knav_qmss_queue.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Keystone Queue Manager subsystem driver
  4. *
  5. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
  6. * Authors: Sandeep Nair <[email protected]>
  7. * Cyril Chemparathy <[email protected]>
  8. * Santosh Shilimkar <[email protected]>
  9. */
  10. #include <linux/debugfs.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/firmware.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/io.h>
  15. #include <linux/module.h>
  16. #include <linux/of_address.h>
  17. #include <linux/of_device.h>
  18. #include <linux/of_irq.h>
  19. #include <linux/pm_runtime.h>
  20. #include <linux/slab.h>
  21. #include <linux/soc/ti/knav_qmss.h>
  22. #include "knav_qmss.h"
  23. static struct knav_device *kdev;
  24. static DEFINE_MUTEX(knav_dev_lock);
  25. #define knav_dev_lock_held() \
  26. lockdep_is_held(&knav_dev_lock)
  27. /* Queue manager register indices in DTS */
  28. #define KNAV_QUEUE_PEEK_REG_INDEX 0
  29. #define KNAV_QUEUE_STATUS_REG_INDEX 1
  30. #define KNAV_QUEUE_CONFIG_REG_INDEX 2
  31. #define KNAV_QUEUE_REGION_REG_INDEX 3
  32. #define KNAV_QUEUE_PUSH_REG_INDEX 4
  33. #define KNAV_QUEUE_POP_REG_INDEX 5
  34. /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
  35. * There are no status and vbusm push registers on this version
  36. * of QMSS. Push registers are same as pop, So all indices above 1
  37. * are to be re-defined
  38. */
  39. #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
  40. #define KNAV_L_QUEUE_REGION_REG_INDEX 2
  41. #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
  42. /* PDSP register indices in DTS */
  43. #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
  44. #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
  45. #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
  46. #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
  47. #define knav_queue_idx_to_inst(kdev, idx) \
  48. (kdev->instances + (idx << kdev->inst_shift))
  49. #define for_each_handle_rcu(qh, inst) \
  50. list_for_each_entry_rcu(qh, &inst->handles, list, \
  51. knav_dev_lock_held())
  52. #define for_each_instance(idx, inst, kdev) \
  53. for (idx = 0, inst = kdev->instances; \
  54. idx < (kdev)->num_queues_in_use; \
  55. idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  56. /* All firmware file names end up here. List the firmware file names below.
  57. * Newest followed by older ones. Search is done from start of the array
  58. * until a firmware file is found.
  59. */
  60. static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  61. static bool device_ready;
  62. bool knav_qmss_device_ready(void)
  63. {
  64. return device_ready;
  65. }
  66. EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
  67. /**
  68. * knav_queue_notify: qmss queue notfier call
  69. *
  70. * @inst: - qmss queue instance like accumulator
  71. */
  72. void knav_queue_notify(struct knav_queue_inst *inst)
  73. {
  74. struct knav_queue *qh;
  75. if (!inst)
  76. return;
  77. rcu_read_lock();
  78. for_each_handle_rcu(qh, inst) {
  79. if (atomic_read(&qh->notifier_enabled) <= 0)
  80. continue;
  81. if (WARN_ON(!qh->notifier_fn))
  82. continue;
  83. this_cpu_inc(qh->stats->notifies);
  84. qh->notifier_fn(qh->notifier_fn_arg);
  85. }
  86. rcu_read_unlock();
  87. }
  88. EXPORT_SYMBOL_GPL(knav_queue_notify);
  89. static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  90. {
  91. struct knav_queue_inst *inst = _instdata;
  92. knav_queue_notify(inst);
  93. return IRQ_HANDLED;
  94. }
  95. static int knav_queue_setup_irq(struct knav_range_info *range,
  96. struct knav_queue_inst *inst)
  97. {
  98. unsigned queue = inst->id - range->queue_base;
  99. int ret = 0, irq;
  100. if (range->flags & RANGE_HAS_IRQ) {
  101. irq = range->irqs[queue].irq;
  102. ret = request_irq(irq, knav_queue_int_handler, 0,
  103. inst->irq_name, inst);
  104. if (ret)
  105. return ret;
  106. disable_irq(irq);
  107. if (range->irqs[queue].cpu_mask) {
  108. ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
  109. if (ret) {
  110. dev_warn(range->kdev->dev,
  111. "Failed to set IRQ affinity\n");
  112. return ret;
  113. }
  114. }
  115. }
  116. return ret;
  117. }
  118. static void knav_queue_free_irq(struct knav_queue_inst *inst)
  119. {
  120. struct knav_range_info *range = inst->range;
  121. unsigned queue = inst->id - inst->range->queue_base;
  122. int irq;
  123. if (range->flags & RANGE_HAS_IRQ) {
  124. irq = range->irqs[queue].irq;
  125. irq_set_affinity_hint(irq, NULL);
  126. free_irq(irq, inst);
  127. }
  128. }
  129. static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
  130. {
  131. return !list_empty(&inst->handles);
  132. }
  133. static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
  134. {
  135. return inst->range->flags & RANGE_RESERVED;
  136. }
  137. static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
  138. {
  139. struct knav_queue *tmp;
  140. rcu_read_lock();
  141. for_each_handle_rcu(tmp, inst) {
  142. if (tmp->flags & KNAV_QUEUE_SHARED) {
  143. rcu_read_unlock();
  144. return true;
  145. }
  146. }
  147. rcu_read_unlock();
  148. return false;
  149. }
  150. static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
  151. unsigned type)
  152. {
  153. if ((type == KNAV_QUEUE_QPEND) &&
  154. (inst->range->flags & RANGE_HAS_IRQ)) {
  155. return true;
  156. } else if ((type == KNAV_QUEUE_ACC) &&
  157. (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
  158. return true;
  159. } else if ((type == KNAV_QUEUE_GP) &&
  160. !(inst->range->flags &
  161. (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
  162. return true;
  163. }
  164. return false;
  165. }
  166. static inline struct knav_queue_inst *
  167. knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
  168. {
  169. struct knav_queue_inst *inst;
  170. int idx;
  171. for_each_instance(idx, inst, kdev) {
  172. if (inst->id == id)
  173. return inst;
  174. }
  175. return NULL;
  176. }
  177. static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
  178. {
  179. if (kdev->base_id <= id &&
  180. kdev->base_id + kdev->num_queues > id) {
  181. id -= kdev->base_id;
  182. return knav_queue_match_id_to_inst(kdev, id);
  183. }
  184. return NULL;
  185. }
  186. static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
  187. const char *name, unsigned flags)
  188. {
  189. struct knav_queue *qh;
  190. unsigned id;
  191. int ret = 0;
  192. qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
  193. if (!qh)
  194. return ERR_PTR(-ENOMEM);
  195. qh->stats = alloc_percpu(struct knav_queue_stats);
  196. if (!qh->stats) {
  197. ret = -ENOMEM;
  198. goto err;
  199. }
  200. qh->flags = flags;
  201. qh->inst = inst;
  202. id = inst->id - inst->qmgr->start_queue;
  203. qh->reg_push = &inst->qmgr->reg_push[id];
  204. qh->reg_pop = &inst->qmgr->reg_pop[id];
  205. qh->reg_peek = &inst->qmgr->reg_peek[id];
  206. /* first opener? */
  207. if (!knav_queue_is_busy(inst)) {
  208. struct knav_range_info *range = inst->range;
  209. inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
  210. if (range->ops && range->ops->open_queue)
  211. ret = range->ops->open_queue(range, inst, flags);
  212. if (ret)
  213. goto err;
  214. }
  215. list_add_tail_rcu(&qh->list, &inst->handles);
  216. return qh;
  217. err:
  218. if (qh->stats)
  219. free_percpu(qh->stats);
  220. devm_kfree(inst->kdev->dev, qh);
  221. return ERR_PTR(ret);
  222. }
  223. static struct knav_queue *
  224. knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
  225. {
  226. struct knav_queue_inst *inst;
  227. struct knav_queue *qh;
  228. mutex_lock(&knav_dev_lock);
  229. qh = ERR_PTR(-ENODEV);
  230. inst = knav_queue_find_by_id(id);
  231. if (!inst)
  232. goto unlock_ret;
  233. qh = ERR_PTR(-EEXIST);
  234. if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
  235. goto unlock_ret;
  236. qh = ERR_PTR(-EBUSY);
  237. if ((flags & KNAV_QUEUE_SHARED) &&
  238. (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
  239. goto unlock_ret;
  240. qh = __knav_queue_open(inst, name, flags);
  241. unlock_ret:
  242. mutex_unlock(&knav_dev_lock);
  243. return qh;
  244. }
  245. static struct knav_queue *knav_queue_open_by_type(const char *name,
  246. unsigned type, unsigned flags)
  247. {
  248. struct knav_queue_inst *inst;
  249. struct knav_queue *qh = ERR_PTR(-EINVAL);
  250. int idx;
  251. mutex_lock(&knav_dev_lock);
  252. for_each_instance(idx, inst, kdev) {
  253. if (knav_queue_is_reserved(inst))
  254. continue;
  255. if (!knav_queue_match_type(inst, type))
  256. continue;
  257. if (knav_queue_is_busy(inst))
  258. continue;
  259. qh = __knav_queue_open(inst, name, flags);
  260. goto unlock_ret;
  261. }
  262. unlock_ret:
  263. mutex_unlock(&knav_dev_lock);
  264. return qh;
  265. }
  266. static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
  267. {
  268. struct knav_range_info *range = inst->range;
  269. if (range->ops && range->ops->set_notify)
  270. range->ops->set_notify(range, inst, enabled);
  271. }
  272. static int knav_queue_enable_notifier(struct knav_queue *qh)
  273. {
  274. struct knav_queue_inst *inst = qh->inst;
  275. bool first;
  276. if (WARN_ON(!qh->notifier_fn))
  277. return -EINVAL;
  278. /* Adjust the per handle notifier count */
  279. first = (atomic_inc_return(&qh->notifier_enabled) == 1);
  280. if (!first)
  281. return 0; /* nothing to do */
  282. /* Now adjust the per instance notifier count */
  283. first = (atomic_inc_return(&inst->num_notifiers) == 1);
  284. if (first)
  285. knav_queue_set_notify(inst, true);
  286. return 0;
  287. }
  288. static int knav_queue_disable_notifier(struct knav_queue *qh)
  289. {
  290. struct knav_queue_inst *inst = qh->inst;
  291. bool last;
  292. last = (atomic_dec_return(&qh->notifier_enabled) == 0);
  293. if (!last)
  294. return 0; /* nothing to do */
  295. last = (atomic_dec_return(&inst->num_notifiers) == 0);
  296. if (last)
  297. knav_queue_set_notify(inst, false);
  298. return 0;
  299. }
  300. static int knav_queue_set_notifier(struct knav_queue *qh,
  301. struct knav_queue_notify_config *cfg)
  302. {
  303. knav_queue_notify_fn old_fn = qh->notifier_fn;
  304. if (!cfg)
  305. return -EINVAL;
  306. if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
  307. return -ENOTSUPP;
  308. if (!cfg->fn && old_fn)
  309. knav_queue_disable_notifier(qh);
  310. qh->notifier_fn = cfg->fn;
  311. qh->notifier_fn_arg = cfg->fn_arg;
  312. if (cfg->fn && !old_fn)
  313. knav_queue_enable_notifier(qh);
  314. return 0;
  315. }
  316. static int knav_gp_set_notify(struct knav_range_info *range,
  317. struct knav_queue_inst *inst,
  318. bool enabled)
  319. {
  320. unsigned queue;
  321. if (range->flags & RANGE_HAS_IRQ) {
  322. queue = inst->id - range->queue_base;
  323. if (enabled)
  324. enable_irq(range->irqs[queue].irq);
  325. else
  326. disable_irq_nosync(range->irqs[queue].irq);
  327. }
  328. return 0;
  329. }
  330. static int knav_gp_open_queue(struct knav_range_info *range,
  331. struct knav_queue_inst *inst, unsigned flags)
  332. {
  333. return knav_queue_setup_irq(range, inst);
  334. }
  335. static int knav_gp_close_queue(struct knav_range_info *range,
  336. struct knav_queue_inst *inst)
  337. {
  338. knav_queue_free_irq(inst);
  339. return 0;
  340. }
  341. static struct knav_range_ops knav_gp_range_ops = {
  342. .set_notify = knav_gp_set_notify,
  343. .open_queue = knav_gp_open_queue,
  344. .close_queue = knav_gp_close_queue,
  345. };
  346. static int knav_queue_get_count(void *qhandle)
  347. {
  348. struct knav_queue *qh = qhandle;
  349. struct knav_queue_inst *inst = qh->inst;
  350. return readl_relaxed(&qh->reg_peek[0].entry_count) +
  351. atomic_read(&inst->desc_count);
  352. }
  353. static void knav_queue_debug_show_instance(struct seq_file *s,
  354. struct knav_queue_inst *inst)
  355. {
  356. struct knav_device *kdev = inst->kdev;
  357. struct knav_queue *qh;
  358. int cpu = 0;
  359. int pushes = 0;
  360. int pops = 0;
  361. int push_errors = 0;
  362. int pop_errors = 0;
  363. int notifies = 0;
  364. if (!knav_queue_is_busy(inst))
  365. return;
  366. seq_printf(s, "\tqueue id %d (%s)\n",
  367. kdev->base_id + inst->id, inst->name);
  368. for_each_handle_rcu(qh, inst) {
  369. for_each_possible_cpu(cpu) {
  370. pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
  371. pops += per_cpu_ptr(qh->stats, cpu)->pops;
  372. push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
  373. pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
  374. notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
  375. }
  376. seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
  377. qh,
  378. pushes,
  379. pops,
  380. knav_queue_get_count(qh),
  381. notifies,
  382. push_errors,
  383. pop_errors);
  384. }
  385. }
  386. static int knav_queue_debug_show(struct seq_file *s, void *v)
  387. {
  388. struct knav_queue_inst *inst;
  389. int idx;
  390. mutex_lock(&knav_dev_lock);
  391. seq_printf(s, "%s: %u-%u\n",
  392. dev_name(kdev->dev), kdev->base_id,
  393. kdev->base_id + kdev->num_queues - 1);
  394. for_each_instance(idx, inst, kdev)
  395. knav_queue_debug_show_instance(s, inst);
  396. mutex_unlock(&knav_dev_lock);
  397. return 0;
  398. }
  399. DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
  400. static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
  401. u32 flags)
  402. {
  403. unsigned long end;
  404. u32 val = 0;
  405. end = jiffies + msecs_to_jiffies(timeout);
  406. while (time_after(end, jiffies)) {
  407. val = readl_relaxed(addr);
  408. if (flags)
  409. val &= flags;
  410. if (!val)
  411. break;
  412. cpu_relax();
  413. }
  414. return val ? -ETIMEDOUT : 0;
  415. }
  416. static int knav_queue_flush(struct knav_queue *qh)
  417. {
  418. struct knav_queue_inst *inst = qh->inst;
  419. unsigned id = inst->id - inst->qmgr->start_queue;
  420. atomic_set(&inst->desc_count, 0);
  421. writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
  422. return 0;
  423. }
  424. /**
  425. * knav_queue_open() - open a hardware queue
  426. * @name: - name to give the queue handle
  427. * @id: - desired queue number if any or specifes the type
  428. * of queue
  429. * @flags: - the following flags are applicable to queues:
  430. * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
  431. * exclusive by default.
  432. * Subsequent attempts to open a shared queue should
  433. * also have this flag.
  434. *
  435. * Returns a handle to the open hardware queue if successful. Use IS_ERR()
  436. * to check the returned value for error codes.
  437. */
  438. void *knav_queue_open(const char *name, unsigned id,
  439. unsigned flags)
  440. {
  441. struct knav_queue *qh = ERR_PTR(-EINVAL);
  442. switch (id) {
  443. case KNAV_QUEUE_QPEND:
  444. case KNAV_QUEUE_ACC:
  445. case KNAV_QUEUE_GP:
  446. qh = knav_queue_open_by_type(name, id, flags);
  447. break;
  448. default:
  449. qh = knav_queue_open_by_id(name, id, flags);
  450. break;
  451. }
  452. return qh;
  453. }
  454. EXPORT_SYMBOL_GPL(knav_queue_open);
  455. /**
  456. * knav_queue_close() - close a hardware queue handle
  457. * @qhandle: - handle to close
  458. */
  459. void knav_queue_close(void *qhandle)
  460. {
  461. struct knav_queue *qh = qhandle;
  462. struct knav_queue_inst *inst = qh->inst;
  463. while (atomic_read(&qh->notifier_enabled) > 0)
  464. knav_queue_disable_notifier(qh);
  465. mutex_lock(&knav_dev_lock);
  466. list_del_rcu(&qh->list);
  467. mutex_unlock(&knav_dev_lock);
  468. synchronize_rcu();
  469. if (!knav_queue_is_busy(inst)) {
  470. struct knav_range_info *range = inst->range;
  471. if (range->ops && range->ops->close_queue)
  472. range->ops->close_queue(range, inst);
  473. }
  474. free_percpu(qh->stats);
  475. devm_kfree(inst->kdev->dev, qh);
  476. }
  477. EXPORT_SYMBOL_GPL(knav_queue_close);
  478. /**
  479. * knav_queue_device_control() - Perform control operations on a queue
  480. * @qhandle: - queue handle
  481. * @cmd: - control commands
  482. * @arg: - command argument
  483. *
  484. * Returns 0 on success, errno otherwise.
  485. */
  486. int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
  487. unsigned long arg)
  488. {
  489. struct knav_queue *qh = qhandle;
  490. struct knav_queue_notify_config *cfg;
  491. int ret;
  492. switch ((int)cmd) {
  493. case KNAV_QUEUE_GET_ID:
  494. ret = qh->inst->kdev->base_id + qh->inst->id;
  495. break;
  496. case KNAV_QUEUE_FLUSH:
  497. ret = knav_queue_flush(qh);
  498. break;
  499. case KNAV_QUEUE_SET_NOTIFIER:
  500. cfg = (void *)arg;
  501. ret = knav_queue_set_notifier(qh, cfg);
  502. break;
  503. case KNAV_QUEUE_ENABLE_NOTIFY:
  504. ret = knav_queue_enable_notifier(qh);
  505. break;
  506. case KNAV_QUEUE_DISABLE_NOTIFY:
  507. ret = knav_queue_disable_notifier(qh);
  508. break;
  509. case KNAV_QUEUE_GET_COUNT:
  510. ret = knav_queue_get_count(qh);
  511. break;
  512. default:
  513. ret = -ENOTSUPP;
  514. break;
  515. }
  516. return ret;
  517. }
  518. EXPORT_SYMBOL_GPL(knav_queue_device_control);
  519. /**
  520. * knav_queue_push() - push data (or descriptor) to the tail of a queue
  521. * @qhandle: - hardware queue handle
  522. * @dma: - DMA data to push
  523. * @size: - size of data to push
  524. * @flags: - can be used to pass additional information
  525. *
  526. * Returns 0 on success, errno otherwise.
  527. */
  528. int knav_queue_push(void *qhandle, dma_addr_t dma,
  529. unsigned size, unsigned flags)
  530. {
  531. struct knav_queue *qh = qhandle;
  532. u32 val;
  533. val = (u32)dma | ((size / 16) - 1);
  534. writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
  535. this_cpu_inc(qh->stats->pushes);
  536. return 0;
  537. }
  538. EXPORT_SYMBOL_GPL(knav_queue_push);
  539. /**
  540. * knav_queue_pop() - pop data (or descriptor) from the head of a queue
  541. * @qhandle: - hardware queue handle
  542. * @size: - (optional) size of the data pop'ed.
  543. *
  544. * Returns a DMA address on success, 0 on failure.
  545. */
  546. dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
  547. {
  548. struct knav_queue *qh = qhandle;
  549. struct knav_queue_inst *inst = qh->inst;
  550. dma_addr_t dma;
  551. u32 val, idx;
  552. /* are we accumulated? */
  553. if (inst->descs) {
  554. if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
  555. atomic_inc(&inst->desc_count);
  556. return 0;
  557. }
  558. idx = atomic_inc_return(&inst->desc_head);
  559. idx &= ACC_DESCS_MASK;
  560. val = inst->descs[idx];
  561. } else {
  562. val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
  563. if (unlikely(!val))
  564. return 0;
  565. }
  566. dma = val & DESC_PTR_MASK;
  567. if (size)
  568. *size = ((val & DESC_SIZE_MASK) + 1) * 16;
  569. this_cpu_inc(qh->stats->pops);
  570. return dma;
  571. }
  572. EXPORT_SYMBOL_GPL(knav_queue_pop);
  573. /* carve out descriptors and push into queue */
  574. static void kdesc_fill_pool(struct knav_pool *pool)
  575. {
  576. struct knav_region *region;
  577. int i;
  578. region = pool->region;
  579. pool->desc_size = region->desc_size;
  580. for (i = 0; i < pool->num_desc; i++) {
  581. int index = pool->region_offset + i;
  582. dma_addr_t dma_addr;
  583. unsigned dma_size;
  584. dma_addr = region->dma_start + (region->desc_size * index);
  585. dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
  586. dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
  587. DMA_TO_DEVICE);
  588. knav_queue_push(pool->queue, dma_addr, dma_size, 0);
  589. }
  590. }
  591. /* pop out descriptors and close the queue */
  592. static void kdesc_empty_pool(struct knav_pool *pool)
  593. {
  594. dma_addr_t dma;
  595. unsigned size;
  596. void *desc;
  597. int i;
  598. if (!pool->queue)
  599. return;
  600. for (i = 0;; i++) {
  601. dma = knav_queue_pop(pool->queue, &size);
  602. if (!dma)
  603. break;
  604. desc = knav_pool_desc_dma_to_virt(pool, dma);
  605. if (!desc) {
  606. dev_dbg(pool->kdev->dev,
  607. "couldn't unmap desc, continuing\n");
  608. continue;
  609. }
  610. }
  611. WARN_ON(i != pool->num_desc);
  612. knav_queue_close(pool->queue);
  613. }
  614. /* Get the DMA address of a descriptor */
  615. dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
  616. {
  617. struct knav_pool *pool = ph;
  618. return pool->region->dma_start + (virt - pool->region->virt_start);
  619. }
  620. EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
  621. void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
  622. {
  623. struct knav_pool *pool = ph;
  624. return pool->region->virt_start + (dma - pool->region->dma_start);
  625. }
  626. EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
  627. /**
  628. * knav_pool_create() - Create a pool of descriptors
  629. * @name: - name to give the pool handle
  630. * @num_desc: - numbers of descriptors in the pool
  631. * @region_id: - QMSS region id from which the descriptors are to be
  632. * allocated.
  633. *
  634. * Returns a pool handle on success.
  635. * Use IS_ERR_OR_NULL() to identify error values on return.
  636. */
  637. void *knav_pool_create(const char *name,
  638. int num_desc, int region_id)
  639. {
  640. struct knav_region *reg_itr, *region = NULL;
  641. struct knav_pool *pool, *pi = NULL, *iter;
  642. struct list_head *node;
  643. unsigned last_offset;
  644. int ret;
  645. if (!kdev)
  646. return ERR_PTR(-EPROBE_DEFER);
  647. if (!kdev->dev)
  648. return ERR_PTR(-ENODEV);
  649. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  650. if (!pool) {
  651. dev_err(kdev->dev, "out of memory allocating pool\n");
  652. return ERR_PTR(-ENOMEM);
  653. }
  654. for_each_region(kdev, reg_itr) {
  655. if (reg_itr->id != region_id)
  656. continue;
  657. region = reg_itr;
  658. break;
  659. }
  660. if (!region) {
  661. dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
  662. ret = -EINVAL;
  663. goto err;
  664. }
  665. pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  666. if (IS_ERR(pool->queue)) {
  667. dev_err(kdev->dev,
  668. "failed to open queue for pool(%s), error %ld\n",
  669. name, PTR_ERR(pool->queue));
  670. ret = PTR_ERR(pool->queue);
  671. goto err;
  672. }
  673. pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
  674. pool->kdev = kdev;
  675. pool->dev = kdev->dev;
  676. mutex_lock(&knav_dev_lock);
  677. if (num_desc > (region->num_desc - region->used_desc)) {
  678. dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
  679. region_id, name);
  680. ret = -ENOMEM;
  681. goto err_unlock;
  682. }
  683. /* Region maintains a sorted (by region offset) list of pools
  684. * use the first free slot which is large enough to accomodate
  685. * the request
  686. */
  687. last_offset = 0;
  688. node = &region->pools;
  689. list_for_each_entry(iter, &region->pools, region_inst) {
  690. if ((iter->region_offset - last_offset) >= num_desc) {
  691. pi = iter;
  692. break;
  693. }
  694. last_offset = iter->region_offset + iter->num_desc;
  695. }
  696. if (pi) {
  697. node = &pi->region_inst;
  698. pool->region = region;
  699. pool->num_desc = num_desc;
  700. pool->region_offset = last_offset;
  701. region->used_desc += num_desc;
  702. list_add_tail(&pool->list, &kdev->pools);
  703. list_add_tail(&pool->region_inst, node);
  704. } else {
  705. dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
  706. name, region_id);
  707. ret = -ENOMEM;
  708. goto err_unlock;
  709. }
  710. mutex_unlock(&knav_dev_lock);
  711. kdesc_fill_pool(pool);
  712. return pool;
  713. err_unlock:
  714. mutex_unlock(&knav_dev_lock);
  715. err:
  716. kfree(pool->name);
  717. devm_kfree(kdev->dev, pool);
  718. return ERR_PTR(ret);
  719. }
  720. EXPORT_SYMBOL_GPL(knav_pool_create);
  721. /**
  722. * knav_pool_destroy() - Free a pool of descriptors
  723. * @ph: - pool handle
  724. */
  725. void knav_pool_destroy(void *ph)
  726. {
  727. struct knav_pool *pool = ph;
  728. if (!pool)
  729. return;
  730. if (!pool->region)
  731. return;
  732. kdesc_empty_pool(pool);
  733. mutex_lock(&knav_dev_lock);
  734. pool->region->used_desc -= pool->num_desc;
  735. list_del(&pool->region_inst);
  736. list_del(&pool->list);
  737. mutex_unlock(&knav_dev_lock);
  738. kfree(pool->name);
  739. devm_kfree(kdev->dev, pool);
  740. }
  741. EXPORT_SYMBOL_GPL(knav_pool_destroy);
  742. /**
  743. * knav_pool_desc_get() - Get a descriptor from the pool
  744. * @ph: - pool handle
  745. *
  746. * Returns descriptor from the pool.
  747. */
  748. void *knav_pool_desc_get(void *ph)
  749. {
  750. struct knav_pool *pool = ph;
  751. dma_addr_t dma;
  752. unsigned size;
  753. void *data;
  754. dma = knav_queue_pop(pool->queue, &size);
  755. if (unlikely(!dma))
  756. return ERR_PTR(-ENOMEM);
  757. data = knav_pool_desc_dma_to_virt(pool, dma);
  758. return data;
  759. }
  760. EXPORT_SYMBOL_GPL(knav_pool_desc_get);
  761. /**
  762. * knav_pool_desc_put() - return a descriptor to the pool
  763. * @ph: - pool handle
  764. * @desc: - virtual address
  765. */
  766. void knav_pool_desc_put(void *ph, void *desc)
  767. {
  768. struct knav_pool *pool = ph;
  769. dma_addr_t dma;
  770. dma = knav_pool_desc_virt_to_dma(pool, desc);
  771. knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
  772. }
  773. EXPORT_SYMBOL_GPL(knav_pool_desc_put);
  774. /**
  775. * knav_pool_desc_map() - Map descriptor for DMA transfer
  776. * @ph: - pool handle
  777. * @desc: - address of descriptor to map
  778. * @size: - size of descriptor to map
  779. * @dma: - DMA address return pointer
  780. * @dma_sz: - adjusted return pointer
  781. *
  782. * Returns 0 on success, errno otherwise.
  783. */
  784. int knav_pool_desc_map(void *ph, void *desc, unsigned size,
  785. dma_addr_t *dma, unsigned *dma_sz)
  786. {
  787. struct knav_pool *pool = ph;
  788. *dma = knav_pool_desc_virt_to_dma(pool, desc);
  789. size = min(size, pool->region->desc_size);
  790. size = ALIGN(size, SMP_CACHE_BYTES);
  791. *dma_sz = size;
  792. dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
  793. /* Ensure the descriptor reaches to the memory */
  794. __iowmb();
  795. return 0;
  796. }
  797. EXPORT_SYMBOL_GPL(knav_pool_desc_map);
  798. /**
  799. * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
  800. * @ph: - pool handle
  801. * @dma: - DMA address of descriptor to unmap
  802. * @dma_sz: - size of descriptor to unmap
  803. *
  804. * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
  805. * error values on return.
  806. */
  807. void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
  808. {
  809. struct knav_pool *pool = ph;
  810. unsigned desc_sz;
  811. void *desc;
  812. desc_sz = min(dma_sz, pool->region->desc_size);
  813. desc = knav_pool_desc_dma_to_virt(pool, dma);
  814. dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
  815. prefetch(desc);
  816. return desc;
  817. }
  818. EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
  819. /**
  820. * knav_pool_count() - Get the number of descriptors in pool.
  821. * @ph: - pool handle
  822. * Returns number of elements in the pool.
  823. */
  824. int knav_pool_count(void *ph)
  825. {
  826. struct knav_pool *pool = ph;
  827. return knav_queue_get_count(pool->queue);
  828. }
  829. EXPORT_SYMBOL_GPL(knav_pool_count);
  830. static void knav_queue_setup_region(struct knav_device *kdev,
  831. struct knav_region *region)
  832. {
  833. unsigned hw_num_desc, hw_desc_size, size;
  834. struct knav_reg_region __iomem *regs;
  835. struct knav_qmgr_info *qmgr;
  836. struct knav_pool *pool;
  837. int id = region->id;
  838. struct page *page;
  839. /* unused region? */
  840. if (!region->num_desc) {
  841. dev_warn(kdev->dev, "unused region %s\n", region->name);
  842. return;
  843. }
  844. /* get hardware descriptor value */
  845. hw_num_desc = ilog2(region->num_desc - 1) + 1;
  846. /* did we force fit ourselves into nothingness? */
  847. if (region->num_desc < 32) {
  848. region->num_desc = 0;
  849. dev_warn(kdev->dev, "too few descriptors in region %s\n",
  850. region->name);
  851. return;
  852. }
  853. size = region->num_desc * region->desc_size;
  854. region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
  855. GFP_DMA32);
  856. if (!region->virt_start) {
  857. region->num_desc = 0;
  858. dev_err(kdev->dev, "memory alloc failed for region %s\n",
  859. region->name);
  860. return;
  861. }
  862. region->virt_end = region->virt_start + size;
  863. page = virt_to_page(region->virt_start);
  864. region->dma_start = dma_map_page(kdev->dev, page, 0, size,
  865. DMA_BIDIRECTIONAL);
  866. if (dma_mapping_error(kdev->dev, region->dma_start)) {
  867. dev_err(kdev->dev, "dma map failed for region %s\n",
  868. region->name);
  869. goto fail;
  870. }
  871. region->dma_end = region->dma_start + size;
  872. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  873. if (!pool) {
  874. dev_err(kdev->dev, "out of memory allocating dummy pool\n");
  875. goto fail;
  876. }
  877. pool->num_desc = 0;
  878. pool->region_offset = region->num_desc;
  879. list_add(&pool->region_inst, &region->pools);
  880. dev_dbg(kdev->dev,
  881. "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
  882. region->name, id, region->desc_size, region->num_desc,
  883. region->link_index, &region->dma_start, &region->dma_end,
  884. region->virt_start, region->virt_end);
  885. hw_desc_size = (region->desc_size / 16) - 1;
  886. hw_num_desc -= 5;
  887. for_each_qmgr(kdev, qmgr) {
  888. regs = qmgr->reg_region + id;
  889. writel_relaxed((u32)region->dma_start, &regs->base);
  890. writel_relaxed(region->link_index, &regs->start_index);
  891. writel_relaxed(hw_desc_size << 16 | hw_num_desc,
  892. &regs->size_count);
  893. }
  894. return;
  895. fail:
  896. if (region->dma_start)
  897. dma_unmap_page(kdev->dev, region->dma_start, size,
  898. DMA_BIDIRECTIONAL);
  899. if (region->virt_start)
  900. free_pages_exact(region->virt_start, size);
  901. region->num_desc = 0;
  902. return;
  903. }
  904. static const char *knav_queue_find_name(struct device_node *node)
  905. {
  906. const char *name;
  907. if (of_property_read_string(node, "label", &name) < 0)
  908. name = node->name;
  909. if (!name)
  910. name = "unknown";
  911. return name;
  912. }
  913. static int knav_queue_setup_regions(struct knav_device *kdev,
  914. struct device_node *regions)
  915. {
  916. struct device *dev = kdev->dev;
  917. struct knav_region *region;
  918. struct device_node *child;
  919. u32 temp[2];
  920. int ret;
  921. for_each_child_of_node(regions, child) {
  922. region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
  923. if (!region) {
  924. of_node_put(child);
  925. dev_err(dev, "out of memory allocating region\n");
  926. return -ENOMEM;
  927. }
  928. region->name = knav_queue_find_name(child);
  929. of_property_read_u32(child, "id", &region->id);
  930. ret = of_property_read_u32_array(child, "region-spec", temp, 2);
  931. if (!ret) {
  932. region->num_desc = temp[0];
  933. region->desc_size = temp[1];
  934. } else {
  935. dev_err(dev, "invalid region info %s\n", region->name);
  936. devm_kfree(dev, region);
  937. continue;
  938. }
  939. if (!of_get_property(child, "link-index", NULL)) {
  940. dev_err(dev, "No link info for %s\n", region->name);
  941. devm_kfree(dev, region);
  942. continue;
  943. }
  944. ret = of_property_read_u32(child, "link-index",
  945. &region->link_index);
  946. if (ret) {
  947. dev_err(dev, "link index not found for %s\n",
  948. region->name);
  949. devm_kfree(dev, region);
  950. continue;
  951. }
  952. INIT_LIST_HEAD(&region->pools);
  953. list_add_tail(&region->list, &kdev->regions);
  954. }
  955. if (list_empty(&kdev->regions)) {
  956. dev_err(dev, "no valid region information found\n");
  957. return -ENODEV;
  958. }
  959. /* Next, we run through the regions and set things up */
  960. for_each_region(kdev, region)
  961. knav_queue_setup_region(kdev, region);
  962. return 0;
  963. }
  964. static int knav_get_link_ram(struct knav_device *kdev,
  965. const char *name,
  966. struct knav_link_ram_block *block)
  967. {
  968. struct platform_device *pdev = to_platform_device(kdev->dev);
  969. struct device_node *node = pdev->dev.of_node;
  970. u32 temp[2];
  971. /*
  972. * Note: link ram resources are specified in "entry" sized units. In
  973. * reality, although entries are ~40bits in hardware, we treat them as
  974. * 64-bit entities here.
  975. *
  976. * For example, to specify the internal link ram for Keystone-I class
  977. * devices, we would set the linkram0 resource to 0x80000-0x83fff.
  978. *
  979. * This gets a bit weird when other link rams are used. For example,
  980. * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
  981. * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
  982. * which accounts for 64-bits per entry, for 16K entries.
  983. */
  984. if (!of_property_read_u32_array(node, name , temp, 2)) {
  985. if (temp[0]) {
  986. /*
  987. * queue_base specified => using internal or onchip
  988. * link ram WARNING - we do not "reserve" this block
  989. */
  990. block->dma = (dma_addr_t)temp[0];
  991. block->virt = NULL;
  992. block->size = temp[1];
  993. } else {
  994. block->size = temp[1];
  995. /* queue_base not specific => allocate requested size */
  996. block->virt = dmam_alloc_coherent(kdev->dev,
  997. 8 * block->size, &block->dma,
  998. GFP_KERNEL);
  999. if (!block->virt) {
  1000. dev_err(kdev->dev, "failed to alloc linkram\n");
  1001. return -ENOMEM;
  1002. }
  1003. }
  1004. } else {
  1005. return -ENODEV;
  1006. }
  1007. return 0;
  1008. }
  1009. static int knav_queue_setup_link_ram(struct knav_device *kdev)
  1010. {
  1011. struct knav_link_ram_block *block;
  1012. struct knav_qmgr_info *qmgr;
  1013. for_each_qmgr(kdev, qmgr) {
  1014. block = &kdev->link_rams[0];
  1015. dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
  1016. &block->dma, block->virt, block->size);
  1017. writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
  1018. if (kdev->version == QMSS_66AK2G)
  1019. writel_relaxed(block->size,
  1020. &qmgr->reg_config->link_ram_size0);
  1021. else
  1022. writel_relaxed(block->size - 1,
  1023. &qmgr->reg_config->link_ram_size0);
  1024. block++;
  1025. if (!block->size)
  1026. continue;
  1027. dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
  1028. &block->dma, block->virt, block->size);
  1029. writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
  1030. }
  1031. return 0;
  1032. }
  1033. static int knav_setup_queue_range(struct knav_device *kdev,
  1034. struct device_node *node)
  1035. {
  1036. struct device *dev = kdev->dev;
  1037. struct knav_range_info *range;
  1038. struct knav_qmgr_info *qmgr;
  1039. u32 temp[2], start, end, id, index;
  1040. int ret, i;
  1041. range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
  1042. if (!range) {
  1043. dev_err(dev, "out of memory allocating range\n");
  1044. return -ENOMEM;
  1045. }
  1046. range->kdev = kdev;
  1047. range->name = knav_queue_find_name(node);
  1048. ret = of_property_read_u32_array(node, "qrange", temp, 2);
  1049. if (!ret) {
  1050. range->queue_base = temp[0] - kdev->base_id;
  1051. range->num_queues = temp[1];
  1052. } else {
  1053. dev_err(dev, "invalid queue range %s\n", range->name);
  1054. devm_kfree(dev, range);
  1055. return -EINVAL;
  1056. }
  1057. for (i = 0; i < RANGE_MAX_IRQS; i++) {
  1058. struct of_phandle_args oirq;
  1059. if (of_irq_parse_one(node, i, &oirq))
  1060. break;
  1061. range->irqs[i].irq = irq_create_of_mapping(&oirq);
  1062. if (range->irqs[i].irq == IRQ_NONE)
  1063. break;
  1064. range->num_irqs++;
  1065. if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
  1066. unsigned long mask;
  1067. int bit;
  1068. range->irqs[i].cpu_mask = devm_kzalloc(dev,
  1069. cpumask_size(), GFP_KERNEL);
  1070. if (!range->irqs[i].cpu_mask)
  1071. return -ENOMEM;
  1072. mask = (oirq.args[2] & 0x0000ff00) >> 8;
  1073. for_each_set_bit(bit, &mask, BITS_PER_LONG)
  1074. cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
  1075. }
  1076. }
  1077. range->num_irqs = min(range->num_irqs, range->num_queues);
  1078. if (range->num_irqs)
  1079. range->flags |= RANGE_HAS_IRQ;
  1080. if (of_get_property(node, "qalloc-by-id", NULL))
  1081. range->flags |= RANGE_RESERVED;
  1082. if (of_get_property(node, "accumulator", NULL)) {
  1083. ret = knav_init_acc_range(kdev, node, range);
  1084. if (ret < 0) {
  1085. devm_kfree(dev, range);
  1086. return ret;
  1087. }
  1088. } else {
  1089. range->ops = &knav_gp_range_ops;
  1090. }
  1091. /* set threshold to 1, and flush out the queues */
  1092. for_each_qmgr(kdev, qmgr) {
  1093. start = max(qmgr->start_queue, range->queue_base);
  1094. end = min(qmgr->start_queue + qmgr->num_queues,
  1095. range->queue_base + range->num_queues);
  1096. for (id = start; id < end; id++) {
  1097. index = id - qmgr->start_queue;
  1098. writel_relaxed(THRESH_GTE | 1,
  1099. &qmgr->reg_peek[index].ptr_size_thresh);
  1100. writel_relaxed(0,
  1101. &qmgr->reg_push[index].ptr_size_thresh);
  1102. }
  1103. }
  1104. list_add_tail(&range->list, &kdev->queue_ranges);
  1105. dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
  1106. range->name, range->queue_base,
  1107. range->queue_base + range->num_queues - 1,
  1108. range->num_irqs,
  1109. (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
  1110. (range->flags & RANGE_RESERVED) ? ", reserved" : "",
  1111. (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
  1112. kdev->num_queues_in_use += range->num_queues;
  1113. return 0;
  1114. }
  1115. static int knav_setup_queue_pools(struct knav_device *kdev,
  1116. struct device_node *queue_pools)
  1117. {
  1118. struct device_node *type, *range;
  1119. for_each_child_of_node(queue_pools, type) {
  1120. for_each_child_of_node(type, range) {
  1121. /* return value ignored, we init the rest... */
  1122. knav_setup_queue_range(kdev, range);
  1123. }
  1124. }
  1125. /* ... and barf if they all failed! */
  1126. if (list_empty(&kdev->queue_ranges)) {
  1127. dev_err(kdev->dev, "no valid queue range found\n");
  1128. return -ENODEV;
  1129. }
  1130. return 0;
  1131. }
  1132. static void knav_free_queue_range(struct knav_device *kdev,
  1133. struct knav_range_info *range)
  1134. {
  1135. if (range->ops && range->ops->free_range)
  1136. range->ops->free_range(range);
  1137. list_del(&range->list);
  1138. devm_kfree(kdev->dev, range);
  1139. }
  1140. static void knav_free_queue_ranges(struct knav_device *kdev)
  1141. {
  1142. struct knav_range_info *range;
  1143. for (;;) {
  1144. range = first_queue_range(kdev);
  1145. if (!range)
  1146. break;
  1147. knav_free_queue_range(kdev, range);
  1148. }
  1149. }
  1150. static void knav_queue_free_regions(struct knav_device *kdev)
  1151. {
  1152. struct knav_region *region;
  1153. struct knav_pool *pool, *tmp;
  1154. unsigned size;
  1155. for (;;) {
  1156. region = first_region(kdev);
  1157. if (!region)
  1158. break;
  1159. list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
  1160. knav_pool_destroy(pool);
  1161. size = region->virt_end - region->virt_start;
  1162. if (size)
  1163. free_pages_exact(region->virt_start, size);
  1164. list_del(&region->list);
  1165. devm_kfree(kdev->dev, region);
  1166. }
  1167. }
  1168. static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
  1169. struct device_node *node, int index)
  1170. {
  1171. struct resource res;
  1172. void __iomem *regs;
  1173. int ret;
  1174. ret = of_address_to_resource(node, index, &res);
  1175. if (ret) {
  1176. dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
  1177. node, index);
  1178. return ERR_PTR(ret);
  1179. }
  1180. regs = devm_ioremap_resource(kdev->dev, &res);
  1181. if (IS_ERR(regs))
  1182. dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
  1183. index, node);
  1184. return regs;
  1185. }
  1186. static int knav_queue_init_qmgrs(struct knav_device *kdev,
  1187. struct device_node *qmgrs)
  1188. {
  1189. struct device *dev = kdev->dev;
  1190. struct knav_qmgr_info *qmgr;
  1191. struct device_node *child;
  1192. u32 temp[2];
  1193. int ret;
  1194. for_each_child_of_node(qmgrs, child) {
  1195. qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
  1196. if (!qmgr) {
  1197. of_node_put(child);
  1198. dev_err(dev, "out of memory allocating qmgr\n");
  1199. return -ENOMEM;
  1200. }
  1201. ret = of_property_read_u32_array(child, "managed-queues",
  1202. temp, 2);
  1203. if (!ret) {
  1204. qmgr->start_queue = temp[0];
  1205. qmgr->num_queues = temp[1];
  1206. } else {
  1207. dev_err(dev, "invalid qmgr queue range\n");
  1208. devm_kfree(dev, qmgr);
  1209. continue;
  1210. }
  1211. dev_info(dev, "qmgr start queue %d, number of queues %d\n",
  1212. qmgr->start_queue, qmgr->num_queues);
  1213. qmgr->reg_peek =
  1214. knav_queue_map_reg(kdev, child,
  1215. KNAV_QUEUE_PEEK_REG_INDEX);
  1216. if (kdev->version == QMSS) {
  1217. qmgr->reg_status =
  1218. knav_queue_map_reg(kdev, child,
  1219. KNAV_QUEUE_STATUS_REG_INDEX);
  1220. }
  1221. qmgr->reg_config =
  1222. knav_queue_map_reg(kdev, child,
  1223. (kdev->version == QMSS_66AK2G) ?
  1224. KNAV_L_QUEUE_CONFIG_REG_INDEX :
  1225. KNAV_QUEUE_CONFIG_REG_INDEX);
  1226. qmgr->reg_region =
  1227. knav_queue_map_reg(kdev, child,
  1228. (kdev->version == QMSS_66AK2G) ?
  1229. KNAV_L_QUEUE_REGION_REG_INDEX :
  1230. KNAV_QUEUE_REGION_REG_INDEX);
  1231. qmgr->reg_push =
  1232. knav_queue_map_reg(kdev, child,
  1233. (kdev->version == QMSS_66AK2G) ?
  1234. KNAV_L_QUEUE_PUSH_REG_INDEX :
  1235. KNAV_QUEUE_PUSH_REG_INDEX);
  1236. if (kdev->version == QMSS) {
  1237. qmgr->reg_pop =
  1238. knav_queue_map_reg(kdev, child,
  1239. KNAV_QUEUE_POP_REG_INDEX);
  1240. }
  1241. if (IS_ERR(qmgr->reg_peek) ||
  1242. ((kdev->version == QMSS) &&
  1243. (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
  1244. IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
  1245. IS_ERR(qmgr->reg_push)) {
  1246. dev_err(dev, "failed to map qmgr regs\n");
  1247. if (kdev->version == QMSS) {
  1248. if (!IS_ERR(qmgr->reg_status))
  1249. devm_iounmap(dev, qmgr->reg_status);
  1250. if (!IS_ERR(qmgr->reg_pop))
  1251. devm_iounmap(dev, qmgr->reg_pop);
  1252. }
  1253. if (!IS_ERR(qmgr->reg_peek))
  1254. devm_iounmap(dev, qmgr->reg_peek);
  1255. if (!IS_ERR(qmgr->reg_config))
  1256. devm_iounmap(dev, qmgr->reg_config);
  1257. if (!IS_ERR(qmgr->reg_region))
  1258. devm_iounmap(dev, qmgr->reg_region);
  1259. if (!IS_ERR(qmgr->reg_push))
  1260. devm_iounmap(dev, qmgr->reg_push);
  1261. devm_kfree(dev, qmgr);
  1262. continue;
  1263. }
  1264. /* Use same push register for pop as well */
  1265. if (kdev->version == QMSS_66AK2G)
  1266. qmgr->reg_pop = qmgr->reg_push;
  1267. list_add_tail(&qmgr->list, &kdev->qmgrs);
  1268. dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
  1269. qmgr->start_queue, qmgr->num_queues,
  1270. qmgr->reg_peek, qmgr->reg_status,
  1271. qmgr->reg_config, qmgr->reg_region,
  1272. qmgr->reg_push, qmgr->reg_pop);
  1273. }
  1274. return 0;
  1275. }
  1276. static int knav_queue_init_pdsps(struct knav_device *kdev,
  1277. struct device_node *pdsps)
  1278. {
  1279. struct device *dev = kdev->dev;
  1280. struct knav_pdsp_info *pdsp;
  1281. struct device_node *child;
  1282. for_each_child_of_node(pdsps, child) {
  1283. pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
  1284. if (!pdsp) {
  1285. of_node_put(child);
  1286. dev_err(dev, "out of memory allocating pdsp\n");
  1287. return -ENOMEM;
  1288. }
  1289. pdsp->name = knav_queue_find_name(child);
  1290. pdsp->iram =
  1291. knav_queue_map_reg(kdev, child,
  1292. KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
  1293. pdsp->regs =
  1294. knav_queue_map_reg(kdev, child,
  1295. KNAV_QUEUE_PDSP_REGS_REG_INDEX);
  1296. pdsp->intd =
  1297. knav_queue_map_reg(kdev, child,
  1298. KNAV_QUEUE_PDSP_INTD_REG_INDEX);
  1299. pdsp->command =
  1300. knav_queue_map_reg(kdev, child,
  1301. KNAV_QUEUE_PDSP_CMD_REG_INDEX);
  1302. if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
  1303. IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
  1304. dev_err(dev, "failed to map pdsp %s regs\n",
  1305. pdsp->name);
  1306. if (!IS_ERR(pdsp->command))
  1307. devm_iounmap(dev, pdsp->command);
  1308. if (!IS_ERR(pdsp->iram))
  1309. devm_iounmap(dev, pdsp->iram);
  1310. if (!IS_ERR(pdsp->regs))
  1311. devm_iounmap(dev, pdsp->regs);
  1312. if (!IS_ERR(pdsp->intd))
  1313. devm_iounmap(dev, pdsp->intd);
  1314. devm_kfree(dev, pdsp);
  1315. continue;
  1316. }
  1317. of_property_read_u32(child, "id", &pdsp->id);
  1318. list_add_tail(&pdsp->list, &kdev->pdsps);
  1319. dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
  1320. pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
  1321. pdsp->intd);
  1322. }
  1323. return 0;
  1324. }
  1325. static int knav_queue_stop_pdsp(struct knav_device *kdev,
  1326. struct knav_pdsp_info *pdsp)
  1327. {
  1328. u32 val, timeout = 1000;
  1329. int ret;
  1330. val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
  1331. writel_relaxed(val, &pdsp->regs->control);
  1332. ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
  1333. PDSP_CTRL_RUNNING);
  1334. if (ret < 0) {
  1335. dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
  1336. return ret;
  1337. }
  1338. pdsp->loaded = false;
  1339. pdsp->started = false;
  1340. return 0;
  1341. }
  1342. static int knav_queue_load_pdsp(struct knav_device *kdev,
  1343. struct knav_pdsp_info *pdsp)
  1344. {
  1345. int i, ret, fwlen;
  1346. const struct firmware *fw;
  1347. bool found = false;
  1348. u32 *fwdata;
  1349. for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
  1350. if (knav_acc_firmwares[i]) {
  1351. ret = request_firmware_direct(&fw,
  1352. knav_acc_firmwares[i],
  1353. kdev->dev);
  1354. if (!ret) {
  1355. found = true;
  1356. break;
  1357. }
  1358. }
  1359. }
  1360. if (!found) {
  1361. dev_err(kdev->dev, "failed to get firmware for pdsp\n");
  1362. return -ENODEV;
  1363. }
  1364. dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
  1365. knav_acc_firmwares[i]);
  1366. writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
  1367. /* download the firmware */
  1368. fwdata = (u32 *)fw->data;
  1369. fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
  1370. for (i = 0; i < fwlen; i++)
  1371. writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
  1372. release_firmware(fw);
  1373. return 0;
  1374. }
  1375. static int knav_queue_start_pdsp(struct knav_device *kdev,
  1376. struct knav_pdsp_info *pdsp)
  1377. {
  1378. u32 val, timeout = 1000;
  1379. int ret;
  1380. /* write a command for sync */
  1381. writel_relaxed(0xffffffff, pdsp->command);
  1382. while (readl_relaxed(pdsp->command) != 0xffffffff)
  1383. cpu_relax();
  1384. /* soft reset the PDSP */
  1385. val = readl_relaxed(&pdsp->regs->control);
  1386. val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
  1387. writel_relaxed(val, &pdsp->regs->control);
  1388. /* enable pdsp */
  1389. val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
  1390. writel_relaxed(val, &pdsp->regs->control);
  1391. /* wait for command register to clear */
  1392. ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
  1393. if (ret < 0) {
  1394. dev_err(kdev->dev,
  1395. "timed out on pdsp %s command register wait\n",
  1396. pdsp->name);
  1397. return ret;
  1398. }
  1399. return 0;
  1400. }
  1401. static void knav_queue_stop_pdsps(struct knav_device *kdev)
  1402. {
  1403. struct knav_pdsp_info *pdsp;
  1404. /* disable all pdsps */
  1405. for_each_pdsp(kdev, pdsp)
  1406. knav_queue_stop_pdsp(kdev, pdsp);
  1407. }
  1408. static int knav_queue_start_pdsps(struct knav_device *kdev)
  1409. {
  1410. struct knav_pdsp_info *pdsp;
  1411. int ret;
  1412. knav_queue_stop_pdsps(kdev);
  1413. /* now load them all. We return success even if pdsp
  1414. * is not loaded as acc channels are optional on having
  1415. * firmware availability in the system. We set the loaded
  1416. * and stated flag and when initialize the acc range, check
  1417. * it and init the range only if pdsp is started.
  1418. */
  1419. for_each_pdsp(kdev, pdsp) {
  1420. ret = knav_queue_load_pdsp(kdev, pdsp);
  1421. if (!ret)
  1422. pdsp->loaded = true;
  1423. }
  1424. for_each_pdsp(kdev, pdsp) {
  1425. if (pdsp->loaded) {
  1426. ret = knav_queue_start_pdsp(kdev, pdsp);
  1427. if (!ret)
  1428. pdsp->started = true;
  1429. }
  1430. }
  1431. return 0;
  1432. }
  1433. static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
  1434. {
  1435. struct knav_qmgr_info *qmgr;
  1436. for_each_qmgr(kdev, qmgr) {
  1437. if ((id >= qmgr->start_queue) &&
  1438. (id < qmgr->start_queue + qmgr->num_queues))
  1439. return qmgr;
  1440. }
  1441. return NULL;
  1442. }
  1443. static int knav_queue_init_queue(struct knav_device *kdev,
  1444. struct knav_range_info *range,
  1445. struct knav_queue_inst *inst,
  1446. unsigned id)
  1447. {
  1448. char irq_name[KNAV_NAME_SIZE];
  1449. inst->qmgr = knav_find_qmgr(id);
  1450. if (!inst->qmgr)
  1451. return -1;
  1452. INIT_LIST_HEAD(&inst->handles);
  1453. inst->kdev = kdev;
  1454. inst->range = range;
  1455. inst->irq_num = -1;
  1456. inst->id = id;
  1457. scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
  1458. inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
  1459. if (range->ops && range->ops->init_queue)
  1460. return range->ops->init_queue(range, inst);
  1461. else
  1462. return 0;
  1463. }
  1464. static int knav_queue_init_queues(struct knav_device *kdev)
  1465. {
  1466. struct knav_range_info *range;
  1467. int size, id, base_idx;
  1468. int idx = 0, ret = 0;
  1469. /* how much do we need for instance data? */
  1470. size = sizeof(struct knav_queue_inst);
  1471. /* round this up to a power of 2, keep the index to instance
  1472. * arithmetic fast.
  1473. * */
  1474. kdev->inst_shift = order_base_2(size);
  1475. size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
  1476. kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
  1477. if (!kdev->instances)
  1478. return -ENOMEM;
  1479. for_each_queue_range(kdev, range) {
  1480. if (range->ops && range->ops->init_range)
  1481. range->ops->init_range(range);
  1482. base_idx = idx;
  1483. for (id = range->queue_base;
  1484. id < range->queue_base + range->num_queues; id++, idx++) {
  1485. ret = knav_queue_init_queue(kdev, range,
  1486. knav_queue_idx_to_inst(kdev, idx), id);
  1487. if (ret < 0)
  1488. return ret;
  1489. }
  1490. range->queue_base_inst =
  1491. knav_queue_idx_to_inst(kdev, base_idx);
  1492. }
  1493. return 0;
  1494. }
  1495. /* Match table for of_platform binding */
  1496. static const struct of_device_id keystone_qmss_of_match[] = {
  1497. {
  1498. .compatible = "ti,keystone-navigator-qmss",
  1499. },
  1500. {
  1501. .compatible = "ti,66ak2g-navss-qm",
  1502. .data = (void *)QMSS_66AK2G,
  1503. },
  1504. {},
  1505. };
  1506. MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
  1507. static int knav_queue_probe(struct platform_device *pdev)
  1508. {
  1509. struct device_node *node = pdev->dev.of_node;
  1510. struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
  1511. const struct of_device_id *match;
  1512. struct device *dev = &pdev->dev;
  1513. u32 temp[2];
  1514. int ret;
  1515. if (!node) {
  1516. dev_err(dev, "device tree info unavailable\n");
  1517. return -ENODEV;
  1518. }
  1519. kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
  1520. if (!kdev) {
  1521. dev_err(dev, "memory allocation failed\n");
  1522. return -ENOMEM;
  1523. }
  1524. match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
  1525. if (match && match->data)
  1526. kdev->version = QMSS_66AK2G;
  1527. platform_set_drvdata(pdev, kdev);
  1528. kdev->dev = dev;
  1529. INIT_LIST_HEAD(&kdev->queue_ranges);
  1530. INIT_LIST_HEAD(&kdev->qmgrs);
  1531. INIT_LIST_HEAD(&kdev->pools);
  1532. INIT_LIST_HEAD(&kdev->regions);
  1533. INIT_LIST_HEAD(&kdev->pdsps);
  1534. pm_runtime_enable(&pdev->dev);
  1535. ret = pm_runtime_resume_and_get(&pdev->dev);
  1536. if (ret < 0) {
  1537. pm_runtime_disable(&pdev->dev);
  1538. dev_err(dev, "Failed to enable QMSS\n");
  1539. return ret;
  1540. }
  1541. if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
  1542. dev_err(dev, "queue-range not specified\n");
  1543. ret = -ENODEV;
  1544. goto err;
  1545. }
  1546. kdev->base_id = temp[0];
  1547. kdev->num_queues = temp[1];
  1548. /* Initialize queue managers using device tree configuration */
  1549. qmgrs = of_get_child_by_name(node, "qmgrs");
  1550. if (!qmgrs) {
  1551. dev_err(dev, "queue manager info not specified\n");
  1552. ret = -ENODEV;
  1553. goto err;
  1554. }
  1555. ret = knav_queue_init_qmgrs(kdev, qmgrs);
  1556. of_node_put(qmgrs);
  1557. if (ret)
  1558. goto err;
  1559. /* get pdsp configuration values from device tree */
  1560. pdsps = of_get_child_by_name(node, "pdsps");
  1561. if (pdsps) {
  1562. ret = knav_queue_init_pdsps(kdev, pdsps);
  1563. if (ret)
  1564. goto err;
  1565. ret = knav_queue_start_pdsps(kdev);
  1566. if (ret)
  1567. goto err;
  1568. }
  1569. of_node_put(pdsps);
  1570. /* get usable queue range values from device tree */
  1571. queue_pools = of_get_child_by_name(node, "queue-pools");
  1572. if (!queue_pools) {
  1573. dev_err(dev, "queue-pools not specified\n");
  1574. ret = -ENODEV;
  1575. goto err;
  1576. }
  1577. ret = knav_setup_queue_pools(kdev, queue_pools);
  1578. of_node_put(queue_pools);
  1579. if (ret)
  1580. goto err;
  1581. ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
  1582. if (ret) {
  1583. dev_err(kdev->dev, "could not setup linking ram\n");
  1584. goto err;
  1585. }
  1586. ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
  1587. if (ret) {
  1588. /*
  1589. * nothing really, we have one linking ram already, so we just
  1590. * live within our means
  1591. */
  1592. }
  1593. ret = knav_queue_setup_link_ram(kdev);
  1594. if (ret)
  1595. goto err;
  1596. regions = of_get_child_by_name(node, "descriptor-regions");
  1597. if (!regions) {
  1598. dev_err(dev, "descriptor-regions not specified\n");
  1599. ret = -ENODEV;
  1600. goto err;
  1601. }
  1602. ret = knav_queue_setup_regions(kdev, regions);
  1603. of_node_put(regions);
  1604. if (ret)
  1605. goto err;
  1606. ret = knav_queue_init_queues(kdev);
  1607. if (ret < 0) {
  1608. dev_err(dev, "hwqueue initialization failed\n");
  1609. goto err;
  1610. }
  1611. debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
  1612. &knav_queue_debug_fops);
  1613. device_ready = true;
  1614. return 0;
  1615. err:
  1616. knav_queue_stop_pdsps(kdev);
  1617. knav_queue_free_regions(kdev);
  1618. knav_free_queue_ranges(kdev);
  1619. pm_runtime_put_sync(&pdev->dev);
  1620. pm_runtime_disable(&pdev->dev);
  1621. return ret;
  1622. }
  1623. static int knav_queue_remove(struct platform_device *pdev)
  1624. {
  1625. /* TODO: Free resources */
  1626. pm_runtime_put_sync(&pdev->dev);
  1627. pm_runtime_disable(&pdev->dev);
  1628. return 0;
  1629. }
  1630. static struct platform_driver keystone_qmss_driver = {
  1631. .probe = knav_queue_probe,
  1632. .remove = knav_queue_remove,
  1633. .driver = {
  1634. .name = "keystone-navigator-qmss",
  1635. .of_match_table = keystone_qmss_of_match,
  1636. },
  1637. };
  1638. module_platform_driver(keystone_qmss_driver);
  1639. MODULE_LICENSE("GPL v2");
  1640. MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
  1641. MODULE_AUTHOR("Sandeep Nair <[email protected]>");
  1642. MODULE_AUTHOR("Santosh Shilimkar <[email protected]>");