hcd.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
  2. /*
  3. * hcd.h - DesignWare HS OTG Controller host-mode declarations
  4. *
  5. * Copyright (C) 2004-2013 Synopsys, Inc.
  6. */
  7. #ifndef __DWC2_HCD_H__
  8. #define __DWC2_HCD_H__
  9. /*
  10. * This file contains the structures, constants, and interfaces for the
  11. * Host Contoller Driver (HCD)
  12. *
  13. * The Host Controller Driver (HCD) is responsible for translating requests
  14. * from the USB Driver into the appropriate actions on the DWC_otg controller.
  15. * It isolates the USBD from the specifics of the controller by providing an
  16. * API to the USBD.
  17. */
  18. struct dwc2_qh;
  19. /**
  20. * struct dwc2_host_chan - Software host channel descriptor
  21. *
  22. * @hc_num: Host channel number, used for register address lookup
  23. * @dev_addr: Address of the device
  24. * @ep_num: Endpoint of the device
  25. * @ep_is_in: Endpoint direction
  26. * @speed: Device speed. One of the following values:
  27. * - USB_SPEED_LOW
  28. * - USB_SPEED_FULL
  29. * - USB_SPEED_HIGH
  30. * @ep_type: Endpoint type. One of the following values:
  31. * - USB_ENDPOINT_XFER_CONTROL: 0
  32. * - USB_ENDPOINT_XFER_ISOC: 1
  33. * - USB_ENDPOINT_XFER_BULK: 2
  34. * - USB_ENDPOINT_XFER_INTR: 3
  35. * @max_packet: Max packet size in bytes
  36. * @data_pid_start: PID for initial transaction.
  37. * 0: DATA0
  38. * 1: DATA2
  39. * 2: DATA1
  40. * 3: MDATA (non-Control EP),
  41. * SETUP (Control EP)
  42. * @multi_count: Number of additional periodic transactions per
  43. * (micro)frame
  44. * @xfer_buf: Pointer to current transfer buffer position
  45. * @xfer_dma: DMA address of xfer_buf
  46. * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
  47. * DWORD aligned
  48. * @xfer_len: Total number of bytes to transfer
  49. * @xfer_count: Number of bytes transferred so far
  50. * @start_pkt_count: Packet count at start of transfer
  51. * @xfer_started: True if the transfer has been started
  52. * @do_ping: True if a PING request should be issued on this channel
  53. * @error_state: True if the error count for this transaction is non-zero
  54. * @halt_on_queue: True if this channel should be halted the next time a
  55. * request is queued for the channel. This is necessary in
  56. * slave mode if no request queue space is available when
  57. * an attempt is made to halt the channel.
  58. * @halt_pending: True if the host channel has been halted, but the core
  59. * is not finished flushing queued requests
  60. * @do_split: Enable split for the channel
  61. * @complete_split: Enable complete split
  62. * @hub_addr: Address of high speed hub for the split
  63. * @hub_port: Port of the low/full speed device for the split
  64. * @xact_pos: Split transaction position. One of the following values:
  65. * - DWC2_HCSPLT_XACTPOS_MID
  66. * - DWC2_HCSPLT_XACTPOS_BEGIN
  67. * - DWC2_HCSPLT_XACTPOS_END
  68. * - DWC2_HCSPLT_XACTPOS_ALL
  69. * @requests: Number of requests issued for this channel since it was
  70. * assigned to the current transfer (not counting PINGs)
  71. * @schinfo: Scheduling micro-frame bitmap
  72. * @ntd: Number of transfer descriptors for the transfer
  73. * @halt_status: Reason for halting the host channel
  74. * @hcint: Contents of the HCINT register when the interrupt came
  75. * @qh: QH for the transfer being processed by this channel
  76. * @hc_list_entry: For linking to list of host channels
  77. * @desc_list_addr: Current QH's descriptor list DMA address
  78. * @desc_list_sz: Current QH's descriptor list size
  79. * @split_order_list_entry: List entry for keeping track of the order of splits
  80. *
  81. * This structure represents the state of a single host channel when acting in
  82. * host mode. It contains the data items needed to transfer packets to an
  83. * endpoint via a host channel.
  84. */
  85. struct dwc2_host_chan {
  86. u8 hc_num;
  87. unsigned dev_addr:7;
  88. unsigned ep_num:4;
  89. unsigned ep_is_in:1;
  90. unsigned speed:4;
  91. unsigned ep_type:2;
  92. unsigned max_packet:11;
  93. unsigned data_pid_start:2;
  94. #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
  95. #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
  96. #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
  97. #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
  98. #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
  99. unsigned multi_count:2;
  100. u8 *xfer_buf;
  101. dma_addr_t xfer_dma;
  102. dma_addr_t align_buf;
  103. u32 xfer_len;
  104. u32 xfer_count;
  105. u16 start_pkt_count;
  106. u8 xfer_started;
  107. u8 do_ping;
  108. u8 error_state;
  109. u8 halt_on_queue;
  110. u8 halt_pending;
  111. u8 do_split;
  112. u8 complete_split;
  113. u8 hub_addr;
  114. u8 hub_port;
  115. u8 xact_pos;
  116. #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
  117. #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
  118. #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
  119. #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
  120. u8 requests;
  121. u8 schinfo;
  122. u16 ntd;
  123. enum dwc2_halt_status halt_status;
  124. u32 hcint;
  125. struct dwc2_qh *qh;
  126. struct list_head hc_list_entry;
  127. dma_addr_t desc_list_addr;
  128. u32 desc_list_sz;
  129. struct list_head split_order_list_entry;
  130. };
  131. struct dwc2_hcd_pipe_info {
  132. u8 dev_addr;
  133. u8 ep_num;
  134. u8 pipe_type;
  135. u8 pipe_dir;
  136. u16 maxp;
  137. u16 maxp_mult;
  138. };
  139. struct dwc2_hcd_iso_packet_desc {
  140. u32 offset;
  141. u32 length;
  142. u32 actual_length;
  143. u32 status;
  144. };
  145. struct dwc2_qtd;
  146. struct dwc2_hcd_urb {
  147. void *priv;
  148. struct dwc2_qtd *qtd;
  149. void *buf;
  150. dma_addr_t dma;
  151. void *setup_packet;
  152. dma_addr_t setup_dma;
  153. u32 length;
  154. u32 actual_length;
  155. u32 status;
  156. u32 error_count;
  157. u32 packet_count;
  158. u32 flags;
  159. u16 interval;
  160. struct dwc2_hcd_pipe_info pipe_info;
  161. struct dwc2_hcd_iso_packet_desc iso_descs[];
  162. };
  163. /* Phases for control transfers */
  164. enum dwc2_control_phase {
  165. DWC2_CONTROL_SETUP,
  166. DWC2_CONTROL_DATA,
  167. DWC2_CONTROL_STATUS,
  168. };
  169. /* Transaction types */
  170. enum dwc2_transaction_type {
  171. DWC2_TRANSACTION_NONE,
  172. DWC2_TRANSACTION_PERIODIC,
  173. DWC2_TRANSACTION_NON_PERIODIC,
  174. DWC2_TRANSACTION_ALL,
  175. };
  176. /* The number of elements per LS bitmap (per port on multi_tt) */
  177. #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
  178. BITS_PER_LONG)
  179. /**
  180. * struct dwc2_tt - dwc2 data associated with a usb_tt
  181. *
  182. * @refcount: Number of Queue Heads (QHs) holding a reference.
  183. * @usb_tt: Pointer back to the official usb_tt.
  184. * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
  185. * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
  186. * elements (so sizeof(long) times that in bytes).
  187. *
  188. * This structure is stored in the hcpriv of the official usb_tt.
  189. */
  190. struct dwc2_tt {
  191. int refcount;
  192. struct usb_tt *usb_tt;
  193. unsigned long periodic_bitmaps[];
  194. };
  195. /**
  196. * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
  197. *
  198. * @start_schedule_us: The start time on the main bus schedule. Note that
  199. * the main bus schedule is tightly packed and this
  200. * time should be interpreted as tightly packed (so
  201. * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
  202. * instead of 125 us).
  203. * @duration_us: How long this transfer goes.
  204. */
  205. struct dwc2_hs_transfer_time {
  206. u32 start_schedule_us;
  207. u16 duration_us;
  208. };
  209. /**
  210. * struct dwc2_qh - Software queue head structure
  211. *
  212. * @hsotg: The HCD state structure for the DWC OTG controller
  213. * @ep_type: Endpoint type. One of the following values:
  214. * - USB_ENDPOINT_XFER_CONTROL
  215. * - USB_ENDPOINT_XFER_BULK
  216. * - USB_ENDPOINT_XFER_INT
  217. * - USB_ENDPOINT_XFER_ISOC
  218. * @ep_is_in: Endpoint direction
  219. * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
  220. * @maxp_mult: Multiplier for maxp
  221. * @dev_speed: Device speed. One of the following values:
  222. * - USB_SPEED_LOW
  223. * - USB_SPEED_FULL
  224. * - USB_SPEED_HIGH
  225. * @data_toggle: Determines the PID of the next data packet for
  226. * non-controltransfers. Ignored for control transfers.
  227. * One of the following values:
  228. * - DWC2_HC_PID_DATA0
  229. * - DWC2_HC_PID_DATA1
  230. * @ping_state: Ping state
  231. * @do_split: Full/low speed endpoint on high-speed hub requires split
  232. * @td_first: Index of first activated isochronous transfer descriptor
  233. * @td_last: Index of last activated isochronous transfer descriptor
  234. * @host_us: Bandwidth in microseconds per transfer as seen by host
  235. * @device_us: Bandwidth in microseconds per transfer as seen by device
  236. * @host_interval: Interval between transfers as seen by the host. If
  237. * the host is high speed and the device is low speed this
  238. * will be 8 times device interval.
  239. * @device_interval: Interval between transfers as seen by the device.
  240. * interval.
  241. * @next_active_frame: (Micro)frame _before_ we next need to put something on
  242. * the bus. We'll move the qh to active here. If the
  243. * host is in high speed mode this will be a uframe. If
  244. * the host is in low speed mode this will be a full frame.
  245. * @start_active_frame: If we are partway through a split transfer, this will be
  246. * what next_active_frame was when we started. Otherwise
  247. * it should always be the same as next_active_frame.
  248. * @num_hs_transfers: Number of transfers in hs_transfers.
  249. * Normally this is 1 but can be more than one for splits.
  250. * Always >= 1 unless the host is in low/full speed mode.
  251. * @hs_transfers: Transfers that are scheduled as seen by the high speed
  252. * bus. Not used if host is in low or full speed mode (but
  253. * note that it IS USED if the device is low or full speed
  254. * as long as the HOST is in high speed mode).
  255. * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
  256. * schedule that's being used by this device. This
  257. * will be on the periodic_bitmap in a
  258. * "struct dwc2_tt". Not used if this device is high
  259. * speed. Note that this is in "schedule slice" which
  260. * is tightly packed.
  261. * @ntd: Actual number of transfer descriptors in a list
  262. * @dw_align_buf: Used instead of original buffer if its physical address
  263. * is not dword-aligned
  264. * @dw_align_buf_dma: DMA address for dw_align_buf
  265. * @qtd_list: List of QTDs for this QH
  266. * @channel: Host channel currently processing transfers for this QH
  267. * @qh_list_entry: Entry for QH in either the periodic or non-periodic
  268. * schedule
  269. * @desc_list: List of transfer descriptors
  270. * @desc_list_dma: Physical address of desc_list
  271. * @desc_list_sz: Size of descriptors list
  272. * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
  273. * descriptor and indicates original XferSize value for the
  274. * descriptor
  275. * @unreserve_timer: Timer for releasing periodic reservation.
  276. * @wait_timer: Timer used to wait before re-queuing.
  277. * @dwc_tt: Pointer to our tt info (or NULL if no tt).
  278. * @ttport: Port number within our tt.
  279. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
  280. * @unreserve_pending: True if we planned to unreserve but haven't yet.
  281. * @schedule_low_speed: True if we have a low/full speed component (either the
  282. * host is in low/full speed mode or do_split).
  283. * @want_wait: We should wait before re-queuing; only matters for non-
  284. * periodic transfers and is ignored for periodic ones.
  285. * @wait_timer_cancel: Set to true to cancel the wait_timer.
  286. *
  287. * @tt_buffer_dirty: True if EP's TT buffer is not clean.
  288. * A Queue Head (QH) holds the static characteristics of an endpoint and
  289. * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
  290. * be entered in either the non-periodic or periodic schedule.
  291. */
  292. struct dwc2_qh {
  293. struct dwc2_hsotg *hsotg;
  294. u8 ep_type;
  295. u8 ep_is_in;
  296. u16 maxp;
  297. u16 maxp_mult;
  298. u8 dev_speed;
  299. u8 data_toggle;
  300. u8 ping_state;
  301. u8 do_split;
  302. u8 td_first;
  303. u8 td_last;
  304. u16 host_us;
  305. u16 device_us;
  306. u16 host_interval;
  307. u16 device_interval;
  308. u16 next_active_frame;
  309. u16 start_active_frame;
  310. s16 num_hs_transfers;
  311. struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
  312. u32 ls_start_schedule_slice;
  313. u16 ntd;
  314. u8 *dw_align_buf;
  315. dma_addr_t dw_align_buf_dma;
  316. struct list_head qtd_list;
  317. struct dwc2_host_chan *channel;
  318. struct list_head qh_list_entry;
  319. struct dwc2_dma_desc *desc_list;
  320. dma_addr_t desc_list_dma;
  321. u32 desc_list_sz;
  322. u32 *n_bytes;
  323. struct timer_list unreserve_timer;
  324. struct hrtimer wait_timer;
  325. struct dwc2_tt *dwc_tt;
  326. int ttport;
  327. unsigned tt_buffer_dirty:1;
  328. unsigned unreserve_pending:1;
  329. unsigned schedule_low_speed:1;
  330. unsigned want_wait:1;
  331. unsigned wait_timer_cancel:1;
  332. };
  333. /**
  334. * struct dwc2_qtd - Software queue transfer descriptor (QTD)
  335. *
  336. * @control_phase: Current phase for control transfers (Setup, Data, or
  337. * Status)
  338. * @in_process: Indicates if this QTD is currently processed by HW
  339. * @data_toggle: Determines the PID of the next data packet for the
  340. * data phase of control transfers. Ignored for other
  341. * transfer types. One of the following values:
  342. * - DWC2_HC_PID_DATA0
  343. * - DWC2_HC_PID_DATA1
  344. * @complete_split: Keeps track of the current split type for FS/LS
  345. * endpoints on a HS Hub
  346. * @isoc_split_pos: Position of the ISOC split in full/low speed
  347. * @isoc_frame_index: Index of the next frame descriptor for an isochronous
  348. * transfer. A frame descriptor describes the buffer
  349. * position and length of the data to be transferred in the
  350. * next scheduled (micro)frame of an isochronous transfer.
  351. * It also holds status for that transaction. The frame
  352. * index starts at 0.
  353. * @isoc_split_offset: Position of the ISOC split in the buffer for the
  354. * current frame
  355. * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
  356. * @error_count: Holds the number of bus errors that have occurred for
  357. * a transaction within this transfer
  358. * @n_desc: Number of DMA descriptors for this QTD
  359. * @isoc_frame_index_last: Last activated frame (packet) index, used in
  360. * descriptor DMA mode only
  361. * @num_naks: Number of NAKs received on this QTD.
  362. * @urb: URB for this transfer
  363. * @qh: Queue head for this QTD
  364. * @qtd_list_entry: For linking to the QH's list of QTDs
  365. * @isoc_td_first: Index of first activated isochronous transfer
  366. * descriptor in Descriptor DMA mode
  367. * @isoc_td_last: Index of last activated isochronous transfer
  368. * descriptor in Descriptor DMA mode
  369. *
  370. * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
  371. * interrupt, or isochronous transfer. A single QTD is created for each URB
  372. * (of one of these types) submitted to the HCD. The transfer associated with
  373. * a QTD may require one or multiple transactions.
  374. *
  375. * A QTD is linked to a Queue Head, which is entered in either the
  376. * non-periodic or periodic schedule for execution. When a QTD is chosen for
  377. * execution, some or all of its transactions may be executed. After
  378. * execution, the state of the QTD is updated. The QTD may be retired if all
  379. * its transactions are complete or if an error occurred. Otherwise, it
  380. * remains in the schedule so more transactions can be executed later.
  381. */
  382. struct dwc2_qtd {
  383. enum dwc2_control_phase control_phase;
  384. u8 in_process;
  385. u8 data_toggle;
  386. u8 complete_split;
  387. u8 isoc_split_pos;
  388. u16 isoc_frame_index;
  389. u16 isoc_split_offset;
  390. u16 isoc_td_last;
  391. u16 isoc_td_first;
  392. u32 ssplit_out_xfer_count;
  393. u8 error_count;
  394. u8 n_desc;
  395. u16 isoc_frame_index_last;
  396. u16 num_naks;
  397. struct dwc2_hcd_urb *urb;
  398. struct dwc2_qh *qh;
  399. struct list_head qtd_list_entry;
  400. };
  401. #ifdef DEBUG
  402. struct hc_xfer_info {
  403. struct dwc2_hsotg *hsotg;
  404. struct dwc2_host_chan *chan;
  405. };
  406. #endif
  407. u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
  408. /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
  409. static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
  410. {
  411. return (struct usb_hcd *)hsotg->priv;
  412. }
  413. /*
  414. * Inline used to disable one channel interrupt. Channel interrupts are
  415. * disabled when the channel is halted or released by the interrupt handler.
  416. * There is no need to handle further interrupts of that type until the
  417. * channel is re-assigned. In fact, subsequent handling may cause crashes
  418. * because the channel structures are cleaned up when the channel is released.
  419. */
  420. static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
  421. {
  422. u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
  423. mask &= ~intr;
  424. dwc2_writel(hsotg, mask, HCINTMSK(chnum));
  425. }
  426. void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
  427. void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
  428. enum dwc2_halt_status halt_status);
  429. void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
  430. struct dwc2_host_chan *chan);
  431. /*
  432. * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
  433. * are read as 1, they won't clear when written back.
  434. */
  435. static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
  436. {
  437. u32 hprt0 = dwc2_readl(hsotg, HPRT0);
  438. hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
  439. return hprt0;
  440. }
  441. static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
  442. {
  443. return pipe->ep_num;
  444. }
  445. static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
  446. {
  447. return pipe->pipe_type;
  448. }
  449. static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
  450. {
  451. return pipe->maxp;
  452. }
  453. static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
  454. {
  455. return pipe->maxp_mult;
  456. }
  457. static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
  458. {
  459. return pipe->dev_addr;
  460. }
  461. static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
  462. {
  463. return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
  464. }
  465. static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
  466. {
  467. return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
  468. }
  469. static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
  470. {
  471. return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
  472. }
  473. static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
  474. {
  475. return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
  476. }
  477. static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
  478. {
  479. return pipe->pipe_dir == USB_DIR_IN;
  480. }
  481. static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
  482. {
  483. return !dwc2_hcd_is_pipe_in(pipe);
  484. }
  485. int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
  486. void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
  487. /* Transaction Execution Functions */
  488. enum dwc2_transaction_type dwc2_hcd_select_transactions(
  489. struct dwc2_hsotg *hsotg);
  490. void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
  491. enum dwc2_transaction_type tr_type);
  492. /* Schedule Queue Functions */
  493. /* Implemented in hcd_queue.c */
  494. struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
  495. struct dwc2_hcd_urb *urb,
  496. gfp_t mem_flags);
  497. void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  498. int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  499. void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  500. void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  501. int sched_csplit);
  502. void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
  503. int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  504. struct dwc2_qh *qh);
  505. /* Unlinks and frees a QTD */
  506. static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
  507. struct dwc2_qtd *qtd,
  508. struct dwc2_qh *qh)
  509. {
  510. list_del(&qtd->qtd_list_entry);
  511. kfree(qtd);
  512. }
  513. /* Descriptor DMA support functions */
  514. void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
  515. struct dwc2_qh *qh);
  516. void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
  517. struct dwc2_host_chan *chan, int chnum,
  518. enum dwc2_halt_status halt_status);
  519. int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  520. gfp_t mem_flags);
  521. void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  522. /* Check if QH is non-periodic */
  523. #define dwc2_qh_is_non_per(_qh_ptr_) \
  524. ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
  525. (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
  526. #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
  527. static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
  528. static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
  529. static inline bool dbg_urb(struct urb *urb) { return true; }
  530. static inline bool dbg_perio(void) { return true; }
  531. #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
  532. static inline bool dbg_hc(struct dwc2_host_chan *hc)
  533. {
  534. return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
  535. hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
  536. }
  537. static inline bool dbg_qh(struct dwc2_qh *qh)
  538. {
  539. return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
  540. qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
  541. }
  542. static inline bool dbg_urb(struct urb *urb)
  543. {
  544. return usb_pipetype(urb->pipe) == PIPE_BULK ||
  545. usb_pipetype(urb->pipe) == PIPE_CONTROL;
  546. }
  547. static inline bool dbg_perio(void) { return false; }
  548. #endif
  549. /*
  550. * Returns true if frame1 index is greater than frame2 index. The comparison
  551. * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
  552. * frame number when the max index frame number is reached.
  553. */
  554. static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
  555. {
  556. u16 diff = fr_idx1 - fr_idx2;
  557. u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
  558. return diff && !sign;
  559. }
  560. /*
  561. * Returns true if frame1 is less than or equal to frame2. The comparison is
  562. * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
  563. * frame number when the max frame number is reached.
  564. */
  565. static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
  566. {
  567. return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
  568. }
  569. /*
  570. * Returns true if frame1 is greater than frame2. The comparison is done
  571. * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
  572. * number when the max frame number is reached.
  573. */
  574. static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
  575. {
  576. return (frame1 != frame2) &&
  577. ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
  578. }
  579. /*
  580. * Increments frame by the amount specified by inc. The addition is done
  581. * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
  582. */
  583. static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
  584. {
  585. return (frame + inc) & HFNUM_MAX_FRNUM;
  586. }
  587. static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
  588. {
  589. return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
  590. }
  591. static inline u16 dwc2_full_frame_num(u16 frame)
  592. {
  593. return (frame & HFNUM_MAX_FRNUM) >> 3;
  594. }
  595. static inline u16 dwc2_micro_frame_num(u16 frame)
  596. {
  597. return frame & 0x7;
  598. }
  599. /*
  600. * Returns the Core Interrupt Status register contents, ANDed with the Core
  601. * Interrupt Mask register contents
  602. */
  603. static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
  604. {
  605. return dwc2_readl(hsotg, GINTSTS) &
  606. dwc2_readl(hsotg, GINTMSK);
  607. }
  608. static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
  609. {
  610. return dwc2_urb->status;
  611. }
  612. static inline u32 dwc2_hcd_urb_get_actual_length(
  613. struct dwc2_hcd_urb *dwc2_urb)
  614. {
  615. return dwc2_urb->actual_length;
  616. }
  617. static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
  618. {
  619. return dwc2_urb->error_count;
  620. }
  621. static inline void dwc2_hcd_urb_set_iso_desc_params(
  622. struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
  623. u32 length)
  624. {
  625. dwc2_urb->iso_descs[desc_num].offset = offset;
  626. dwc2_urb->iso_descs[desc_num].length = length;
  627. }
  628. static inline u32 dwc2_hcd_urb_get_iso_desc_status(
  629. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  630. {
  631. return dwc2_urb->iso_descs[desc_num].status;
  632. }
  633. static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
  634. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  635. {
  636. return dwc2_urb->iso_descs[desc_num].actual_length;
  637. }
  638. static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
  639. struct usb_host_endpoint *ep)
  640. {
  641. struct dwc2_qh *qh = ep->hcpriv;
  642. if (qh && !list_empty(&qh->qh_list_entry))
  643. return 1;
  644. return 0;
  645. }
  646. static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
  647. struct usb_host_endpoint *ep)
  648. {
  649. struct dwc2_qh *qh = ep->hcpriv;
  650. if (!qh) {
  651. WARN_ON(1);
  652. return 0;
  653. }
  654. return qh->host_us;
  655. }
  656. void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
  657. struct dwc2_host_chan *chan, int chnum,
  658. struct dwc2_qtd *qtd);
  659. /* HCD Core API */
  660. /**
  661. * dwc2_handle_hcd_intr() - Called on every hardware interrupt
  662. *
  663. * @hsotg: The DWC2 HCD
  664. *
  665. * Returns IRQ_HANDLED if interrupt is handled
  666. * Return IRQ_NONE if interrupt is not handled
  667. */
  668. irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
  669. /**
  670. * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
  671. *
  672. * @hsotg: The DWC2 HCD
  673. */
  674. void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
  675. /**
  676. * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
  677. * and 0 otherwise
  678. *
  679. * @hsotg: The DWC2 HCD
  680. */
  681. int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
  682. /**
  683. * dwc2_hcd_dump_state() - Dumps hsotg state
  684. *
  685. * @hsotg: The DWC2 HCD
  686. *
  687. * NOTE: This function will be removed once the peripheral controller code
  688. * is integrated and the driver is stable
  689. */
  690. void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
  691. /* URB interface */
  692. /* Transfer flags */
  693. #define URB_GIVEBACK_ASAP 0x1
  694. #define URB_SEND_ZERO_PACKET 0x2
  695. /* Host driver callbacks */
  696. struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
  697. void *context, gfp_t mem_flags,
  698. int *ttport);
  699. void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
  700. struct dwc2_tt *dwc_tt);
  701. int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
  702. void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  703. int status);
  704. #endif /* __DWC2_HCD_H__ */