504. qmu_done_isr(mtu, qmu_done_status);
  505. if (qmu_status)
  506. qmu_exception_isr(mtu, qmu_status);
  507. return IRQ_HANDLED;
  508. }
  509. int mtu3_qmu_init(struct mtu3 *mtu)
  510. {
  511. compiletime_assert(QMU_GPD_SIZE == 16, "QMU_GPD size SHOULD be 16B");
  512. mtu->qmu_gpd_pool = dma_pool_create("QMU_GPD", mtu->dev,
  513. QMU_GPD_RING_SIZE, QMU_GPD_SIZE, 0);
  514. if (!mtu->qmu_gpd_pool)
  515. return -ENOMEM;
  516. return 0;
  517. }
  518. void mtu3_qmu_exit(struct mtu3 *mtu)
  519. {
  520. dma_pool_destroy(mtu->qmu_gpd_pool);
  521. }