spi-slave-mt27xx.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. // SPDX-License-Identifier: GPL-2.0+
  2. // Copyright (c) 2018 MediaTek Inc.
  3. #include <linux/clk.h>
  4. #include <linux/device.h>
  5. #include <linux/dma-mapping.h>
  6. #include <linux/err.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/module.h>
  9. #include <linux/platform_device.h>
  10. #include <linux/pm_runtime.h>
  11. #include <linux/spi/spi.h>
  12. #include <linux/of.h>
  13. #define SPIS_IRQ_EN_REG 0x0
  14. #define SPIS_IRQ_CLR_REG 0x4
  15. #define SPIS_IRQ_ST_REG 0x8
  16. #define SPIS_IRQ_MASK_REG 0xc
  17. #define SPIS_CFG_REG 0x10
  18. #define SPIS_RX_DATA_REG 0x14
  19. #define SPIS_TX_DATA_REG 0x18
  20. #define SPIS_RX_DST_REG 0x1c
  21. #define SPIS_TX_SRC_REG 0x20
  22. #define SPIS_DMA_CFG_REG 0x30
  23. #define SPIS_SOFT_RST_REG 0x40
  24. /* SPIS_IRQ_EN_REG */
  25. #define DMA_DONE_EN BIT(7)
  26. #define DATA_DONE_EN BIT(2)
  27. #define RSTA_DONE_EN BIT(1)
  28. #define CMD_INVALID_EN BIT(0)
  29. /* SPIS_IRQ_ST_REG */
  30. #define DMA_DONE_ST BIT(7)
  31. #define DATA_DONE_ST BIT(2)
  32. #define RSTA_DONE_ST BIT(1)
  33. #define CMD_INVALID_ST BIT(0)
  34. /* SPIS_IRQ_MASK_REG */
  35. #define DMA_DONE_MASK BIT(7)
  36. #define DATA_DONE_MASK BIT(2)
  37. #define RSTA_DONE_MASK BIT(1)
  38. #define CMD_INVALID_MASK BIT(0)
  39. /* SPIS_CFG_REG */
  40. #define SPIS_TX_ENDIAN BIT(7)
  41. #define SPIS_RX_ENDIAN BIT(6)
  42. #define SPIS_TXMSBF BIT(5)
  43. #define SPIS_RXMSBF BIT(4)
  44. #define SPIS_CPHA BIT(3)
  45. #define SPIS_CPOL BIT(2)
  46. #define SPIS_TX_EN BIT(1)
  47. #define SPIS_RX_EN BIT(0)
  48. /* SPIS_DMA_CFG_REG */
  49. #define TX_DMA_TRIG_EN BIT(31)
  50. #define TX_DMA_EN BIT(30)
  51. #define RX_DMA_EN BIT(29)
  52. #define TX_DMA_LEN 0xfffff
  53. /* SPIS_SOFT_RST_REG */
  54. #define SPIS_DMA_ADDR_EN BIT(1)
  55. #define SPIS_SOFT_RST BIT(0)
  56. struct mtk_spi_slave {
  57. struct device *dev;
  58. void __iomem *base;
  59. struct clk *spi_clk;
  60. struct completion xfer_done;
  61. struct spi_transfer *cur_transfer;
  62. bool slave_aborted;
  63. const struct mtk_spi_compatible *dev_comp;
  64. };
  65. struct mtk_spi_compatible {
  66. const u32 max_fifo_size;
  67. bool must_rx;
  68. };
  69. static const struct mtk_spi_compatible mt2712_compat = {
  70. .max_fifo_size = 512,
  71. };
  72. static const struct mtk_spi_compatible mt8195_compat = {
  73. .max_fifo_size = 128,
  74. .must_rx = true,
  75. };
  76. static const struct of_device_id mtk_spi_slave_of_match[] = {
  77. { .compatible = "mediatek,mt2712-spi-slave",
  78. .data = (void *)&mt2712_compat,},
  79. { .compatible = "mediatek,mt8195-spi-slave",
  80. .data = (void *)&mt8195_compat,},
  81. {}
  82. };
  83. MODULE_DEVICE_TABLE(of, mtk_spi_slave_of_match);
  84. static void mtk_spi_slave_disable_dma(struct mtk_spi_slave *mdata)
  85. {
  86. u32 reg_val;
  87. reg_val = readl(mdata->base + SPIS_DMA_CFG_REG);
  88. reg_val &= ~RX_DMA_EN;
  89. reg_val &= ~TX_DMA_EN;
  90. writel(reg_val, mdata->base + SPIS_DMA_CFG_REG);
  91. }
  92. static void mtk_spi_slave_disable_xfer(struct mtk_spi_slave *mdata)
  93. {
  94. u32 reg_val;
  95. reg_val = readl(mdata->base + SPIS_CFG_REG);
  96. reg_val &= ~SPIS_TX_EN;
  97. reg_val &= ~SPIS_RX_EN;
  98. writel(reg_val, mdata->base + SPIS_CFG_REG);
  99. }
  100. static int mtk_spi_slave_wait_for_completion(struct mtk_spi_slave *mdata)
  101. {
  102. if (wait_for_completion_interruptible(&mdata->xfer_done) ||
  103. mdata->slave_aborted) {
  104. dev_err(mdata->dev, "interrupted\n");
  105. return -EINTR;
  106. }
  107. return 0;
  108. }
  109. static int mtk_spi_slave_prepare_message(struct spi_controller *ctlr,
  110. struct spi_message *msg)
  111. {
  112. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  113. struct spi_device *spi = msg->spi;
  114. bool cpha, cpol;
  115. u32 reg_val;
  116. cpha = spi->mode & SPI_CPHA ? 1 : 0;
  117. cpol = spi->mode & SPI_CPOL ? 1 : 0;
  118. reg_val = readl(mdata->base + SPIS_CFG_REG);
  119. if (cpha)
  120. reg_val |= SPIS_CPHA;
  121. else
  122. reg_val &= ~SPIS_CPHA;
  123. if (cpol)
  124. reg_val |= SPIS_CPOL;
  125. else
  126. reg_val &= ~SPIS_CPOL;
  127. if (spi->mode & SPI_LSB_FIRST)
  128. reg_val &= ~(SPIS_TXMSBF | SPIS_RXMSBF);
  129. else
  130. reg_val |= SPIS_TXMSBF | SPIS_RXMSBF;
  131. reg_val &= ~SPIS_TX_ENDIAN;
  132. reg_val &= ~SPIS_RX_ENDIAN;
  133. writel(reg_val, mdata->base + SPIS_CFG_REG);
  134. return 0;
  135. }
  136. static int mtk_spi_slave_fifo_transfer(struct spi_controller *ctlr,
  137. struct spi_device *spi,
  138. struct spi_transfer *xfer)
  139. {
  140. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  141. int reg_val, cnt, remainder, ret;
  142. writel(SPIS_SOFT_RST, mdata->base + SPIS_SOFT_RST_REG);
  143. reg_val = readl(mdata->base + SPIS_CFG_REG);
  144. if (xfer->rx_buf)
  145. reg_val |= SPIS_RX_EN;
  146. if (xfer->tx_buf)
  147. reg_val |= SPIS_TX_EN;
  148. writel(reg_val, mdata->base + SPIS_CFG_REG);
  149. cnt = xfer->len / 4;
  150. if (xfer->tx_buf)
  151. iowrite32_rep(mdata->base + SPIS_TX_DATA_REG,
  152. xfer->tx_buf, cnt);
  153. remainder = xfer->len % 4;
  154. if (xfer->tx_buf && remainder > 0) {
  155. reg_val = 0;
  156. memcpy(&reg_val, xfer->tx_buf + cnt * 4, remainder);
  157. writel(reg_val, mdata->base + SPIS_TX_DATA_REG);
  158. }
  159. ret = mtk_spi_slave_wait_for_completion(mdata);
  160. if (ret) {
  161. mtk_spi_slave_disable_xfer(mdata);
  162. writel(SPIS_SOFT_RST, mdata->base + SPIS_SOFT_RST_REG);
  163. }
  164. return ret;
  165. }
  166. static int mtk_spi_slave_dma_transfer(struct spi_controller *ctlr,
  167. struct spi_device *spi,
  168. struct spi_transfer *xfer)
  169. {
  170. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  171. struct device *dev = mdata->dev;
  172. int reg_val, ret;
  173. writel(SPIS_SOFT_RST, mdata->base + SPIS_SOFT_RST_REG);
  174. if (xfer->tx_buf) {
  175. /* tx_buf is a const void* where we need a void * for
  176. * the dma mapping
  177. */
  178. void *nonconst_tx = (void *)xfer->tx_buf;
  179. xfer->tx_dma = dma_map_single(dev, nonconst_tx,
  180. xfer->len, DMA_TO_DEVICE);
  181. if (dma_mapping_error(dev, xfer->tx_dma)) {
  182. ret = -ENOMEM;
  183. goto disable_transfer;
  184. }
  185. }
  186. if (xfer->rx_buf) {
  187. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  188. xfer->len, DMA_FROM_DEVICE);
  189. if (dma_mapping_error(dev, xfer->rx_dma)) {
  190. ret = -ENOMEM;
  191. goto unmap_txdma;
  192. }
  193. }
  194. writel(xfer->tx_dma, mdata->base + SPIS_TX_SRC_REG);
  195. writel(xfer->rx_dma, mdata->base + SPIS_RX_DST_REG);
  196. writel(SPIS_DMA_ADDR_EN, mdata->base + SPIS_SOFT_RST_REG);
  197. /* enable config reg tx rx_enable */
  198. reg_val = readl(mdata->base + SPIS_CFG_REG);
  199. if (xfer->tx_buf)
  200. reg_val |= SPIS_TX_EN;
  201. if (xfer->rx_buf)
  202. reg_val |= SPIS_RX_EN;
  203. writel(reg_val, mdata->base + SPIS_CFG_REG);
  204. /* config dma */
  205. reg_val = 0;
  206. reg_val |= (xfer->len - 1) & TX_DMA_LEN;
  207. writel(reg_val, mdata->base + SPIS_DMA_CFG_REG);
  208. reg_val = readl(mdata->base + SPIS_DMA_CFG_REG);
  209. if (xfer->tx_buf)
  210. reg_val |= TX_DMA_EN;
  211. if (xfer->rx_buf)
  212. reg_val |= RX_DMA_EN;
  213. reg_val |= TX_DMA_TRIG_EN;
  214. writel(reg_val, mdata->base + SPIS_DMA_CFG_REG);
  215. ret = mtk_spi_slave_wait_for_completion(mdata);
  216. if (ret)
  217. goto unmap_rxdma;
  218. return 0;
  219. unmap_rxdma:
  220. if (xfer->rx_buf)
  221. dma_unmap_single(dev, xfer->rx_dma,
  222. xfer->len, DMA_FROM_DEVICE);
  223. unmap_txdma:
  224. if (xfer->tx_buf)
  225. dma_unmap_single(dev, xfer->tx_dma,
  226. xfer->len, DMA_TO_DEVICE);
  227. disable_transfer:
  228. mtk_spi_slave_disable_dma(mdata);
  229. mtk_spi_slave_disable_xfer(mdata);
  230. writel(SPIS_SOFT_RST, mdata->base + SPIS_SOFT_RST_REG);
  231. return ret;
  232. }
  233. static int mtk_spi_slave_transfer_one(struct spi_controller *ctlr,
  234. struct spi_device *spi,
  235. struct spi_transfer *xfer)
  236. {
  237. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  238. reinit_completion(&mdata->xfer_done);
  239. mdata->slave_aborted = false;
  240. mdata->cur_transfer = xfer;
  241. if (xfer->len > mdata->dev_comp->max_fifo_size)
  242. return mtk_spi_slave_dma_transfer(ctlr, spi, xfer);
  243. else
  244. return mtk_spi_slave_fifo_transfer(ctlr, spi, xfer);
  245. }
  246. static int mtk_spi_slave_setup(struct spi_device *spi)
  247. {
  248. struct mtk_spi_slave *mdata = spi_controller_get_devdata(spi->master);
  249. u32 reg_val;
  250. reg_val = DMA_DONE_EN | DATA_DONE_EN |
  251. RSTA_DONE_EN | CMD_INVALID_EN;
  252. writel(reg_val, mdata->base + SPIS_IRQ_EN_REG);
  253. reg_val = DMA_DONE_MASK | DATA_DONE_MASK |
  254. RSTA_DONE_MASK | CMD_INVALID_MASK;
  255. writel(reg_val, mdata->base + SPIS_IRQ_MASK_REG);
  256. mtk_spi_slave_disable_dma(mdata);
  257. mtk_spi_slave_disable_xfer(mdata);
  258. return 0;
  259. }
  260. static int mtk_slave_abort(struct spi_controller *ctlr)
  261. {
  262. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  263. mdata->slave_aborted = true;
  264. complete(&mdata->xfer_done);
  265. return 0;
  266. }
  267. static irqreturn_t mtk_spi_slave_interrupt(int irq, void *dev_id)
  268. {
  269. struct spi_controller *ctlr = dev_id;
  270. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  271. struct spi_transfer *trans = mdata->cur_transfer;
  272. u32 int_status, reg_val, cnt, remainder;
  273. int_status = readl(mdata->base + SPIS_IRQ_ST_REG);
  274. writel(int_status, mdata->base + SPIS_IRQ_CLR_REG);
  275. if (!trans)
  276. return IRQ_NONE;
  277. if ((int_status & DMA_DONE_ST) &&
  278. ((int_status & DATA_DONE_ST) ||
  279. (int_status & RSTA_DONE_ST))) {
  280. writel(SPIS_SOFT_RST, mdata->base + SPIS_SOFT_RST_REG);
  281. if (trans->tx_buf)
  282. dma_unmap_single(mdata->dev, trans->tx_dma,
  283. trans->len, DMA_TO_DEVICE);
  284. if (trans->rx_buf)
  285. dma_unmap_single(mdata->dev, trans->rx_dma,
  286. trans->len, DMA_FROM_DEVICE);
  287. mtk_spi_slave_disable_dma(mdata);
  288. mtk_spi_slave_disable_xfer(mdata);
  289. }
  290. if ((!(int_status & DMA_DONE_ST)) &&
  291. ((int_status & DATA_DONE_ST) ||
  292. (int_status & RSTA_DONE_ST))) {
  293. cnt = trans->len / 4;
  294. if (trans->rx_buf)
  295. ioread32_rep(mdata->base + SPIS_RX_DATA_REG,
  296. trans->rx_buf, cnt);
  297. remainder = trans->len % 4;
  298. if (trans->rx_buf && remainder > 0) {
  299. reg_val = readl(mdata->base + SPIS_RX_DATA_REG);
  300. memcpy(trans->rx_buf + (cnt * 4),
  301. &reg_val, remainder);
  302. }
  303. mtk_spi_slave_disable_xfer(mdata);
  304. }
  305. if (int_status & CMD_INVALID_ST) {
  306. dev_warn(&ctlr->dev, "cmd invalid\n");
  307. return IRQ_NONE;
  308. }
  309. mdata->cur_transfer = NULL;
  310. complete(&mdata->xfer_done);
  311. return IRQ_HANDLED;
  312. }
  313. static int mtk_spi_slave_probe(struct platform_device *pdev)
  314. {
  315. struct spi_controller *ctlr;
  316. struct mtk_spi_slave *mdata;
  317. int irq, ret;
  318. const struct of_device_id *of_id;
  319. ctlr = spi_alloc_slave(&pdev->dev, sizeof(*mdata));
  320. if (!ctlr) {
  321. dev_err(&pdev->dev, "failed to alloc spi slave\n");
  322. return -ENOMEM;
  323. }
  324. ctlr->auto_runtime_pm = true;
  325. ctlr->dev.of_node = pdev->dev.of_node;
  326. ctlr->mode_bits = SPI_CPOL | SPI_CPHA;
  327. ctlr->mode_bits |= SPI_LSB_FIRST;
  328. ctlr->prepare_message = mtk_spi_slave_prepare_message;
  329. ctlr->transfer_one = mtk_spi_slave_transfer_one;
  330. ctlr->setup = mtk_spi_slave_setup;
  331. ctlr->slave_abort = mtk_slave_abort;
  332. of_id = of_match_node(mtk_spi_slave_of_match, pdev->dev.of_node);
  333. if (!of_id) {
  334. dev_err(&pdev->dev, "failed to probe of_node\n");
  335. ret = -EINVAL;
  336. goto err_put_ctlr;
  337. }
  338. mdata = spi_controller_get_devdata(ctlr);
  339. mdata->dev_comp = of_id->data;
  340. if (mdata->dev_comp->must_rx)
  341. ctlr->flags = SPI_MASTER_MUST_RX;
  342. platform_set_drvdata(pdev, ctlr);
  343. init_completion(&mdata->xfer_done);
  344. mdata->dev = &pdev->dev;
  345. mdata->base = devm_platform_ioremap_resource(pdev, 0);
  346. if (IS_ERR(mdata->base)) {
  347. ret = PTR_ERR(mdata->base);
  348. goto err_put_ctlr;
  349. }
  350. irq = platform_get_irq(pdev, 0);
  351. if (irq < 0) {
  352. ret = irq;
  353. goto err_put_ctlr;
  354. }
  355. ret = devm_request_irq(&pdev->dev, irq, mtk_spi_slave_interrupt,
  356. IRQF_TRIGGER_NONE, dev_name(&pdev->dev), ctlr);
  357. if (ret) {
  358. dev_err(&pdev->dev, "failed to register irq (%d)\n", ret);
  359. goto err_put_ctlr;
  360. }
  361. mdata->spi_clk = devm_clk_get(&pdev->dev, "spi");
  362. if (IS_ERR(mdata->spi_clk)) {
  363. ret = PTR_ERR(mdata->spi_clk);
  364. dev_err(&pdev->dev, "failed to get spi-clk: %d\n", ret);
  365. goto err_put_ctlr;
  366. }
  367. ret = clk_prepare_enable(mdata->spi_clk);
  368. if (ret < 0) {
  369. dev_err(&pdev->dev, "failed to enable spi_clk (%d)\n", ret);
  370. goto err_put_ctlr;
  371. }
  372. pm_runtime_enable(&pdev->dev);
  373. ret = devm_spi_register_controller(&pdev->dev, ctlr);
  374. if (ret) {
  375. dev_err(&pdev->dev,
  376. "failed to register slave controller(%d)\n", ret);
  377. clk_disable_unprepare(mdata->spi_clk);
  378. goto err_disable_runtime_pm;
  379. }
  380. clk_disable_unprepare(mdata->spi_clk);
  381. return 0;
  382. err_disable_runtime_pm:
  383. pm_runtime_disable(&pdev->dev);
  384. err_put_ctlr:
  385. spi_controller_put(ctlr);
  386. return ret;
  387. }
  388. static int mtk_spi_slave_remove(struct platform_device *pdev)
  389. {
  390. pm_runtime_disable(&pdev->dev);
  391. return 0;
  392. }
  393. #ifdef CONFIG_PM_SLEEP
  394. static int mtk_spi_slave_suspend(struct device *dev)
  395. {
  396. struct spi_controller *ctlr = dev_get_drvdata(dev);
  397. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  398. int ret;
  399. ret = spi_controller_suspend(ctlr);
  400. if (ret)
  401. return ret;
  402. if (!pm_runtime_suspended(dev))
  403. clk_disable_unprepare(mdata->spi_clk);
  404. return ret;
  405. }
  406. static int mtk_spi_slave_resume(struct device *dev)
  407. {
  408. struct spi_controller *ctlr = dev_get_drvdata(dev);
  409. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  410. int ret;
  411. if (!pm_runtime_suspended(dev)) {
  412. ret = clk_prepare_enable(mdata->spi_clk);
  413. if (ret < 0) {
  414. dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
  415. return ret;
  416. }
  417. }
  418. ret = spi_controller_resume(ctlr);
  419. if (ret < 0)
  420. clk_disable_unprepare(mdata->spi_clk);
  421. return ret;
  422. }
  423. #endif /* CONFIG_PM_SLEEP */
  424. #ifdef CONFIG_PM
  425. static int mtk_spi_slave_runtime_suspend(struct device *dev)
  426. {
  427. struct spi_controller *ctlr = dev_get_drvdata(dev);
  428. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  429. clk_disable_unprepare(mdata->spi_clk);
  430. return 0;
  431. }
  432. static int mtk_spi_slave_runtime_resume(struct device *dev)
  433. {
  434. struct spi_controller *ctlr = dev_get_drvdata(dev);
  435. struct mtk_spi_slave *mdata = spi_controller_get_devdata(ctlr);
  436. int ret;
  437. ret = clk_prepare_enable(mdata->spi_clk);
  438. if (ret < 0) {
  439. dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
  440. return ret;
  441. }
  442. return 0;
  443. }
  444. #endif /* CONFIG_PM */
  445. static const struct dev_pm_ops mtk_spi_slave_pm = {
  446. SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_slave_suspend, mtk_spi_slave_resume)
  447. SET_RUNTIME_PM_OPS(mtk_spi_slave_runtime_suspend,
  448. mtk_spi_slave_runtime_resume, NULL)
  449. };
  450. static struct platform_driver mtk_spi_slave_driver = {
  451. .driver = {
  452. .name = "mtk-spi-slave",
  453. .pm = &mtk_spi_slave_pm,
  454. .of_match_table = mtk_spi_slave_of_match,
  455. },
  456. .probe = mtk_spi_slave_probe,
  457. .remove = mtk_spi_slave_remove,
  458. };
  459. module_platform_driver(mtk_spi_slave_driver);
  460. MODULE_DESCRIPTION("MTK SPI Slave Controller driver");
  461. MODULE_AUTHOR("Leilk Liu <[email protected]>");
  462. MODULE_LICENSE("GPL v2");
  463. MODULE_ALIAS("platform:mtk-spi-slave");