pm8001_hwi.c 159 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971
  1. /*
  2. * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
  3. *
  4. * Copyright (c) 2008-2009 USI Co., Ltd.
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions, and the following disclaimer,
  12. * without modification.
  13. * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  14. * substantially similar to the "NO WARRANTY" disclaimer below
  15. * ("Disclaimer") and any redistribution must be conditioned upon
  16. * including a substantially similar Disclaimer requirement for further
  17. * binary redistribution.
  18. * 3. Neither the names of the above-listed copyright holders nor the names
  19. * of any contributors may be used to endorse or promote products derived
  20. * from this software without specific prior written permission.
  21. *
  22. * Alternatively, this software may be distributed under the terms of the
  23. * GNU General Public License ("GPL") version 2 as published by the Free
  24. * Software Foundation.
  25. *
  26. * NO WARRANTY
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  33. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  34. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  35. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
  36. * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  37. * POSSIBILITY OF SUCH DAMAGES.
  38. *
  39. */
  40. #include <linux/slab.h>
  41. #include "pm8001_sas.h"
  42. #include "pm8001_hwi.h"
  43. #include "pm8001_chips.h"
  44. #include "pm8001_ctl.h"
  45. #include "pm80xx_tracepoints.h"
  46. /**
  47. * read_main_config_table - read the configure table and save it.
  48. * @pm8001_ha: our hba card information
  49. */
  50. static void read_main_config_table(struct pm8001_hba_info *pm8001_ha)
  51. {
  52. void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
  53. pm8001_ha->main_cfg_tbl.pm8001_tbl.signature =
  54. pm8001_mr32(address, 0x00);
  55. pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev =
  56. pm8001_mr32(address, 0x04);
  57. pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev =
  58. pm8001_mr32(address, 0x08);
  59. pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io =
  60. pm8001_mr32(address, 0x0C);
  61. pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl =
  62. pm8001_mr32(address, 0x10);
  63. pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag =
  64. pm8001_mr32(address, 0x14);
  65. pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset =
  66. pm8001_mr32(address, 0x18);
  67. pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset =
  68. pm8001_mr32(address, MAIN_IBQ_OFFSET);
  69. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset =
  70. pm8001_mr32(address, MAIN_OBQ_OFFSET);
  71. pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag =
  72. pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET);
  73. /* read analog Setting offset from the configuration table */
  74. pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset =
  75. pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
  76. /* read Error Dump Offset and Length */
  77. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 =
  78. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
  79. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 =
  80. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
  81. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 =
  82. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
  83. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 =
  84. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
  85. }
  86. /**
  87. * read_general_status_table - read the general status table and save it.
  88. * @pm8001_ha: our hba card information
  89. */
  90. static void read_general_status_table(struct pm8001_hba_info *pm8001_ha)
  91. {
  92. void __iomem *address = pm8001_ha->general_stat_tbl_addr;
  93. pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate =
  94. pm8001_mr32(address, 0x00);
  95. pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 =
  96. pm8001_mr32(address, 0x04);
  97. pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 =
  98. pm8001_mr32(address, 0x08);
  99. pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt =
  100. pm8001_mr32(address, 0x0C);
  101. pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt =
  102. pm8001_mr32(address, 0x10);
  103. pm8001_ha->gs_tbl.pm8001_tbl.rsvd =
  104. pm8001_mr32(address, 0x14);
  105. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] =
  106. pm8001_mr32(address, 0x18);
  107. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] =
  108. pm8001_mr32(address, 0x1C);
  109. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] =
  110. pm8001_mr32(address, 0x20);
  111. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] =
  112. pm8001_mr32(address, 0x24);
  113. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] =
  114. pm8001_mr32(address, 0x28);
  115. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] =
  116. pm8001_mr32(address, 0x2C);
  117. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] =
  118. pm8001_mr32(address, 0x30);
  119. pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] =
  120. pm8001_mr32(address, 0x34);
  121. pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val =
  122. pm8001_mr32(address, 0x38);
  123. pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] =
  124. pm8001_mr32(address, 0x3C);
  125. pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] =
  126. pm8001_mr32(address, 0x40);
  127. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] =
  128. pm8001_mr32(address, 0x44);
  129. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] =
  130. pm8001_mr32(address, 0x48);
  131. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] =
  132. pm8001_mr32(address, 0x4C);
  133. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] =
  134. pm8001_mr32(address, 0x50);
  135. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] =
  136. pm8001_mr32(address, 0x54);
  137. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] =
  138. pm8001_mr32(address, 0x58);
  139. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] =
  140. pm8001_mr32(address, 0x5C);
  141. pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] =
  142. pm8001_mr32(address, 0x60);
  143. }
  144. /**
  145. * read_inbnd_queue_table - read the inbound queue table and save it.
  146. * @pm8001_ha: our hba card information
  147. */
  148. static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
  149. {
  150. int i;
  151. void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
  152. for (i = 0; i < PM8001_MAX_INB_NUM; i++) {
  153. u32 offset = i * 0x20;
  154. pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
  155. get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
  156. pm8001_ha->inbnd_q_tbl[i].pi_offset =
  157. pm8001_mr32(address, (offset + 0x18));
  158. }
  159. }
  160. /**
  161. * read_outbnd_queue_table - read the outbound queue table and save it.
  162. * @pm8001_ha: our hba card information
  163. */
  164. static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
  165. {
  166. int i;
  167. void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
  168. for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) {
  169. u32 offset = i * 0x24;
  170. pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
  171. get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
  172. pm8001_ha->outbnd_q_tbl[i].ci_offset =
  173. pm8001_mr32(address, (offset + 0x18));
  174. }
  175. }
  176. /**
  177. * init_default_table_values - init the default table.
  178. * @pm8001_ha: our hba card information
  179. */
  180. static void init_default_table_values(struct pm8001_hba_info *pm8001_ha)
  181. {
  182. int i;
  183. u32 offsetib, offsetob;
  184. void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
  185. void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
  186. u32 ib_offset = pm8001_ha->ib_offset;
  187. u32 ob_offset = pm8001_ha->ob_offset;
  188. u32 ci_offset = pm8001_ha->ci_offset;
  189. u32 pi_offset = pm8001_ha->pi_offset;
  190. pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0;
  191. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0;
  192. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0;
  193. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0;
  194. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0;
  195. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 =
  196. 0;
  197. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 =
  198. 0;
  199. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0;
  200. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0;
  201. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0;
  202. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0;
  203. pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr =
  204. pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
  205. pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr =
  206. pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
  207. pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size =
  208. PM8001_EVENT_LOG_SIZE;
  209. pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01;
  210. pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr =
  211. pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
  212. pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr =
  213. pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
  214. pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size =
  215. PM8001_EVENT_LOG_SIZE;
  216. pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01;
  217. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01;
  218. for (i = 0; i < pm8001_ha->max_q_num; i++) {
  219. pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt =
  220. PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30);
  221. pm8001_ha->inbnd_q_tbl[i].upper_base_addr =
  222. pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi;
  223. pm8001_ha->inbnd_q_tbl[i].lower_base_addr =
  224. pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo;
  225. pm8001_ha->inbnd_q_tbl[i].base_virt =
  226. (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr;
  227. pm8001_ha->inbnd_q_tbl[i].total_length =
  228. pm8001_ha->memoryMap.region[ib_offset + i].total_len;
  229. pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr =
  230. pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi;
  231. pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr =
  232. pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo;
  233. pm8001_ha->inbnd_q_tbl[i].ci_virt =
  234. pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr;
  235. pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0);
  236. offsetib = i * 0x20;
  237. pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
  238. get_pci_bar_index(pm8001_mr32(addressib,
  239. (offsetib + 0x14)));
  240. pm8001_ha->inbnd_q_tbl[i].pi_offset =
  241. pm8001_mr32(addressib, (offsetib + 0x18));
  242. pm8001_ha->inbnd_q_tbl[i].producer_idx = 0;
  243. pm8001_ha->inbnd_q_tbl[i].consumer_index = 0;
  244. }
  245. for (i = 0; i < pm8001_ha->max_q_num; i++) {
  246. pm8001_ha->outbnd_q_tbl[i].element_size_cnt =
  247. PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30);
  248. pm8001_ha->outbnd_q_tbl[i].upper_base_addr =
  249. pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi;
  250. pm8001_ha->outbnd_q_tbl[i].lower_base_addr =
  251. pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo;
  252. pm8001_ha->outbnd_q_tbl[i].base_virt =
  253. (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr;
  254. pm8001_ha->outbnd_q_tbl[i].total_length =
  255. pm8001_ha->memoryMap.region[ob_offset + i].total_len;
  256. pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr =
  257. pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi;
  258. pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr =
  259. pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo;
  260. pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay =
  261. 0 | (10 << 16) | (i << 24);
  262. pm8001_ha->outbnd_q_tbl[i].pi_virt =
  263. pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr;
  264. pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0);
  265. offsetob = i * 0x24;
  266. pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
  267. get_pci_bar_index(pm8001_mr32(addressob,
  268. offsetob + 0x14));
  269. pm8001_ha->outbnd_q_tbl[i].ci_offset =
  270. pm8001_mr32(addressob, (offsetob + 0x18));
  271. pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0;
  272. pm8001_ha->outbnd_q_tbl[i].producer_index = 0;
  273. }
  274. }
  275. /**
  276. * update_main_config_table - update the main default table to the HBA.
  277. * @pm8001_ha: our hba card information
  278. */
  279. static void update_main_config_table(struct pm8001_hba_info *pm8001_ha)
  280. {
  281. void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
  282. pm8001_mw32(address, 0x24,
  283. pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd);
  284. pm8001_mw32(address, 0x28,
  285. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3);
  286. pm8001_mw32(address, 0x2C,
  287. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7);
  288. pm8001_mw32(address, 0x30,
  289. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3);
  290. pm8001_mw32(address, 0x34,
  291. pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7);
  292. pm8001_mw32(address, 0x38,
  293. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  294. outbound_tgt_ITNexus_event_pid0_3);
  295. pm8001_mw32(address, 0x3C,
  296. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  297. outbound_tgt_ITNexus_event_pid4_7);
  298. pm8001_mw32(address, 0x40,
  299. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  300. outbound_tgt_ssp_event_pid0_3);
  301. pm8001_mw32(address, 0x44,
  302. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  303. outbound_tgt_ssp_event_pid4_7);
  304. pm8001_mw32(address, 0x48,
  305. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  306. outbound_tgt_smp_event_pid0_3);
  307. pm8001_mw32(address, 0x4C,
  308. pm8001_ha->main_cfg_tbl.pm8001_tbl.
  309. outbound_tgt_smp_event_pid4_7);
  310. pm8001_mw32(address, 0x50,
  311. pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr);
  312. pm8001_mw32(address, 0x54,
  313. pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr);
  314. pm8001_mw32(address, 0x58,
  315. pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size);
  316. pm8001_mw32(address, 0x5C,
  317. pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option);
  318. pm8001_mw32(address, 0x60,
  319. pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr);
  320. pm8001_mw32(address, 0x64,
  321. pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr);
  322. pm8001_mw32(address, 0x68,
  323. pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size);
  324. pm8001_mw32(address, 0x6C,
  325. pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option);
  326. pm8001_mw32(address, 0x70,
  327. pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt);
  328. }
  329. /**
  330. * update_inbnd_queue_table - update the inbound queue table to the HBA.
  331. * @pm8001_ha: our hba card information
  332. * @number: entry in the queue
  333. */
  334. static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
  335. int number)
  336. {
  337. void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
  338. u16 offset = number * 0x20;
  339. pm8001_mw32(address, offset + 0x00,
  340. pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
  341. pm8001_mw32(address, offset + 0x04,
  342. pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
  343. pm8001_mw32(address, offset + 0x08,
  344. pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
  345. pm8001_mw32(address, offset + 0x0C,
  346. pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
  347. pm8001_mw32(address, offset + 0x10,
  348. pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
  349. }
  350. /**
  351. * update_outbnd_queue_table - update the outbound queue table to the HBA.
  352. * @pm8001_ha: our hba card information
  353. * @number: entry in the queue
  354. */
  355. static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
  356. int number)
  357. {
  358. void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
  359. u16 offset = number * 0x24;
  360. pm8001_mw32(address, offset + 0x00,
  361. pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
  362. pm8001_mw32(address, offset + 0x04,
  363. pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
  364. pm8001_mw32(address, offset + 0x08,
  365. pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
  366. pm8001_mw32(address, offset + 0x0C,
  367. pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
  368. pm8001_mw32(address, offset + 0x10,
  369. pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
  370. pm8001_mw32(address, offset + 0x1C,
  371. pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
  372. }
  373. /**
  374. * pm8001_bar4_shift - function is called to shift BAR base address
  375. * @pm8001_ha : our hba card information
  376. * @shiftValue : shifting value in memory bar.
  377. */
  378. int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue)
  379. {
  380. u32 regVal;
  381. unsigned long start;
  382. /* program the inbound AXI translation Lower Address */
  383. pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue);
  384. /* confirm the setting is written */
  385. start = jiffies + HZ; /* 1 sec */
  386. do {
  387. regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW);
  388. } while ((regVal != shiftValue) && time_before(jiffies, start));
  389. if (regVal != shiftValue) {
  390. pm8001_dbg(pm8001_ha, INIT,
  391. "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n",
  392. regVal);
  393. return -1;
  394. }
  395. return 0;
  396. }
  397. /**
  398. * mpi_set_phys_g3_with_ssc
  399. * @pm8001_ha: our hba card information
  400. * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc.
  401. */
  402. static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha,
  403. u32 SSCbit)
  404. {
  405. u32 offset, i;
  406. unsigned long flags;
  407. #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000
  408. #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000
  409. #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074
  410. #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074
  411. #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12
  412. #define PHY_G3_WITH_SSC_BIT_SHIFT 13
  413. #define SNW3_PHY_CAPABILITIES_PARITY 31
  414. /*
  415. * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3)
  416. * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7)
  417. */
  418. spin_lock_irqsave(&pm8001_ha->lock, flags);
  419. if (-1 == pm8001_bar4_shift(pm8001_ha,
  420. SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) {
  421. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  422. return;
  423. }
  424. for (i = 0; i < 4; i++) {
  425. offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i;
  426. pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
  427. }
  428. /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */
  429. if (-1 == pm8001_bar4_shift(pm8001_ha,
  430. SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) {
  431. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  432. return;
  433. }
  434. for (i = 4; i < 8; i++) {
  435. offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
  436. pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
  437. }
  438. /*************************************************************
  439. Change the SSC upspreading value to 0x0 so that upspreading is disabled.
  440. Device MABC SMOD0 Controls
  441. Address: (via MEMBASE-III):
  442. Using shifted destination address 0x0_0000: with Offset 0xD8
  443. 31:28 R/W Reserved Do not change
  444. 27:24 R/W SAS_SMOD_SPRDUP 0000
  445. 23:20 R/W SAS_SMOD_SPRDDN 0000
  446. 19:0 R/W Reserved Do not change
  447. Upon power-up this register will read as 0x8990c016,
  448. and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000
  449. so that the written value will be 0x8090c016.
  450. This will ensure only down-spreading SSC is enabled on the SPC.
  451. *************************************************************/
  452. pm8001_cr32(pm8001_ha, 2, 0xd8);
  453. pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016);
  454. /*set the shifted destination address to 0x0 to avoid error operation */
  455. pm8001_bar4_shift(pm8001_ha, 0x0);
  456. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  457. return;
  458. }
  459. /**
  460. * mpi_set_open_retry_interval_reg
  461. * @pm8001_ha: our hba card information
  462. * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us.
  463. */
  464. static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha,
  465. u32 interval)
  466. {
  467. u32 offset;
  468. u32 value;
  469. u32 i;
  470. unsigned long flags;
  471. #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000
  472. #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000
  473. #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4
  474. #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4
  475. #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF
  476. value = interval & OPEN_RETRY_INTERVAL_REG_MASK;
  477. spin_lock_irqsave(&pm8001_ha->lock, flags);
  478. /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/
  479. if (-1 == pm8001_bar4_shift(pm8001_ha,
  480. OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) {
  481. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  482. return;
  483. }
  484. for (i = 0; i < 4; i++) {
  485. offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i;
  486. pm8001_cw32(pm8001_ha, 2, offset, value);
  487. }
  488. if (-1 == pm8001_bar4_shift(pm8001_ha,
  489. OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) {
  490. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  491. return;
  492. }
  493. for (i = 4; i < 8; i++) {
  494. offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
  495. pm8001_cw32(pm8001_ha, 2, offset, value);
  496. }
  497. /*set the shifted destination address to 0x0 to avoid error operation */
  498. pm8001_bar4_shift(pm8001_ha, 0x0);
  499. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  500. return;
  501. }
  502. /**
  503. * mpi_init_check - check firmware initialization status.
  504. * @pm8001_ha: our hba card information
  505. */
  506. static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
  507. {
  508. u32 max_wait_count;
  509. u32 value;
  510. u32 gst_len_mpistate;
  511. /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
  512. table is updated */
  513. pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE);
  514. /* wait until Inbound DoorBell Clear Register toggled */
  515. max_wait_count = 1 * 1000 * 1000;/* 1 sec */
  516. do {
  517. udelay(1);
  518. value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
  519. value &= SPC_MSGU_CFG_TABLE_UPDATE;
  520. } while ((value != 0) && (--max_wait_count));
  521. if (!max_wait_count)
  522. return -1;
  523. /* check the MPI-State for initialization */
  524. gst_len_mpistate =
  525. pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
  526. GST_GSTLEN_MPIS_OFFSET);
  527. if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK))
  528. return -1;
  529. /* check MPI Initialization error */
  530. gst_len_mpistate = gst_len_mpistate >> 16;
  531. if (0x0000 != gst_len_mpistate)
  532. return -1;
  533. return 0;
  534. }
  535. /**
  536. * check_fw_ready - The LLDD check if the FW is ready, if not, return error.
  537. * @pm8001_ha: our hba card information
  538. */
  539. static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
  540. {
  541. u32 value, value1;
  542. u32 max_wait_count;
  543. /* check error state */
  544. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  545. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  546. /* check AAP error */
  547. if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) {
  548. /* error state */
  549. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
  550. return -1;
  551. }
  552. /* check IOP error */
  553. if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) {
  554. /* error state */
  555. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
  556. return -1;
  557. }
  558. /* bit 4-31 of scratch pad1 should be zeros if it is not
  559. in error state*/
  560. if (value & SCRATCH_PAD1_STATE_MASK) {
  561. /* error case */
  562. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
  563. return -1;
  564. }
  565. /* bit 2, 4-31 of scratch pad2 should be zeros if it is not
  566. in error state */
  567. if (value1 & SCRATCH_PAD2_STATE_MASK) {
  568. /* error case */
  569. return -1;
  570. }
  571. max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */
  572. /* wait until scratch pad 1 and 2 registers in ready state */
  573. do {
  574. udelay(1);
  575. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
  576. & SCRATCH_PAD1_RDY;
  577. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
  578. & SCRATCH_PAD2_RDY;
  579. if ((--max_wait_count) == 0)
  580. return -1;
  581. } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY));
  582. return 0;
  583. }
  584. static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
  585. {
  586. void __iomem *base_addr;
  587. u32 value;
  588. u32 offset;
  589. u32 pcibar;
  590. u32 pcilogic;
  591. value = pm8001_cr32(pm8001_ha, 0, 0x44);
  592. offset = value & 0x03FFFFFF;
  593. pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset);
  594. pcilogic = (value & 0xFC000000) >> 26;
  595. pcibar = get_pci_bar_index(pcilogic);
  596. pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar);
  597. pm8001_ha->main_cfg_tbl_addr = base_addr =
  598. pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
  599. pm8001_ha->general_stat_tbl_addr =
  600. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18);
  601. pm8001_ha->inbnd_q_tbl_addr =
  602. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C);
  603. pm8001_ha->outbnd_q_tbl_addr =
  604. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20);
  605. }
  606. /**
  607. * pm8001_chip_init - the main init function that initialize whole PM8001 chip.
  608. * @pm8001_ha: our hba card information
  609. */
  610. static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha)
  611. {
  612. u32 i = 0;
  613. u16 deviceid;
  614. pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid);
  615. /* 8081 controllers need BAR shift to access MPI space
  616. * as this is shared with BIOS data */
  617. if (deviceid == 0x8081 || deviceid == 0x0042) {
  618. if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) {
  619. pm8001_dbg(pm8001_ha, FAIL,
  620. "Shift Bar4 to 0x%x failed\n",
  621. GSM_SM_BASE);
  622. return -1;
  623. }
  624. }
  625. /* check the firmware status */
  626. if (-1 == check_fw_ready(pm8001_ha)) {
  627. pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n");
  628. return -EBUSY;
  629. }
  630. /* Initialize pci space address eg: mpi offset */
  631. init_pci_device_addresses(pm8001_ha);
  632. init_default_table_values(pm8001_ha);
  633. read_main_config_table(pm8001_ha);
  634. read_general_status_table(pm8001_ha);
  635. read_inbnd_queue_table(pm8001_ha);
  636. read_outbnd_queue_table(pm8001_ha);
  637. /* update main config table ,inbound table and outbound table */
  638. update_main_config_table(pm8001_ha);
  639. for (i = 0; i < pm8001_ha->max_q_num; i++)
  640. update_inbnd_queue_table(pm8001_ha, i);
  641. for (i = 0; i < pm8001_ha->max_q_num; i++)
  642. update_outbnd_queue_table(pm8001_ha, i);
  643. /* 8081 controller donot require these operations */
  644. if (deviceid != 0x8081 && deviceid != 0x0042) {
  645. mpi_set_phys_g3_with_ssc(pm8001_ha, 0);
  646. /* 7->130ms, 34->500ms, 119->1.5s */
  647. mpi_set_open_retry_interval_reg(pm8001_ha, 119);
  648. }
  649. /* notify firmware update finished and check initialization status */
  650. if (0 == mpi_init_check(pm8001_ha)) {
  651. pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n");
  652. } else
  653. return -EBUSY;
  654. /*This register is a 16-bit timer with a resolution of 1us. This is the
  655. timer used for interrupt delay/coalescing in the PCIe Application Layer.
  656. Zero is not a valid value. A value of 1 in the register will cause the
  657. interrupts to be normal. A value greater than 1 will cause coalescing
  658. delays.*/
  659. pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1);
  660. pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0);
  661. return 0;
  662. }
  663. static void pm8001_chip_post_init(struct pm8001_hba_info *pm8001_ha)
  664. {
  665. }
  666. static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
  667. {
  668. u32 max_wait_count;
  669. u32 value;
  670. u32 gst_len_mpistate;
  671. u16 deviceid;
  672. pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid);
  673. if (deviceid == 0x8081 || deviceid == 0x0042) {
  674. if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) {
  675. pm8001_dbg(pm8001_ha, FAIL,
  676. "Shift Bar4 to 0x%x failed\n",
  677. GSM_SM_BASE);
  678. return -1;
  679. }
  680. }
  681. init_pci_device_addresses(pm8001_ha);
  682. /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
  683. table is stop */
  684. pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET);
  685. /* wait until Inbound DoorBell Clear Register toggled */
  686. max_wait_count = 1 * 1000 * 1000;/* 1 sec */
  687. do {
  688. udelay(1);
  689. value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
  690. value &= SPC_MSGU_CFG_TABLE_RESET;
  691. } while ((value != 0) && (--max_wait_count));
  692. if (!max_wait_count) {
  693. pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n",
  694. value);
  695. return -1;
  696. }
  697. /* check the MPI-State for termination in progress */
  698. /* wait until Inbound DoorBell Clear Register toggled */
  699. max_wait_count = 1 * 1000 * 1000; /* 1 sec */
  700. do {
  701. udelay(1);
  702. gst_len_mpistate =
  703. pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
  704. GST_GSTLEN_MPIS_OFFSET);
  705. if (GST_MPI_STATE_UNINIT ==
  706. (gst_len_mpistate & GST_MPI_STATE_MASK))
  707. break;
  708. } while (--max_wait_count);
  709. if (!max_wait_count) {
  710. pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n",
  711. gst_len_mpistate & GST_MPI_STATE_MASK);
  712. return -1;
  713. }
  714. return 0;
  715. }
  716. /**
  717. * soft_reset_ready_check - Function to check FW is ready for soft reset.
  718. * @pm8001_ha: our hba card information
  719. */
  720. static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha)
  721. {
  722. u32 regVal, regVal1, regVal2;
  723. if (mpi_uninit_check(pm8001_ha) != 0) {
  724. pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n");
  725. return -1;
  726. }
  727. /* read the scratch pad 2 register bit 2 */
  728. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
  729. & SCRATCH_PAD2_FWRDY_RST;
  730. if (regVal == SCRATCH_PAD2_FWRDY_RST) {
  731. pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n");
  732. } else {
  733. unsigned long flags;
  734. /* Trigger NMI twice via RB6 */
  735. spin_lock_irqsave(&pm8001_ha->lock, flags);
  736. if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) {
  737. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  738. pm8001_dbg(pm8001_ha, FAIL,
  739. "Shift Bar4 to 0x%x failed\n",
  740. RB6_ACCESS_REG);
  741. return -1;
  742. }
  743. pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET,
  744. RB6_MAGIC_NUMBER_RST);
  745. pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST);
  746. /* wait for 100 ms */
  747. mdelay(100);
  748. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) &
  749. SCRATCH_PAD2_FWRDY_RST;
  750. if (regVal != SCRATCH_PAD2_FWRDY_RST) {
  751. regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  752. regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  753. pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n",
  754. regVal1, regVal2);
  755. pm8001_dbg(pm8001_ha, FAIL,
  756. "SCRATCH_PAD0 value = 0x%x\n",
  757. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0));
  758. pm8001_dbg(pm8001_ha, FAIL,
  759. "SCRATCH_PAD3 value = 0x%x\n",
  760. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3));
  761. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  762. return -1;
  763. }
  764. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  765. }
  766. return 0;
  767. }
  768. /**
  769. * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
  770. * the FW register status to the originated status.
  771. * @pm8001_ha: our hba card information
  772. */
  773. static int
  774. pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha)
  775. {
  776. u32 regVal, toggleVal;
  777. u32 max_wait_count;
  778. u32 regVal1, regVal2, regVal3;
  779. u32 signature = 0x252acbcd; /* for host scratch pad0 */
  780. unsigned long flags;
  781. /* step1: Check FW is ready for soft reset */
  782. if (soft_reset_ready_check(pm8001_ha) != 0) {
  783. pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n");
  784. return -1;
  785. }
  786. /* step 2: clear NMI status register on AAP1 and IOP, write the same
  787. value to clear */
  788. /* map 0x60000 to BAR4(0x20), BAR2(win) */
  789. spin_lock_irqsave(&pm8001_ha->lock, flags);
  790. if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) {
  791. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  792. pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
  793. MBIC_AAP1_ADDR_BASE);
  794. return -1;
  795. }
  796. regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP);
  797. pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n",
  798. regVal);
  799. pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0);
  800. /* map 0x70000 to BAR4(0x20), BAR2(win) */
  801. if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) {
  802. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  803. pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
  804. MBIC_IOP_ADDR_BASE);
  805. return -1;
  806. }
  807. regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1);
  808. pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n",
  809. regVal);
  810. pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0);
  811. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE);
  812. pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n",
  813. regVal);
  814. pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0);
  815. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT);
  816. pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt = 0x%x\n",
  817. regVal);
  818. pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal);
  819. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE);
  820. pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n",
  821. regVal);
  822. pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0);
  823. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT);
  824. pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal);
  825. pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal);
  826. /* read the scratch pad 1 register bit 2 */
  827. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
  828. & SCRATCH_PAD1_RST;
  829. toggleVal = regVal ^ SCRATCH_PAD1_RST;
  830. /* set signature in host scratch pad0 register to tell SPC that the
  831. host performs the soft reset */
  832. pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature);
  833. /* read required registers for confirmming */
  834. /* map 0x0700000 to BAR4(0x20), BAR2(win) */
  835. if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
  836. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  837. pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
  838. GSM_ADDR_BASE);
  839. return -1;
  840. }
  841. pm8001_dbg(pm8001_ha, INIT,
  842. "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n",
  843. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
  844. /* step 3: host read GSM Configuration and Reset register */
  845. regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
  846. /* Put those bits to low */
  847. /* GSM XCBI offset = 0x70 0000
  848. 0x00 Bit 13 COM_SLV_SW_RSTB 1
  849. 0x00 Bit 12 QSSP_SW_RSTB 1
  850. 0x00 Bit 11 RAAE_SW_RSTB 1
  851. 0x00 Bit 9 RB_1_SW_RSTB 1
  852. 0x00 Bit 8 SM_SW_RSTB 1
  853. */
  854. regVal &= ~(0x00003b00);
  855. /* host write GSM Configuration and Reset register */
  856. pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
  857. pm8001_dbg(pm8001_ha, INIT,
  858. "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n",
  859. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
  860. /* step 4: */
  861. /* disable GSM - Read Address Parity Check */
  862. regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
  863. pm8001_dbg(pm8001_ha, INIT,
  864. "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n",
  865. regVal1);
  866. pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0);
  867. pm8001_dbg(pm8001_ha, INIT,
  868. "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n",
  869. pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK));
  870. /* disable GSM - Write Address Parity Check */
  871. regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
  872. pm8001_dbg(pm8001_ha, INIT,
  873. "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n",
  874. regVal2);
  875. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0);
  876. pm8001_dbg(pm8001_ha, INIT,
  877. "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n",
  878. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK));
  879. /* disable GSM - Write Data Parity Check */
  880. regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
  881. pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n",
  882. regVal3);
  883. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0);
  884. pm8001_dbg(pm8001_ha, INIT,
  885. "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n",
  886. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK));
  887. /* step 5: delay 10 usec */
  888. udelay(10);
  889. /* step 5-b: set GPIO-0 output control to tristate anyway */
  890. if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) {
  891. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  892. pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n",
  893. GPIO_ADDR_BASE);
  894. return -1;
  895. }
  896. regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET);
  897. pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n",
  898. regVal);
  899. /* set GPIO-0 output control to tri-state */
  900. regVal &= 0xFFFFFFFC;
  901. pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal);
  902. /* Step 6: Reset the IOP and AAP1 */
  903. /* map 0x00000 to BAR4(0x20), BAR2(win) */
  904. if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
  905. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  906. pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n",
  907. SPC_TOP_LEVEL_ADDR_BASE);
  908. return -1;
  909. }
  910. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  911. pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n",
  912. regVal);
  913. regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
  914. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  915. /* step 7: Reset the BDMA/OSSP */
  916. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  917. pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n",
  918. regVal);
  919. regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
  920. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  921. /* step 8: delay 10 usec */
  922. udelay(10);
  923. /* step 9: bring the BDMA and OSSP out of reset */
  924. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  925. pm8001_dbg(pm8001_ha, INIT,
  926. "Top Register before bringing up BDMA/OSSP:= 0x%x\n",
  927. regVal);
  928. regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
  929. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  930. /* step 10: delay 10 usec */
  931. udelay(10);
  932. /* step 11: reads and sets the GSM Configuration and Reset Register */
  933. /* map 0x0700000 to BAR4(0x20), BAR2(win) */
  934. if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
  935. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  936. pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n",
  937. GSM_ADDR_BASE);
  938. return -1;
  939. }
  940. pm8001_dbg(pm8001_ha, INIT,
  941. "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n",
  942. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
  943. regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
  944. /* Put those bits to high */
  945. /* GSM XCBI offset = 0x70 0000
  946. 0x00 Bit 13 COM_SLV_SW_RSTB 1
  947. 0x00 Bit 12 QSSP_SW_RSTB 1
  948. 0x00 Bit 11 RAAE_SW_RSTB 1
  949. 0x00 Bit 9 RB_1_SW_RSTB 1
  950. 0x00 Bit 8 SM_SW_RSTB 1
  951. */
  952. regVal |= (GSM_CONFIG_RESET_VALUE);
  953. pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
  954. pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n",
  955. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
  956. /* step 12: Restore GSM - Read Address Parity Check */
  957. regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
  958. /* just for debugging */
  959. pm8001_dbg(pm8001_ha, INIT,
  960. "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n",
  961. regVal);
  962. pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1);
  963. pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n",
  964. pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK));
  965. /* Restore GSM - Write Address Parity Check */
  966. regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
  967. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2);
  968. pm8001_dbg(pm8001_ha, INIT,
  969. "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n",
  970. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK));
  971. /* Restore GSM - Write Data Parity Check */
  972. regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
  973. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3);
  974. pm8001_dbg(pm8001_ha, INIT,
  975. "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n",
  976. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK));
  977. /* step 13: bring the IOP and AAP1 out of reset */
  978. /* map 0x00000 to BAR4(0x20), BAR2(win) */
  979. if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
  980. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  981. pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
  982. SPC_TOP_LEVEL_ADDR_BASE);
  983. return -1;
  984. }
  985. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  986. regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
  987. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  988. /* step 14: delay 10 usec - Normal Mode */
  989. udelay(10);
  990. /* check Soft Reset Normal mode or Soft Reset HDA mode */
  991. if (signature == SPC_SOFT_RESET_SIGNATURE) {
  992. /* step 15 (Normal Mode): wait until scratch pad1 register
  993. bit 2 toggled */
  994. max_wait_count = 2 * 1000 * 1000;/* 2 sec */
  995. do {
  996. udelay(1);
  997. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
  998. SCRATCH_PAD1_RST;
  999. } while ((regVal != toggleVal) && (--max_wait_count));
  1000. if (!max_wait_count) {
  1001. regVal = pm8001_cr32(pm8001_ha, 0,
  1002. MSGU_SCRATCH_PAD_1);
  1003. pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n",
  1004. toggleVal, regVal);
  1005. pm8001_dbg(pm8001_ha, FAIL,
  1006. "SCRATCH_PAD0 value = 0x%x\n",
  1007. pm8001_cr32(pm8001_ha, 0,
  1008. MSGU_SCRATCH_PAD_0));
  1009. pm8001_dbg(pm8001_ha, FAIL,
  1010. "SCRATCH_PAD2 value = 0x%x\n",
  1011. pm8001_cr32(pm8001_ha, 0,
  1012. MSGU_SCRATCH_PAD_2));
  1013. pm8001_dbg(pm8001_ha, FAIL,
  1014. "SCRATCH_PAD3 value = 0x%x\n",
  1015. pm8001_cr32(pm8001_ha, 0,
  1016. MSGU_SCRATCH_PAD_3));
  1017. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1018. return -1;
  1019. }
  1020. /* step 16 (Normal) - Clear ODMR and ODCR */
  1021. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
  1022. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
  1023. /* step 17 (Normal Mode): wait for the FW and IOP to get
  1024. ready - 1 sec timeout */
  1025. /* Wait for the SPC Configuration Table to be ready */
  1026. if (check_fw_ready(pm8001_ha) == -1) {
  1027. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  1028. /* return error if MPI Configuration Table not ready */
  1029. pm8001_dbg(pm8001_ha, INIT,
  1030. "FW not ready SCRATCH_PAD1 = 0x%x\n",
  1031. regVal);
  1032. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  1033. /* return error if MPI Configuration Table not ready */
  1034. pm8001_dbg(pm8001_ha, INIT,
  1035. "FW not ready SCRATCH_PAD2 = 0x%x\n",
  1036. regVal);
  1037. pm8001_dbg(pm8001_ha, INIT,
  1038. "SCRATCH_PAD0 value = 0x%x\n",
  1039. pm8001_cr32(pm8001_ha, 0,
  1040. MSGU_SCRATCH_PAD_0));
  1041. pm8001_dbg(pm8001_ha, INIT,
  1042. "SCRATCH_PAD3 value = 0x%x\n",
  1043. pm8001_cr32(pm8001_ha, 0,
  1044. MSGU_SCRATCH_PAD_3));
  1045. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1046. return -1;
  1047. }
  1048. }
  1049. pm8001_bar4_shift(pm8001_ha, 0);
  1050. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1051. pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n");
  1052. return 0;
  1053. }
  1054. static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
  1055. {
  1056. u32 i;
  1057. u32 regVal;
  1058. pm8001_dbg(pm8001_ha, INIT, "chip reset start\n");
  1059. /* do SPC chip reset. */
  1060. regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
  1061. regVal &= ~(SPC_REG_RESET_DEVICE);
  1062. pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
  1063. /* delay 10 usec */
  1064. udelay(10);
  1065. /* bring chip reset out of reset */
  1066. regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
  1067. regVal |= SPC_REG_RESET_DEVICE;
  1068. pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
  1069. /* delay 10 usec */
  1070. udelay(10);
  1071. /* wait for 20 msec until the firmware gets reloaded */
  1072. i = 20;
  1073. do {
  1074. mdelay(1);
  1075. } while ((--i) != 0);
  1076. pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n");
  1077. }
  1078. /**
  1079. * pm8001_chip_iounmap - which mapped when initialized.
  1080. * @pm8001_ha: our hba card information
  1081. */
  1082. void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha)
  1083. {
  1084. s8 bar, logical = 0;
  1085. for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
  1086. /*
  1087. ** logical BARs for SPC:
  1088. ** bar 0 and 1 - logical BAR0
  1089. ** bar 2 and 3 - logical BAR1
  1090. ** bar4 - logical BAR2
  1091. ** bar5 - logical BAR3
  1092. ** Skip the appropriate assignments:
  1093. */
  1094. if ((bar == 1) || (bar == 3))
  1095. continue;
  1096. if (pm8001_ha->io_mem[logical].memvirtaddr) {
  1097. iounmap(pm8001_ha->io_mem[logical].memvirtaddr);
  1098. logical++;
  1099. }
  1100. }
  1101. }
  1102. #ifndef PM8001_USE_MSIX
  1103. /**
  1104. * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt
  1105. * @pm8001_ha: our hba card information
  1106. */
  1107. static void
  1108. pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
  1109. {
  1110. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
  1111. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
  1112. }
  1113. /**
  1114. * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt
  1115. * @pm8001_ha: our hba card information
  1116. */
  1117. static void
  1118. pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
  1119. {
  1120. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL);
  1121. }
  1122. #else
  1123. /**
  1124. * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt
  1125. * @pm8001_ha: our hba card information
  1126. * @int_vec_idx: interrupt number to enable
  1127. */
  1128. static void
  1129. pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha,
  1130. u32 int_vec_idx)
  1131. {
  1132. u32 msi_index;
  1133. u32 value;
  1134. msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
  1135. msi_index += MSIX_TABLE_BASE;
  1136. pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE);
  1137. value = (1 << int_vec_idx);
  1138. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value);
  1139. }
  1140. /**
  1141. * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt
  1142. * @pm8001_ha: our hba card information
  1143. * @int_vec_idx: interrupt number to disable
  1144. */
  1145. static void
  1146. pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha,
  1147. u32 int_vec_idx)
  1148. {
  1149. u32 msi_index;
  1150. msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
  1151. msi_index += MSIX_TABLE_BASE;
  1152. pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE);
  1153. }
  1154. #endif
  1155. /**
  1156. * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
  1157. * @pm8001_ha: our hba card information
  1158. * @vec: unused
  1159. */
  1160. static void
  1161. pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec)
  1162. {
  1163. #ifdef PM8001_USE_MSIX
  1164. pm8001_chip_msix_interrupt_enable(pm8001_ha, 0);
  1165. #else
  1166. pm8001_chip_intx_interrupt_enable(pm8001_ha);
  1167. #endif
  1168. }
  1169. /**
  1170. * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt
  1171. * @pm8001_ha: our hba card information
  1172. * @vec: unused
  1173. */
  1174. static void
  1175. pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec)
  1176. {
  1177. #ifdef PM8001_USE_MSIX
  1178. pm8001_chip_msix_interrupt_disable(pm8001_ha, 0);
  1179. #else
  1180. pm8001_chip_intx_interrupt_disable(pm8001_ha);
  1181. #endif
  1182. }
  1183. /**
  1184. * pm8001_mpi_msg_free_get - get the free message buffer for transfer
  1185. * inbound queue.
  1186. * @circularQ: the inbound queue we want to transfer to HBA.
  1187. * @messageSize: the message size of this transfer, normally it is 64 bytes
  1188. * @messagePtr: the pointer to message.
  1189. */
  1190. int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ,
  1191. u16 messageSize, void **messagePtr)
  1192. {
  1193. u32 offset, consumer_index;
  1194. struct mpi_msg_hdr *msgHeader;
  1195. u8 bcCount = 1; /* only support single buffer */
  1196. /* Checks is the requested message size can be allocated in this queue*/
  1197. if (messageSize > IOMB_SIZE_SPCV) {
  1198. *messagePtr = NULL;
  1199. return -1;
  1200. }
  1201. /* Stores the new consumer index */
  1202. consumer_index = pm8001_read_32(circularQ->ci_virt);
  1203. circularQ->consumer_index = cpu_to_le32(consumer_index);
  1204. if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) ==
  1205. le32_to_cpu(circularQ->consumer_index)) {
  1206. *messagePtr = NULL;
  1207. return -1;
  1208. }
  1209. /* get memory IOMB buffer address */
  1210. offset = circularQ->producer_idx * messageSize;
  1211. /* increment to next bcCount element */
  1212. circularQ->producer_idx = (circularQ->producer_idx + bcCount)
  1213. % PM8001_MPI_QUEUE;
  1214. /* Adds that distance to the base of the region virtual address plus
  1215. the message header size*/
  1216. msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset);
  1217. *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr);
  1218. return 0;
  1219. }
  1220. /**
  1221. * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to
  1222. * FW to tell the fw to get this message from IOMB.
  1223. * @pm8001_ha: our hba card information
  1224. * @q_index: the index in the inbound queue we want to transfer to HBA.
  1225. * @opCode: the operation code represents commands which LLDD and fw recognized.
  1226. * @payload: the command payload of each operation command.
  1227. * @nb: size in bytes of the command payload
  1228. * @responseQueue: queue to interrupt on w/ command response (if any)
  1229. */
  1230. int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha,
  1231. u32 q_index, u32 opCode, void *payload, size_t nb,
  1232. u32 responseQueue)
  1233. {
  1234. u32 Header = 0, hpriority = 0, bc = 1, category = 0x02;
  1235. void *pMessage;
  1236. unsigned long flags;
  1237. struct inbound_queue_table *circularQ = &pm8001_ha->inbnd_q_tbl[q_index];
  1238. int rv;
  1239. u32 htag = le32_to_cpu(*(__le32 *)payload);
  1240. trace_pm80xx_mpi_build_cmd(pm8001_ha->id, opCode, htag, q_index,
  1241. circularQ->producer_idx, le32_to_cpu(circularQ->consumer_index));
  1242. if (WARN_ON(q_index >= pm8001_ha->max_q_num))
  1243. return -EINVAL;
  1244. spin_lock_irqsave(&circularQ->iq_lock, flags);
  1245. rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size,
  1246. &pMessage);
  1247. if (rv < 0) {
  1248. pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n");
  1249. rv = -ENOMEM;
  1250. goto done;
  1251. }
  1252. if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr)))
  1253. nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr);
  1254. memcpy(pMessage, payload, nb);
  1255. if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size)
  1256. memset(pMessage + nb, 0, pm8001_ha->iomb_size -
  1257. (nb + sizeof(struct mpi_msg_hdr)));
  1258. /*Build the header*/
  1259. Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24)
  1260. | ((responseQueue & 0x3F) << 16)
  1261. | ((category & 0xF) << 12) | (opCode & 0xFFF));
  1262. pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header));
  1263. /*Update the PI to the firmware*/
  1264. pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar,
  1265. circularQ->pi_offset, circularQ->producer_idx);
  1266. pm8001_dbg(pm8001_ha, DEVIO,
  1267. "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n",
  1268. responseQueue, opCode, circularQ->producer_idx,
  1269. circularQ->consumer_index);
  1270. done:
  1271. spin_unlock_irqrestore(&circularQ->iq_lock, flags);
  1272. return rv;
  1273. }
  1274. u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg,
  1275. struct outbound_queue_table *circularQ, u8 bc)
  1276. {
  1277. u32 producer_index;
  1278. struct mpi_msg_hdr *msgHeader;
  1279. struct mpi_msg_hdr *pOutBoundMsgHeader;
  1280. msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr));
  1281. pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt +
  1282. circularQ->consumer_idx * pm8001_ha->iomb_size);
  1283. if (pOutBoundMsgHeader != msgHeader) {
  1284. pm8001_dbg(pm8001_ha, FAIL,
  1285. "consumer_idx = %d msgHeader = %p\n",
  1286. circularQ->consumer_idx, msgHeader);
  1287. /* Update the producer index from SPC */
  1288. producer_index = pm8001_read_32(circularQ->pi_virt);
  1289. circularQ->producer_index = cpu_to_le32(producer_index);
  1290. pm8001_dbg(pm8001_ha, FAIL,
  1291. "consumer_idx = %d producer_index = %dmsgHeader = %p\n",
  1292. circularQ->consumer_idx,
  1293. circularQ->producer_index, msgHeader);
  1294. return 0;
  1295. }
  1296. /* free the circular queue buffer elements associated with the message*/
  1297. circularQ->consumer_idx = (circularQ->consumer_idx + bc)
  1298. % PM8001_MPI_QUEUE;
  1299. /* update the CI of outbound queue */
  1300. pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset,
  1301. circularQ->consumer_idx);
  1302. /* Update the producer index from SPC*/
  1303. producer_index = pm8001_read_32(circularQ->pi_virt);
  1304. circularQ->producer_index = cpu_to_le32(producer_index);
  1305. pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n",
  1306. circularQ->consumer_idx, circularQ->producer_index);
  1307. return 0;
  1308. }
  1309. /**
  1310. * pm8001_mpi_msg_consume- get the MPI message from outbound queue
  1311. * message table.
  1312. * @pm8001_ha: our hba card information
  1313. * @circularQ: the outbound queue table.
  1314. * @messagePtr1: the message contents of this outbound message.
  1315. * @pBC: the message size.
  1316. */
  1317. u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha,
  1318. struct outbound_queue_table *circularQ,
  1319. void **messagePtr1, u8 *pBC)
  1320. {
  1321. struct mpi_msg_hdr *msgHeader;
  1322. __le32 msgHeader_tmp;
  1323. u32 header_tmp;
  1324. do {
  1325. /* If there are not-yet-delivered messages ... */
  1326. if (le32_to_cpu(circularQ->producer_index)
  1327. != circularQ->consumer_idx) {
  1328. /*Get the pointer to the circular queue buffer element*/
  1329. msgHeader = (struct mpi_msg_hdr *)
  1330. (circularQ->base_virt +
  1331. circularQ->consumer_idx * pm8001_ha->iomb_size);
  1332. /* read header */
  1333. header_tmp = pm8001_read_32(msgHeader);
  1334. msgHeader_tmp = cpu_to_le32(header_tmp);
  1335. pm8001_dbg(pm8001_ha, DEVIO,
  1336. "outbound opcode msgheader:%x ci=%d pi=%d\n",
  1337. msgHeader_tmp, circularQ->consumer_idx,
  1338. circularQ->producer_index);
  1339. if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) {
  1340. if (OPC_OUB_SKIP_ENTRY !=
  1341. (le32_to_cpu(msgHeader_tmp) & 0xfff)) {
  1342. *messagePtr1 =
  1343. ((u8 *)msgHeader) +
  1344. sizeof(struct mpi_msg_hdr);
  1345. *pBC = (u8)((le32_to_cpu(msgHeader_tmp)
  1346. >> 24) & 0x1f);
  1347. pm8001_dbg(pm8001_ha, IO,
  1348. ": CI=%d PI=%d msgHeader=%x\n",
  1349. circularQ->consumer_idx,
  1350. circularQ->producer_index,
  1351. msgHeader_tmp);
  1352. return MPI_IO_STATUS_SUCCESS;
  1353. } else {
  1354. circularQ->consumer_idx =
  1355. (circularQ->consumer_idx +
  1356. ((le32_to_cpu(msgHeader_tmp)
  1357. >> 24) & 0x1f))
  1358. % PM8001_MPI_QUEUE;
  1359. msgHeader_tmp = 0;
  1360. pm8001_write_32(msgHeader, 0, 0);
  1361. /* update the CI of outbound queue */
  1362. pm8001_cw32(pm8001_ha,
  1363. circularQ->ci_pci_bar,
  1364. circularQ->ci_offset,
  1365. circularQ->consumer_idx);
  1366. }
  1367. } else {
  1368. circularQ->consumer_idx =
  1369. (circularQ->consumer_idx +
  1370. ((le32_to_cpu(msgHeader_tmp) >> 24) &
  1371. 0x1f)) % PM8001_MPI_QUEUE;
  1372. msgHeader_tmp = 0;
  1373. pm8001_write_32(msgHeader, 0, 0);
  1374. /* update the CI of outbound queue */
  1375. pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar,
  1376. circularQ->ci_offset,
  1377. circularQ->consumer_idx);
  1378. return MPI_IO_STATUS_FAIL;
  1379. }
  1380. } else {
  1381. u32 producer_index;
  1382. void *pi_virt = circularQ->pi_virt;
  1383. /* spurious interrupt during setup if
  1384. * kexec-ing and driver doing a doorbell access
  1385. * with the pre-kexec oq interrupt setup
  1386. */
  1387. if (!pi_virt)
  1388. break;
  1389. /* Update the producer index from SPC */
  1390. producer_index = pm8001_read_32(pi_virt);
  1391. circularQ->producer_index = cpu_to_le32(producer_index);
  1392. }
  1393. } while (le32_to_cpu(circularQ->producer_index) !=
  1394. circularQ->consumer_idx);
  1395. /* while we don't have any more not-yet-delivered message */
  1396. /* report empty */
  1397. return MPI_IO_STATUS_BUSY;
  1398. }
  1399. void pm8001_work_fn(struct work_struct *work)
  1400. {
  1401. struct pm8001_work *pw = container_of(work, struct pm8001_work, work);
  1402. struct pm8001_device *pm8001_dev;
  1403. struct domain_device *dev;
  1404. /*
  1405. * So far, all users of this stash an associated structure here.
  1406. * If we get here, and this pointer is null, then the action
  1407. * was cancelled. This nullification happens when the device
  1408. * goes away.
  1409. */
  1410. if (pw->handler != IO_FATAL_ERROR) {
  1411. pm8001_dev = pw->data; /* Most stash device structure */
  1412. if ((pm8001_dev == NULL)
  1413. || ((pw->handler != IO_XFER_ERROR_BREAK)
  1414. && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) {
  1415. kfree(pw);
  1416. return;
  1417. }
  1418. }
  1419. switch (pw->handler) {
  1420. case IO_XFER_ERROR_BREAK:
  1421. { /* This one stashes the sas_task instead */
  1422. struct sas_task *t = (struct sas_task *)pm8001_dev;
  1423. struct pm8001_ccb_info *ccb;
  1424. struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
  1425. unsigned long flags, flags1;
  1426. struct task_status_struct *ts;
  1427. int i;
  1428. if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC)
  1429. break; /* Task still on lu */
  1430. spin_lock_irqsave(&pm8001_ha->lock, flags);
  1431. spin_lock_irqsave(&t->task_state_lock, flags1);
  1432. if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) {
  1433. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1434. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1435. break; /* Task got completed by another */
  1436. }
  1437. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1438. /* Search for a possible ccb that matches the task */
  1439. for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
  1440. ccb = &pm8001_ha->ccb_info[i];
  1441. if ((ccb->ccb_tag != PM8001_INVALID_TAG) &&
  1442. (ccb->task == t))
  1443. break;
  1444. }
  1445. if (!ccb) {
  1446. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1447. break; /* Task got freed by another */
  1448. }
  1449. ts = &t->task_status;
  1450. ts->resp = SAS_TASK_COMPLETE;
  1451. /* Force the midlayer to retry */
  1452. ts->stat = SAS_QUEUE_FULL;
  1453. pm8001_dev = ccb->device;
  1454. if (pm8001_dev)
  1455. atomic_dec(&pm8001_dev->running_req);
  1456. spin_lock_irqsave(&t->task_state_lock, flags1);
  1457. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  1458. t->task_state_flags |= SAS_TASK_STATE_DONE;
  1459. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  1460. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1461. pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
  1462. t, pw->handler, ts->resp, ts->stat);
  1463. pm8001_ccb_task_free(pm8001_ha, ccb);
  1464. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1465. } else {
  1466. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1467. pm8001_ccb_task_free(pm8001_ha, ccb);
  1468. mb();/* in order to force CPU ordering */
  1469. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1470. t->task_done(t);
  1471. }
  1472. } break;
  1473. case IO_XFER_OPEN_RETRY_TIMEOUT:
  1474. { /* This one stashes the sas_task instead */
  1475. struct sas_task *t = (struct sas_task *)pm8001_dev;
  1476. struct pm8001_ccb_info *ccb;
  1477. struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
  1478. unsigned long flags, flags1;
  1479. int i, ret = 0;
  1480. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  1481. ret = pm8001_query_task(t);
  1482. if (ret == TMF_RESP_FUNC_SUCC)
  1483. pm8001_dbg(pm8001_ha, IO, "...Task on lu\n");
  1484. else if (ret == TMF_RESP_FUNC_COMPLETE)
  1485. pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n");
  1486. else
  1487. pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n");
  1488. spin_lock_irqsave(&pm8001_ha->lock, flags);
  1489. spin_lock_irqsave(&t->task_state_lock, flags1);
  1490. if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) {
  1491. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1492. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1493. if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */
  1494. (void)pm8001_abort_task(t);
  1495. break; /* Task got completed by another */
  1496. }
  1497. spin_unlock_irqrestore(&t->task_state_lock, flags1);
  1498. /* Search for a possible ccb that matches the task */
  1499. for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
  1500. ccb = &pm8001_ha->ccb_info[i];
  1501. if ((ccb->ccb_tag != PM8001_INVALID_TAG) &&
  1502. (ccb->task == t))
  1503. break;
  1504. }
  1505. if (!ccb) {
  1506. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1507. if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */
  1508. (void)pm8001_abort_task(t);
  1509. break; /* Task got freed by another */
  1510. }
  1511. pm8001_dev = ccb->device;
  1512. dev = pm8001_dev->sas_device;
  1513. switch (ret) {
  1514. case TMF_RESP_FUNC_SUCC: /* task on lu */
  1515. ccb->open_retry = 1; /* Snub completion */
  1516. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1517. ret = pm8001_abort_task(t);
  1518. ccb->open_retry = 0;
  1519. switch (ret) {
  1520. case TMF_RESP_FUNC_SUCC:
  1521. case TMF_RESP_FUNC_COMPLETE:
  1522. break;
  1523. default: /* device misbehavior */
  1524. ret = TMF_RESP_FUNC_FAILED;
  1525. pm8001_dbg(pm8001_ha, IO, "...Reset phy\n");
  1526. pm8001_I_T_nexus_reset(dev);
  1527. break;
  1528. }
  1529. break;
  1530. case TMF_RESP_FUNC_COMPLETE: /* task not on lu */
  1531. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1532. /* Do we need to abort the task locally? */
  1533. break;
  1534. default: /* device misbehavior */
  1535. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  1536. ret = TMF_RESP_FUNC_FAILED;
  1537. pm8001_dbg(pm8001_ha, IO, "...Reset phy\n");
  1538. pm8001_I_T_nexus_reset(dev);
  1539. }
  1540. if (ret == TMF_RESP_FUNC_FAILED)
  1541. t = NULL;
  1542. pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev);
  1543. pm8001_dbg(pm8001_ha, IO, "...Complete\n");
  1544. } break;
  1545. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1546. dev = pm8001_dev->sas_device;
  1547. pm8001_I_T_nexus_event_handler(dev);
  1548. break;
  1549. case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
  1550. dev = pm8001_dev->sas_device;
  1551. pm8001_I_T_nexus_reset(dev);
  1552. break;
  1553. case IO_DS_IN_ERROR:
  1554. dev = pm8001_dev->sas_device;
  1555. pm8001_I_T_nexus_reset(dev);
  1556. break;
  1557. case IO_DS_NON_OPERATIONAL:
  1558. dev = pm8001_dev->sas_device;
  1559. pm8001_I_T_nexus_reset(dev);
  1560. break;
  1561. case IO_FATAL_ERROR:
  1562. {
  1563. struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
  1564. struct pm8001_ccb_info *ccb;
  1565. struct task_status_struct *ts;
  1566. struct sas_task *task;
  1567. int i;
  1568. u32 device_id;
  1569. for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
  1570. ccb = &pm8001_ha->ccb_info[i];
  1571. task = ccb->task;
  1572. ts = &task->task_status;
  1573. if (task != NULL) {
  1574. dev = task->dev;
  1575. if (!dev) {
  1576. pm8001_dbg(pm8001_ha, FAIL,
  1577. "dev is NULL\n");
  1578. continue;
  1579. }
  1580. /*complete sas task and update to top layer */
  1581. pm8001_ccb_task_free(pm8001_ha, ccb);
  1582. ts->resp = SAS_TASK_COMPLETE;
  1583. task->task_done(task);
  1584. } else if (ccb->ccb_tag != PM8001_INVALID_TAG) {
  1585. /* complete the internal commands/non-sas task */
  1586. pm8001_dev = ccb->device;
  1587. if (pm8001_dev->dcompletion) {
  1588. complete(pm8001_dev->dcompletion);
  1589. pm8001_dev->dcompletion = NULL;
  1590. }
  1591. complete(pm8001_ha->nvmd_completion);
  1592. pm8001_ccb_free(pm8001_ha, ccb);
  1593. }
  1594. }
  1595. /* Deregister all the device ids */
  1596. for (i = 0; i < PM8001_MAX_DEVICES; i++) {
  1597. pm8001_dev = &pm8001_ha->devices[i];
  1598. device_id = pm8001_dev->device_id;
  1599. if (device_id) {
  1600. PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
  1601. pm8001_free_dev(pm8001_dev);
  1602. }
  1603. }
  1604. } break;
  1605. }
  1606. kfree(pw);
  1607. }
  1608. int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data,
  1609. int handler)
  1610. {
  1611. struct pm8001_work *pw;
  1612. int ret = 0;
  1613. pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC);
  1614. if (pw) {
  1615. pw->pm8001_ha = pm8001_ha;
  1616. pw->data = data;
  1617. pw->handler = handler;
  1618. INIT_WORK(&pw->work, pm8001_work_fn);
  1619. queue_work(pm8001_wq, &pw->work);
  1620. } else
  1621. ret = -ENOMEM;
  1622. return ret;
  1623. }
  1624. static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha,
  1625. struct pm8001_device *pm8001_ha_dev)
  1626. {
  1627. struct pm8001_ccb_info *ccb;
  1628. struct sas_task *task;
  1629. struct task_abort_req task_abort;
  1630. u32 opc = OPC_INB_SATA_ABORT;
  1631. int ret;
  1632. pm8001_ha_dev->id |= NCQ_ABORT_ALL_FLAG;
  1633. pm8001_ha_dev->id &= ~NCQ_READ_LOG_FLAG;
  1634. task = sas_alloc_slow_task(GFP_ATOMIC);
  1635. if (!task) {
  1636. pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n");
  1637. return;
  1638. }
  1639. task->task_done = pm8001_task_done;
  1640. ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task);
  1641. if (!ccb) {
  1642. sas_free_task(task);
  1643. return;
  1644. }
  1645. memset(&task_abort, 0, sizeof(task_abort));
  1646. task_abort.abort_all = cpu_to_le32(1);
  1647. task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
  1648. task_abort.tag = cpu_to_le32(ccb->ccb_tag);
  1649. ret = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort,
  1650. sizeof(task_abort), 0);
  1651. if (ret) {
  1652. sas_free_task(task);
  1653. pm8001_ccb_free(pm8001_ha, ccb);
  1654. }
  1655. }
  1656. static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha,
  1657. struct pm8001_device *pm8001_ha_dev)
  1658. {
  1659. struct sata_start_req sata_cmd;
  1660. int res;
  1661. struct pm8001_ccb_info *ccb;
  1662. struct sas_task *task = NULL;
  1663. struct host_to_dev_fis fis;
  1664. struct domain_device *dev;
  1665. u32 opc = OPC_INB_SATA_HOST_OPSTART;
  1666. task = sas_alloc_slow_task(GFP_ATOMIC);
  1667. if (!task) {
  1668. pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n");
  1669. return;
  1670. }
  1671. task->task_done = pm8001_task_done;
  1672. /*
  1673. * Allocate domain device by ourselves as libsas is not going to
  1674. * provide any.
  1675. */
  1676. dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC);
  1677. if (!dev) {
  1678. sas_free_task(task);
  1679. pm8001_dbg(pm8001_ha, FAIL,
  1680. "Domain device cannot be allocated\n");
  1681. return;
  1682. }
  1683. task->dev = dev;
  1684. task->dev->lldd_dev = pm8001_ha_dev;
  1685. ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task);
  1686. if (!ccb) {
  1687. sas_free_task(task);
  1688. kfree(dev);
  1689. return;
  1690. }
  1691. pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG;
  1692. pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG;
  1693. /* construct read log FIS */
  1694. memset(&fis, 0, sizeof(struct host_to_dev_fis));
  1695. fis.fis_type = 0x27;
  1696. fis.flags = 0x80;
  1697. fis.command = ATA_CMD_READ_LOG_EXT;
  1698. fis.lbal = 0x10;
  1699. fis.sector_count = 0x1;
  1700. memset(&sata_cmd, 0, sizeof(sata_cmd));
  1701. sata_cmd.tag = cpu_to_le32(ccb->ccb_tag);
  1702. sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
  1703. sata_cmd.ncqtag_atap_dir_m = cpu_to_le32((0x1 << 7) | (0x5 << 9));
  1704. memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis));
  1705. res = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd,
  1706. sizeof(sata_cmd), 0);
  1707. if (res) {
  1708. sas_free_task(task);
  1709. pm8001_ccb_free(pm8001_ha, ccb);
  1710. kfree(dev);
  1711. }
  1712. }
  1713. /**
  1714. * mpi_ssp_completion- process the event that FW response to the SSP request.
  1715. * @pm8001_ha: our hba card information
  1716. * @piomb: the message contents of this outbound message.
  1717. *
  1718. * When FW has completed a ssp request for example a IO request, after it has
  1719. * filled the SG data with the data, it will trigger this event representing
  1720. * that he has finished the job; please check the corresponding buffer.
  1721. * So we will tell the caller who maybe waiting the result to tell upper layer
  1722. * that the task has been finished.
  1723. */
  1724. static void
  1725. mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
  1726. {
  1727. struct sas_task *t;
  1728. struct pm8001_ccb_info *ccb;
  1729. unsigned long flags;
  1730. u32 status;
  1731. u32 param;
  1732. u32 tag;
  1733. struct ssp_completion_resp *psspPayload;
  1734. struct task_status_struct *ts;
  1735. struct ssp_response_iu *iu;
  1736. struct pm8001_device *pm8001_dev;
  1737. psspPayload = (struct ssp_completion_resp *)(piomb + 4);
  1738. status = le32_to_cpu(psspPayload->status);
  1739. tag = le32_to_cpu(psspPayload->tag);
  1740. ccb = &pm8001_ha->ccb_info[tag];
  1741. if ((status == IO_ABORTED) && ccb->open_retry) {
  1742. /* Being completed by another */
  1743. ccb->open_retry = 0;
  1744. return;
  1745. }
  1746. pm8001_dev = ccb->device;
  1747. param = le32_to_cpu(psspPayload->param);
  1748. t = ccb->task;
  1749. if (status && status != IO_UNDERFLOW)
  1750. pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status);
  1751. if (unlikely(!t || !t->lldd_task || !t->dev))
  1752. return;
  1753. ts = &t->task_status;
  1754. /* Print sas address of IO failed device */
  1755. if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
  1756. (status != IO_UNDERFLOW))
  1757. pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n",
  1758. SAS_ADDR(t->dev->sas_addr));
  1759. if (status)
  1760. pm8001_dbg(pm8001_ha, IOERR,
  1761. "status:0x%x, tag:0x%x, task:0x%p\n",
  1762. status, tag, t);
  1763. switch (status) {
  1764. case IO_SUCCESS:
  1765. pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n",
  1766. param);
  1767. if (param == 0) {
  1768. ts->resp = SAS_TASK_COMPLETE;
  1769. ts->stat = SAS_SAM_STAT_GOOD;
  1770. } else {
  1771. ts->resp = SAS_TASK_COMPLETE;
  1772. ts->stat = SAS_PROTO_RESPONSE;
  1773. ts->residual = param;
  1774. iu = &psspPayload->ssp_resp_iu;
  1775. sas_ssp_task_response(pm8001_ha->dev, t, iu);
  1776. }
  1777. if (pm8001_dev)
  1778. atomic_dec(&pm8001_dev->running_req);
  1779. break;
  1780. case IO_ABORTED:
  1781. pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
  1782. ts->resp = SAS_TASK_COMPLETE;
  1783. ts->stat = SAS_ABORTED_TASK;
  1784. break;
  1785. case IO_UNDERFLOW:
  1786. /* SSP Completion with error */
  1787. pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n",
  1788. param);
  1789. ts->resp = SAS_TASK_COMPLETE;
  1790. ts->stat = SAS_DATA_UNDERRUN;
  1791. ts->residual = param;
  1792. if (pm8001_dev)
  1793. atomic_dec(&pm8001_dev->running_req);
  1794. break;
  1795. case IO_NO_DEVICE:
  1796. pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
  1797. ts->resp = SAS_TASK_UNDELIVERED;
  1798. ts->stat = SAS_PHY_DOWN;
  1799. break;
  1800. case IO_XFER_ERROR_BREAK:
  1801. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
  1802. ts->resp = SAS_TASK_COMPLETE;
  1803. ts->stat = SAS_OPEN_REJECT;
  1804. /* Force the midlayer to retry */
  1805. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1806. break;
  1807. case IO_XFER_ERROR_PHY_NOT_READY:
  1808. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
  1809. ts->resp = SAS_TASK_COMPLETE;
  1810. ts->stat = SAS_OPEN_REJECT;
  1811. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1812. break;
  1813. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  1814. pm8001_dbg(pm8001_ha, IO,
  1815. "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
  1816. ts->resp = SAS_TASK_COMPLETE;
  1817. ts->stat = SAS_OPEN_REJECT;
  1818. ts->open_rej_reason = SAS_OREJ_EPROTO;
  1819. break;
  1820. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  1821. pm8001_dbg(pm8001_ha, IO,
  1822. "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
  1823. ts->resp = SAS_TASK_COMPLETE;
  1824. ts->stat = SAS_OPEN_REJECT;
  1825. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1826. break;
  1827. case IO_OPEN_CNX_ERROR_BREAK:
  1828. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
  1829. ts->resp = SAS_TASK_COMPLETE;
  1830. ts->stat = SAS_OPEN_REJECT;
  1831. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1832. break;
  1833. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1834. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
  1835. ts->resp = SAS_TASK_COMPLETE;
  1836. ts->stat = SAS_OPEN_REJECT;
  1837. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1838. if (!t->uldd_task)
  1839. pm8001_handle_event(pm8001_ha,
  1840. pm8001_dev,
  1841. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  1842. break;
  1843. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  1844. pm8001_dbg(pm8001_ha, IO,
  1845. "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
  1846. ts->resp = SAS_TASK_COMPLETE;
  1847. ts->stat = SAS_OPEN_REJECT;
  1848. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  1849. break;
  1850. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  1851. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
  1852. ts->resp = SAS_TASK_COMPLETE;
  1853. ts->stat = SAS_OPEN_REJECT;
  1854. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  1855. break;
  1856. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  1857. pm8001_dbg(pm8001_ha, IO,
  1858. "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
  1859. ts->resp = SAS_TASK_UNDELIVERED;
  1860. ts->stat = SAS_OPEN_REJECT;
  1861. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  1862. break;
  1863. case IO_XFER_ERROR_NAK_RECEIVED:
  1864. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
  1865. ts->resp = SAS_TASK_COMPLETE;
  1866. ts->stat = SAS_OPEN_REJECT;
  1867. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1868. break;
  1869. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  1870. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
  1871. ts->resp = SAS_TASK_COMPLETE;
  1872. ts->stat = SAS_NAK_R_ERR;
  1873. break;
  1874. case IO_XFER_ERROR_DMA:
  1875. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
  1876. ts->resp = SAS_TASK_COMPLETE;
  1877. ts->stat = SAS_OPEN_REJECT;
  1878. break;
  1879. case IO_XFER_OPEN_RETRY_TIMEOUT:
  1880. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  1881. ts->resp = SAS_TASK_COMPLETE;
  1882. ts->stat = SAS_OPEN_REJECT;
  1883. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1884. break;
  1885. case IO_XFER_ERROR_OFFSET_MISMATCH:
  1886. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
  1887. ts->resp = SAS_TASK_COMPLETE;
  1888. ts->stat = SAS_OPEN_REJECT;
  1889. break;
  1890. case IO_PORT_IN_RESET:
  1891. pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
  1892. ts->resp = SAS_TASK_COMPLETE;
  1893. ts->stat = SAS_OPEN_REJECT;
  1894. break;
  1895. case IO_DS_NON_OPERATIONAL:
  1896. pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
  1897. ts->resp = SAS_TASK_COMPLETE;
  1898. ts->stat = SAS_OPEN_REJECT;
  1899. if (!t->uldd_task)
  1900. pm8001_handle_event(pm8001_ha,
  1901. pm8001_dev,
  1902. IO_DS_NON_OPERATIONAL);
  1903. break;
  1904. case IO_DS_IN_RECOVERY:
  1905. pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
  1906. ts->resp = SAS_TASK_COMPLETE;
  1907. ts->stat = SAS_OPEN_REJECT;
  1908. break;
  1909. case IO_TM_TAG_NOT_FOUND:
  1910. pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n");
  1911. ts->resp = SAS_TASK_COMPLETE;
  1912. ts->stat = SAS_OPEN_REJECT;
  1913. break;
  1914. case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
  1915. pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n");
  1916. ts->resp = SAS_TASK_COMPLETE;
  1917. ts->stat = SAS_OPEN_REJECT;
  1918. break;
  1919. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  1920. pm8001_dbg(pm8001_ha, IO,
  1921. "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
  1922. ts->resp = SAS_TASK_COMPLETE;
  1923. ts->stat = SAS_OPEN_REJECT;
  1924. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1925. break;
  1926. default:
  1927. pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
  1928. /* not allowed case. Therefore, return failed status */
  1929. ts->resp = SAS_TASK_COMPLETE;
  1930. ts->stat = SAS_OPEN_REJECT;
  1931. break;
  1932. }
  1933. pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n",
  1934. psspPayload->ssp_resp_iu.status);
  1935. spin_lock_irqsave(&t->task_state_lock, flags);
  1936. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  1937. t->task_state_flags |= SAS_TASK_STATE_DONE;
  1938. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  1939. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1940. pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
  1941. t, status, ts->resp, ts->stat);
  1942. pm8001_ccb_task_free(pm8001_ha, ccb);
  1943. } else {
  1944. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1945. pm8001_ccb_task_free(pm8001_ha, ccb);
  1946. mb();/* in order to force CPU ordering */
  1947. t->task_done(t);
  1948. }
  1949. }
  1950. /*See the comments for mpi_ssp_completion */
  1951. static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
  1952. {
  1953. struct sas_task *t;
  1954. unsigned long flags;
  1955. struct task_status_struct *ts;
  1956. struct pm8001_ccb_info *ccb;
  1957. struct pm8001_device *pm8001_dev;
  1958. struct ssp_event_resp *psspPayload =
  1959. (struct ssp_event_resp *)(piomb + 4);
  1960. u32 event = le32_to_cpu(psspPayload->event);
  1961. u32 tag = le32_to_cpu(psspPayload->tag);
  1962. u32 port_id = le32_to_cpu(psspPayload->port_id);
  1963. u32 dev_id = le32_to_cpu(psspPayload->device_id);
  1964. ccb = &pm8001_ha->ccb_info[tag];
  1965. t = ccb->task;
  1966. pm8001_dev = ccb->device;
  1967. if (event)
  1968. pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event);
  1969. if (unlikely(!t || !t->lldd_task || !t->dev))
  1970. return;
  1971. ts = &t->task_status;
  1972. pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n",
  1973. port_id, dev_id);
  1974. switch (event) {
  1975. case IO_OVERFLOW:
  1976. pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
  1977. ts->resp = SAS_TASK_COMPLETE;
  1978. ts->stat = SAS_DATA_OVERRUN;
  1979. ts->residual = 0;
  1980. if (pm8001_dev)
  1981. atomic_dec(&pm8001_dev->running_req);
  1982. break;
  1983. case IO_XFER_ERROR_BREAK:
  1984. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
  1985. pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK);
  1986. return;
  1987. case IO_XFER_ERROR_PHY_NOT_READY:
  1988. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
  1989. ts->resp = SAS_TASK_COMPLETE;
  1990. ts->stat = SAS_OPEN_REJECT;
  1991. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1992. break;
  1993. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  1994. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
  1995. ts->resp = SAS_TASK_COMPLETE;
  1996. ts->stat = SAS_OPEN_REJECT;
  1997. ts->open_rej_reason = SAS_OREJ_EPROTO;
  1998. break;
  1999. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2000. pm8001_dbg(pm8001_ha, IO,
  2001. "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
  2002. ts->resp = SAS_TASK_COMPLETE;
  2003. ts->stat = SAS_OPEN_REJECT;
  2004. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2005. break;
  2006. case IO_OPEN_CNX_ERROR_BREAK:
  2007. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
  2008. ts->resp = SAS_TASK_COMPLETE;
  2009. ts->stat = SAS_OPEN_REJECT;
  2010. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2011. break;
  2012. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2013. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
  2014. ts->resp = SAS_TASK_COMPLETE;
  2015. ts->stat = SAS_OPEN_REJECT;
  2016. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2017. if (!t->uldd_task)
  2018. pm8001_handle_event(pm8001_ha,
  2019. pm8001_dev,
  2020. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2021. break;
  2022. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2023. pm8001_dbg(pm8001_ha, IO,
  2024. "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
  2025. ts->resp = SAS_TASK_COMPLETE;
  2026. ts->stat = SAS_OPEN_REJECT;
  2027. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2028. break;
  2029. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2030. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
  2031. ts->resp = SAS_TASK_COMPLETE;
  2032. ts->stat = SAS_OPEN_REJECT;
  2033. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2034. break;
  2035. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2036. pm8001_dbg(pm8001_ha, IO,
  2037. "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
  2038. ts->resp = SAS_TASK_COMPLETE;
  2039. ts->stat = SAS_OPEN_REJECT;
  2040. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2041. break;
  2042. case IO_XFER_ERROR_NAK_RECEIVED:
  2043. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
  2044. ts->resp = SAS_TASK_COMPLETE;
  2045. ts->stat = SAS_OPEN_REJECT;
  2046. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2047. break;
  2048. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  2049. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
  2050. ts->resp = SAS_TASK_COMPLETE;
  2051. ts->stat = SAS_NAK_R_ERR;
  2052. break;
  2053. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2054. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  2055. pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT);
  2056. return;
  2057. case IO_XFER_ERROR_UNEXPECTED_PHASE:
  2058. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
  2059. ts->resp = SAS_TASK_COMPLETE;
  2060. ts->stat = SAS_DATA_OVERRUN;
  2061. break;
  2062. case IO_XFER_ERROR_XFER_RDY_OVERRUN:
  2063. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
  2064. ts->resp = SAS_TASK_COMPLETE;
  2065. ts->stat = SAS_DATA_OVERRUN;
  2066. break;
  2067. case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
  2068. pm8001_dbg(pm8001_ha, IO,
  2069. "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
  2070. ts->resp = SAS_TASK_COMPLETE;
  2071. ts->stat = SAS_DATA_OVERRUN;
  2072. break;
  2073. case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
  2074. pm8001_dbg(pm8001_ha, IO,
  2075. "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n");
  2076. ts->resp = SAS_TASK_COMPLETE;
  2077. ts->stat = SAS_DATA_OVERRUN;
  2078. break;
  2079. case IO_XFER_ERROR_OFFSET_MISMATCH:
  2080. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
  2081. ts->resp = SAS_TASK_COMPLETE;
  2082. ts->stat = SAS_DATA_OVERRUN;
  2083. break;
  2084. case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
  2085. pm8001_dbg(pm8001_ha, IO,
  2086. "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
  2087. ts->resp = SAS_TASK_COMPLETE;
  2088. ts->stat = SAS_DATA_OVERRUN;
  2089. break;
  2090. case IO_XFER_CMD_FRAME_ISSUED:
  2091. pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
  2092. return;
  2093. default:
  2094. pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event);
  2095. /* not allowed case. Therefore, return failed status */
  2096. ts->resp = SAS_TASK_COMPLETE;
  2097. ts->stat = SAS_DATA_OVERRUN;
  2098. break;
  2099. }
  2100. spin_lock_irqsave(&t->task_state_lock, flags);
  2101. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2102. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2103. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2104. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2105. pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
  2106. t, event, ts->resp, ts->stat);
  2107. pm8001_ccb_task_free(pm8001_ha, ccb);
  2108. } else {
  2109. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2110. pm8001_ccb_task_free(pm8001_ha, ccb);
  2111. mb();/* in order to force CPU ordering */
  2112. t->task_done(t);
  2113. }
  2114. }
  2115. /*See the comments for mpi_ssp_completion */
  2116. static void
  2117. mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2118. {
  2119. struct sas_task *t;
  2120. struct pm8001_ccb_info *ccb;
  2121. u32 param;
  2122. u32 status;
  2123. u32 tag;
  2124. int i, j;
  2125. u8 sata_addr_low[4];
  2126. u32 temp_sata_addr_low;
  2127. u8 sata_addr_hi[4];
  2128. u32 temp_sata_addr_hi;
  2129. struct sata_completion_resp *psataPayload;
  2130. struct task_status_struct *ts;
  2131. struct ata_task_resp *resp ;
  2132. u32 *sata_resp;
  2133. struct pm8001_device *pm8001_dev;
  2134. unsigned long flags;
  2135. psataPayload = (struct sata_completion_resp *)(piomb + 4);
  2136. status = le32_to_cpu(psataPayload->status);
  2137. param = le32_to_cpu(psataPayload->param);
  2138. tag = le32_to_cpu(psataPayload->tag);
  2139. ccb = &pm8001_ha->ccb_info[tag];
  2140. t = ccb->task;
  2141. pm8001_dev = ccb->device;
  2142. if (t) {
  2143. if (t->dev && (t->dev->lldd_dev))
  2144. pm8001_dev = t->dev->lldd_dev;
  2145. } else {
  2146. pm8001_dbg(pm8001_ha, FAIL, "task null\n");
  2147. return;
  2148. }
  2149. if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG))
  2150. && unlikely(!t || !t->lldd_task || !t->dev)) {
  2151. pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n");
  2152. return;
  2153. }
  2154. ts = &t->task_status;
  2155. if (status)
  2156. pm8001_dbg(pm8001_ha, IOERR,
  2157. "status:0x%x, tag:0x%x, task::0x%p\n",
  2158. status, tag, t);
  2159. /* Print sas address of IO failed device */
  2160. if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
  2161. (status != IO_UNDERFLOW)) {
  2162. if (!((t->dev->parent) &&
  2163. (dev_is_expander(t->dev->parent->dev_type)))) {
  2164. for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++)
  2165. sata_addr_low[i] = pm8001_ha->sas_addr[j];
  2166. for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++)
  2167. sata_addr_hi[i] = pm8001_ha->sas_addr[j];
  2168. memcpy(&temp_sata_addr_low, sata_addr_low,
  2169. sizeof(sata_addr_low));
  2170. memcpy(&temp_sata_addr_hi, sata_addr_hi,
  2171. sizeof(sata_addr_hi));
  2172. temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff)
  2173. |((temp_sata_addr_hi << 8) &
  2174. 0xff0000) |
  2175. ((temp_sata_addr_hi >> 8)
  2176. & 0xff00) |
  2177. ((temp_sata_addr_hi << 24) &
  2178. 0xff000000));
  2179. temp_sata_addr_low = ((((temp_sata_addr_low >> 24)
  2180. & 0xff) |
  2181. ((temp_sata_addr_low << 8)
  2182. & 0xff0000) |
  2183. ((temp_sata_addr_low >> 8)
  2184. & 0xff00) |
  2185. ((temp_sata_addr_low << 24)
  2186. & 0xff000000)) +
  2187. pm8001_dev->attached_phy +
  2188. 0x10);
  2189. pm8001_dbg(pm8001_ha, FAIL,
  2190. "SAS Address of IO Failure Drive:%08x%08x\n",
  2191. temp_sata_addr_hi,
  2192. temp_sata_addr_low);
  2193. } else {
  2194. pm8001_dbg(pm8001_ha, FAIL,
  2195. "SAS Address of IO Failure Drive:%016llx\n",
  2196. SAS_ADDR(t->dev->sas_addr));
  2197. }
  2198. }
  2199. switch (status) {
  2200. case IO_SUCCESS:
  2201. pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
  2202. if (param == 0) {
  2203. ts->resp = SAS_TASK_COMPLETE;
  2204. ts->stat = SAS_SAM_STAT_GOOD;
  2205. /* check if response is for SEND READ LOG */
  2206. if (pm8001_dev &&
  2207. (pm8001_dev->id & NCQ_READ_LOG_FLAG)) {
  2208. pm8001_send_abort_all(pm8001_ha, pm8001_dev);
  2209. /* Free the tag */
  2210. pm8001_tag_free(pm8001_ha, tag);
  2211. sas_free_task(t);
  2212. return;
  2213. }
  2214. } else {
  2215. u8 len;
  2216. ts->resp = SAS_TASK_COMPLETE;
  2217. ts->stat = SAS_PROTO_RESPONSE;
  2218. ts->residual = param;
  2219. pm8001_dbg(pm8001_ha, IO,
  2220. "SAS_PROTO_RESPONSE len = %d\n",
  2221. param);
  2222. sata_resp = &psataPayload->sata_resp[0];
  2223. resp = (struct ata_task_resp *)ts->buf;
  2224. if (t->ata_task.dma_xfer == 0 &&
  2225. t->data_dir == DMA_FROM_DEVICE) {
  2226. len = sizeof(struct pio_setup_fis);
  2227. pm8001_dbg(pm8001_ha, IO,
  2228. "PIO read len = %d\n", len);
  2229. } else if (t->ata_task.use_ncq &&
  2230. t->data_dir != DMA_NONE) {
  2231. len = sizeof(struct set_dev_bits_fis);
  2232. pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n",
  2233. len);
  2234. } else {
  2235. len = sizeof(struct dev_to_host_fis);
  2236. pm8001_dbg(pm8001_ha, IO, "other len = %d\n",
  2237. len);
  2238. }
  2239. if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
  2240. resp->frame_len = len;
  2241. memcpy(&resp->ending_fis[0], sata_resp, len);
  2242. ts->buf_valid_size = sizeof(*resp);
  2243. } else
  2244. pm8001_dbg(pm8001_ha, IO,
  2245. "response too large\n");
  2246. }
  2247. if (pm8001_dev)
  2248. atomic_dec(&pm8001_dev->running_req);
  2249. break;
  2250. case IO_ABORTED:
  2251. pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
  2252. ts->resp = SAS_TASK_COMPLETE;
  2253. ts->stat = SAS_ABORTED_TASK;
  2254. if (pm8001_dev)
  2255. atomic_dec(&pm8001_dev->running_req);
  2256. break;
  2257. /* following cases are to do cases */
  2258. case IO_UNDERFLOW:
  2259. /* SATA Completion with error */
  2260. pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param);
  2261. ts->resp = SAS_TASK_COMPLETE;
  2262. ts->stat = SAS_DATA_UNDERRUN;
  2263. ts->residual = param;
  2264. if (pm8001_dev)
  2265. atomic_dec(&pm8001_dev->running_req);
  2266. break;
  2267. case IO_NO_DEVICE:
  2268. pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
  2269. ts->resp = SAS_TASK_UNDELIVERED;
  2270. ts->stat = SAS_PHY_DOWN;
  2271. if (pm8001_dev)
  2272. atomic_dec(&pm8001_dev->running_req);
  2273. break;
  2274. case IO_XFER_ERROR_BREAK:
  2275. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
  2276. ts->resp = SAS_TASK_COMPLETE;
  2277. ts->stat = SAS_INTERRUPTED;
  2278. if (pm8001_dev)
  2279. atomic_dec(&pm8001_dev->running_req);
  2280. break;
  2281. case IO_XFER_ERROR_PHY_NOT_READY:
  2282. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
  2283. ts->resp = SAS_TASK_COMPLETE;
  2284. ts->stat = SAS_OPEN_REJECT;
  2285. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2286. if (pm8001_dev)
  2287. atomic_dec(&pm8001_dev->running_req);
  2288. break;
  2289. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  2290. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
  2291. ts->resp = SAS_TASK_COMPLETE;
  2292. ts->stat = SAS_OPEN_REJECT;
  2293. ts->open_rej_reason = SAS_OREJ_EPROTO;
  2294. if (pm8001_dev)
  2295. atomic_dec(&pm8001_dev->running_req);
  2296. break;
  2297. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2298. pm8001_dbg(pm8001_ha, IO,
  2299. "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
  2300. ts->resp = SAS_TASK_COMPLETE;
  2301. ts->stat = SAS_OPEN_REJECT;
  2302. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2303. if (pm8001_dev)
  2304. atomic_dec(&pm8001_dev->running_req);
  2305. break;
  2306. case IO_OPEN_CNX_ERROR_BREAK:
  2307. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
  2308. ts->resp = SAS_TASK_COMPLETE;
  2309. ts->stat = SAS_OPEN_REJECT;
  2310. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  2311. if (pm8001_dev)
  2312. atomic_dec(&pm8001_dev->running_req);
  2313. break;
  2314. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2315. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
  2316. ts->resp = SAS_TASK_COMPLETE;
  2317. ts->stat = SAS_DEV_NO_RESPONSE;
  2318. if (!t->uldd_task) {
  2319. pm8001_handle_event(pm8001_ha,
  2320. pm8001_dev,
  2321. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2322. ts->resp = SAS_TASK_UNDELIVERED;
  2323. ts->stat = SAS_QUEUE_FULL;
  2324. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2325. return;
  2326. }
  2327. break;
  2328. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2329. pm8001_dbg(pm8001_ha, IO,
  2330. "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
  2331. ts->resp = SAS_TASK_UNDELIVERED;
  2332. ts->stat = SAS_OPEN_REJECT;
  2333. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2334. if (!t->uldd_task) {
  2335. pm8001_handle_event(pm8001_ha,
  2336. pm8001_dev,
  2337. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2338. ts->resp = SAS_TASK_UNDELIVERED;
  2339. ts->stat = SAS_QUEUE_FULL;
  2340. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2341. return;
  2342. }
  2343. break;
  2344. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2345. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
  2346. ts->resp = SAS_TASK_COMPLETE;
  2347. ts->stat = SAS_OPEN_REJECT;
  2348. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2349. if (pm8001_dev)
  2350. atomic_dec(&pm8001_dev->running_req);
  2351. break;
  2352. case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
  2353. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n");
  2354. ts->resp = SAS_TASK_COMPLETE;
  2355. ts->stat = SAS_DEV_NO_RESPONSE;
  2356. if (!t->uldd_task) {
  2357. pm8001_handle_event(pm8001_ha,
  2358. pm8001_dev,
  2359. IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
  2360. ts->resp = SAS_TASK_UNDELIVERED;
  2361. ts->stat = SAS_QUEUE_FULL;
  2362. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2363. return;
  2364. }
  2365. break;
  2366. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2367. pm8001_dbg(pm8001_ha, IO,
  2368. "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
  2369. ts->resp = SAS_TASK_COMPLETE;
  2370. ts->stat = SAS_OPEN_REJECT;
  2371. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2372. if (pm8001_dev)
  2373. atomic_dec(&pm8001_dev->running_req);
  2374. break;
  2375. case IO_XFER_ERROR_NAK_RECEIVED:
  2376. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
  2377. ts->resp = SAS_TASK_COMPLETE;
  2378. ts->stat = SAS_NAK_R_ERR;
  2379. if (pm8001_dev)
  2380. atomic_dec(&pm8001_dev->running_req);
  2381. break;
  2382. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  2383. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
  2384. ts->resp = SAS_TASK_COMPLETE;
  2385. ts->stat = SAS_NAK_R_ERR;
  2386. if (pm8001_dev)
  2387. atomic_dec(&pm8001_dev->running_req);
  2388. break;
  2389. case IO_XFER_ERROR_DMA:
  2390. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
  2391. ts->resp = SAS_TASK_COMPLETE;
  2392. ts->stat = SAS_ABORTED_TASK;
  2393. if (pm8001_dev)
  2394. atomic_dec(&pm8001_dev->running_req);
  2395. break;
  2396. case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
  2397. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n");
  2398. ts->resp = SAS_TASK_UNDELIVERED;
  2399. ts->stat = SAS_DEV_NO_RESPONSE;
  2400. if (pm8001_dev)
  2401. atomic_dec(&pm8001_dev->running_req);
  2402. break;
  2403. case IO_XFER_ERROR_REJECTED_NCQ_MODE:
  2404. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
  2405. ts->resp = SAS_TASK_COMPLETE;
  2406. ts->stat = SAS_DATA_UNDERRUN;
  2407. if (pm8001_dev)
  2408. atomic_dec(&pm8001_dev->running_req);
  2409. break;
  2410. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2411. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  2412. ts->resp = SAS_TASK_COMPLETE;
  2413. ts->stat = SAS_OPEN_TO;
  2414. if (pm8001_dev)
  2415. atomic_dec(&pm8001_dev->running_req);
  2416. break;
  2417. case IO_PORT_IN_RESET:
  2418. pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
  2419. ts->resp = SAS_TASK_COMPLETE;
  2420. ts->stat = SAS_DEV_NO_RESPONSE;
  2421. if (pm8001_dev)
  2422. atomic_dec(&pm8001_dev->running_req);
  2423. break;
  2424. case IO_DS_NON_OPERATIONAL:
  2425. pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
  2426. ts->resp = SAS_TASK_COMPLETE;
  2427. ts->stat = SAS_DEV_NO_RESPONSE;
  2428. if (!t->uldd_task) {
  2429. pm8001_handle_event(pm8001_ha, pm8001_dev,
  2430. IO_DS_NON_OPERATIONAL);
  2431. ts->resp = SAS_TASK_UNDELIVERED;
  2432. ts->stat = SAS_QUEUE_FULL;
  2433. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2434. return;
  2435. }
  2436. break;
  2437. case IO_DS_IN_RECOVERY:
  2438. pm8001_dbg(pm8001_ha, IO, " IO_DS_IN_RECOVERY\n");
  2439. ts->resp = SAS_TASK_COMPLETE;
  2440. ts->stat = SAS_DEV_NO_RESPONSE;
  2441. if (pm8001_dev)
  2442. atomic_dec(&pm8001_dev->running_req);
  2443. break;
  2444. case IO_DS_IN_ERROR:
  2445. pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n");
  2446. ts->resp = SAS_TASK_COMPLETE;
  2447. ts->stat = SAS_DEV_NO_RESPONSE;
  2448. if (!t->uldd_task) {
  2449. pm8001_handle_event(pm8001_ha, pm8001_dev,
  2450. IO_DS_IN_ERROR);
  2451. ts->resp = SAS_TASK_UNDELIVERED;
  2452. ts->stat = SAS_QUEUE_FULL;
  2453. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2454. return;
  2455. }
  2456. break;
  2457. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  2458. pm8001_dbg(pm8001_ha, IO,
  2459. "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
  2460. ts->resp = SAS_TASK_COMPLETE;
  2461. ts->stat = SAS_OPEN_REJECT;
  2462. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2463. if (pm8001_dev)
  2464. atomic_dec(&pm8001_dev->running_req);
  2465. break;
  2466. default:
  2467. pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
  2468. /* not allowed case. Therefore, return failed status */
  2469. ts->resp = SAS_TASK_COMPLETE;
  2470. ts->stat = SAS_DEV_NO_RESPONSE;
  2471. if (pm8001_dev)
  2472. atomic_dec(&pm8001_dev->running_req);
  2473. break;
  2474. }
  2475. spin_lock_irqsave(&t->task_state_lock, flags);
  2476. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2477. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2478. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2479. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2480. pm8001_dbg(pm8001_ha, FAIL,
  2481. "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
  2482. t, status, ts->resp, ts->stat);
  2483. pm8001_ccb_task_free(pm8001_ha, ccb);
  2484. } else {
  2485. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2486. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2487. }
  2488. }
  2489. /*See the comments for mpi_ssp_completion */
  2490. static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2491. {
  2492. struct sas_task *t;
  2493. struct task_status_struct *ts;
  2494. struct pm8001_ccb_info *ccb;
  2495. struct pm8001_device *pm8001_dev;
  2496. struct sata_event_resp *psataPayload =
  2497. (struct sata_event_resp *)(piomb + 4);
  2498. u32 event = le32_to_cpu(psataPayload->event);
  2499. u32 tag = le32_to_cpu(psataPayload->tag);
  2500. u32 port_id = le32_to_cpu(psataPayload->port_id);
  2501. u32 dev_id = le32_to_cpu(psataPayload->device_id);
  2502. if (event)
  2503. pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event);
  2504. /* Check if this is NCQ error */
  2505. if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) {
  2506. /* find device using device id */
  2507. pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id);
  2508. /* send read log extension */
  2509. if (pm8001_dev)
  2510. pm8001_send_read_log(pm8001_ha, pm8001_dev);
  2511. return;
  2512. }
  2513. ccb = &pm8001_ha->ccb_info[tag];
  2514. t = ccb->task;
  2515. pm8001_dev = ccb->device;
  2516. if (event)
  2517. pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event);
  2518. if (unlikely(!t || !t->lldd_task || !t->dev))
  2519. return;
  2520. ts = &t->task_status;
  2521. pm8001_dbg(pm8001_ha, DEVIO,
  2522. "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n",
  2523. port_id, dev_id, tag, event);
  2524. switch (event) {
  2525. case IO_OVERFLOW:
  2526. pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
  2527. ts->resp = SAS_TASK_COMPLETE;
  2528. ts->stat = SAS_DATA_OVERRUN;
  2529. ts->residual = 0;
  2530. break;
  2531. case IO_XFER_ERROR_BREAK:
  2532. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
  2533. ts->resp = SAS_TASK_COMPLETE;
  2534. ts->stat = SAS_INTERRUPTED;
  2535. break;
  2536. case IO_XFER_ERROR_PHY_NOT_READY:
  2537. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
  2538. ts->resp = SAS_TASK_COMPLETE;
  2539. ts->stat = SAS_OPEN_REJECT;
  2540. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2541. break;
  2542. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  2543. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
  2544. ts->resp = SAS_TASK_COMPLETE;
  2545. ts->stat = SAS_OPEN_REJECT;
  2546. ts->open_rej_reason = SAS_OREJ_EPROTO;
  2547. break;
  2548. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2549. pm8001_dbg(pm8001_ha, IO,
  2550. "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
  2551. ts->resp = SAS_TASK_COMPLETE;
  2552. ts->stat = SAS_OPEN_REJECT;
  2553. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2554. break;
  2555. case IO_OPEN_CNX_ERROR_BREAK:
  2556. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
  2557. ts->resp = SAS_TASK_COMPLETE;
  2558. ts->stat = SAS_OPEN_REJECT;
  2559. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  2560. break;
  2561. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2562. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
  2563. ts->resp = SAS_TASK_UNDELIVERED;
  2564. ts->stat = SAS_DEV_NO_RESPONSE;
  2565. if (!t->uldd_task) {
  2566. pm8001_handle_event(pm8001_ha,
  2567. pm8001_dev,
  2568. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2569. ts->resp = SAS_TASK_COMPLETE;
  2570. ts->stat = SAS_QUEUE_FULL;
  2571. return;
  2572. }
  2573. break;
  2574. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2575. pm8001_dbg(pm8001_ha, IO,
  2576. "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
  2577. ts->resp = SAS_TASK_UNDELIVERED;
  2578. ts->stat = SAS_OPEN_REJECT;
  2579. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2580. break;
  2581. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2582. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
  2583. ts->resp = SAS_TASK_COMPLETE;
  2584. ts->stat = SAS_OPEN_REJECT;
  2585. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2586. break;
  2587. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2588. pm8001_dbg(pm8001_ha, IO,
  2589. "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
  2590. ts->resp = SAS_TASK_COMPLETE;
  2591. ts->stat = SAS_OPEN_REJECT;
  2592. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2593. break;
  2594. case IO_XFER_ERROR_NAK_RECEIVED:
  2595. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
  2596. ts->resp = SAS_TASK_COMPLETE;
  2597. ts->stat = SAS_NAK_R_ERR;
  2598. break;
  2599. case IO_XFER_ERROR_PEER_ABORTED:
  2600. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n");
  2601. ts->resp = SAS_TASK_COMPLETE;
  2602. ts->stat = SAS_NAK_R_ERR;
  2603. break;
  2604. case IO_XFER_ERROR_REJECTED_NCQ_MODE:
  2605. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
  2606. ts->resp = SAS_TASK_COMPLETE;
  2607. ts->stat = SAS_DATA_UNDERRUN;
  2608. break;
  2609. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2610. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  2611. ts->resp = SAS_TASK_COMPLETE;
  2612. ts->stat = SAS_OPEN_TO;
  2613. break;
  2614. case IO_XFER_ERROR_UNEXPECTED_PHASE:
  2615. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
  2616. ts->resp = SAS_TASK_COMPLETE;
  2617. ts->stat = SAS_OPEN_TO;
  2618. break;
  2619. case IO_XFER_ERROR_XFER_RDY_OVERRUN:
  2620. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
  2621. ts->resp = SAS_TASK_COMPLETE;
  2622. ts->stat = SAS_OPEN_TO;
  2623. break;
  2624. case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
  2625. pm8001_dbg(pm8001_ha, IO,
  2626. "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
  2627. ts->resp = SAS_TASK_COMPLETE;
  2628. ts->stat = SAS_OPEN_TO;
  2629. break;
  2630. case IO_XFER_ERROR_OFFSET_MISMATCH:
  2631. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
  2632. ts->resp = SAS_TASK_COMPLETE;
  2633. ts->stat = SAS_OPEN_TO;
  2634. break;
  2635. case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
  2636. pm8001_dbg(pm8001_ha, IO,
  2637. "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
  2638. ts->resp = SAS_TASK_COMPLETE;
  2639. ts->stat = SAS_OPEN_TO;
  2640. break;
  2641. case IO_XFER_CMD_FRAME_ISSUED:
  2642. pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
  2643. break;
  2644. case IO_XFER_PIO_SETUP_ERROR:
  2645. pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n");
  2646. ts->resp = SAS_TASK_COMPLETE;
  2647. ts->stat = SAS_OPEN_TO;
  2648. break;
  2649. default:
  2650. pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event);
  2651. /* not allowed case. Therefore, return failed status */
  2652. ts->resp = SAS_TASK_COMPLETE;
  2653. ts->stat = SAS_OPEN_TO;
  2654. break;
  2655. }
  2656. }
  2657. /*See the comments for mpi_ssp_completion */
  2658. static void
  2659. mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2660. {
  2661. struct sas_task *t;
  2662. struct pm8001_ccb_info *ccb;
  2663. unsigned long flags;
  2664. u32 status;
  2665. u32 tag;
  2666. struct smp_completion_resp *psmpPayload;
  2667. struct task_status_struct *ts;
  2668. struct pm8001_device *pm8001_dev;
  2669. psmpPayload = (struct smp_completion_resp *)(piomb + 4);
  2670. status = le32_to_cpu(psmpPayload->status);
  2671. tag = le32_to_cpu(psmpPayload->tag);
  2672. ccb = &pm8001_ha->ccb_info[tag];
  2673. t = ccb->task;
  2674. ts = &t->task_status;
  2675. pm8001_dev = ccb->device;
  2676. if (status) {
  2677. pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status);
  2678. pm8001_dbg(pm8001_ha, IOERR,
  2679. "status:0x%x, tag:0x%x, task:0x%p\n",
  2680. status, tag, t);
  2681. }
  2682. if (unlikely(!t || !t->lldd_task || !t->dev))
  2683. return;
  2684. switch (status) {
  2685. case IO_SUCCESS:
  2686. pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
  2687. ts->resp = SAS_TASK_COMPLETE;
  2688. ts->stat = SAS_SAM_STAT_GOOD;
  2689. if (pm8001_dev)
  2690. atomic_dec(&pm8001_dev->running_req);
  2691. break;
  2692. case IO_ABORTED:
  2693. pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n");
  2694. ts->resp = SAS_TASK_COMPLETE;
  2695. ts->stat = SAS_ABORTED_TASK;
  2696. if (pm8001_dev)
  2697. atomic_dec(&pm8001_dev->running_req);
  2698. break;
  2699. case IO_OVERFLOW:
  2700. pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
  2701. ts->resp = SAS_TASK_COMPLETE;
  2702. ts->stat = SAS_DATA_OVERRUN;
  2703. ts->residual = 0;
  2704. if (pm8001_dev)
  2705. atomic_dec(&pm8001_dev->running_req);
  2706. break;
  2707. case IO_NO_DEVICE:
  2708. pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
  2709. ts->resp = SAS_TASK_COMPLETE;
  2710. ts->stat = SAS_PHY_DOWN;
  2711. break;
  2712. case IO_ERROR_HW_TIMEOUT:
  2713. pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n");
  2714. ts->resp = SAS_TASK_COMPLETE;
  2715. ts->stat = SAS_SAM_STAT_BUSY;
  2716. break;
  2717. case IO_XFER_ERROR_BREAK:
  2718. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
  2719. ts->resp = SAS_TASK_COMPLETE;
  2720. ts->stat = SAS_SAM_STAT_BUSY;
  2721. break;
  2722. case IO_XFER_ERROR_PHY_NOT_READY:
  2723. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
  2724. ts->resp = SAS_TASK_COMPLETE;
  2725. ts->stat = SAS_SAM_STAT_BUSY;
  2726. break;
  2727. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  2728. pm8001_dbg(pm8001_ha, IO,
  2729. "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
  2730. ts->resp = SAS_TASK_COMPLETE;
  2731. ts->stat = SAS_OPEN_REJECT;
  2732. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2733. break;
  2734. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2735. pm8001_dbg(pm8001_ha, IO,
  2736. "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
  2737. ts->resp = SAS_TASK_COMPLETE;
  2738. ts->stat = SAS_OPEN_REJECT;
  2739. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2740. break;
  2741. case IO_OPEN_CNX_ERROR_BREAK:
  2742. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
  2743. ts->resp = SAS_TASK_COMPLETE;
  2744. ts->stat = SAS_OPEN_REJECT;
  2745. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  2746. break;
  2747. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2748. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
  2749. ts->resp = SAS_TASK_COMPLETE;
  2750. ts->stat = SAS_OPEN_REJECT;
  2751. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2752. pm8001_handle_event(pm8001_ha,
  2753. pm8001_dev,
  2754. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2755. break;
  2756. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2757. pm8001_dbg(pm8001_ha, IO,
  2758. "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
  2759. ts->resp = SAS_TASK_COMPLETE;
  2760. ts->stat = SAS_OPEN_REJECT;
  2761. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2762. break;
  2763. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2764. pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
  2765. ts->resp = SAS_TASK_COMPLETE;
  2766. ts->stat = SAS_OPEN_REJECT;
  2767. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2768. break;
  2769. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2770. pm8001_dbg(pm8001_ha, IO,
  2771. "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
  2772. ts->resp = SAS_TASK_COMPLETE;
  2773. ts->stat = SAS_OPEN_REJECT;
  2774. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2775. break;
  2776. case IO_XFER_ERROR_RX_FRAME:
  2777. pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n");
  2778. ts->resp = SAS_TASK_COMPLETE;
  2779. ts->stat = SAS_DEV_NO_RESPONSE;
  2780. break;
  2781. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2782. pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
  2783. ts->resp = SAS_TASK_COMPLETE;
  2784. ts->stat = SAS_OPEN_REJECT;
  2785. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2786. break;
  2787. case IO_ERROR_INTERNAL_SMP_RESOURCE:
  2788. pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n");
  2789. ts->resp = SAS_TASK_COMPLETE;
  2790. ts->stat = SAS_QUEUE_FULL;
  2791. break;
  2792. case IO_PORT_IN_RESET:
  2793. pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
  2794. ts->resp = SAS_TASK_COMPLETE;
  2795. ts->stat = SAS_OPEN_REJECT;
  2796. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2797. break;
  2798. case IO_DS_NON_OPERATIONAL:
  2799. pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
  2800. ts->resp = SAS_TASK_COMPLETE;
  2801. ts->stat = SAS_DEV_NO_RESPONSE;
  2802. break;
  2803. case IO_DS_IN_RECOVERY:
  2804. pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
  2805. ts->resp = SAS_TASK_COMPLETE;
  2806. ts->stat = SAS_OPEN_REJECT;
  2807. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2808. break;
  2809. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  2810. pm8001_dbg(pm8001_ha, IO,
  2811. "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
  2812. ts->resp = SAS_TASK_COMPLETE;
  2813. ts->stat = SAS_OPEN_REJECT;
  2814. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2815. break;
  2816. default:
  2817. pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
  2818. ts->resp = SAS_TASK_COMPLETE;
  2819. ts->stat = SAS_DEV_NO_RESPONSE;
  2820. /* not allowed case. Therefore, return failed status */
  2821. break;
  2822. }
  2823. spin_lock_irqsave(&t->task_state_lock, flags);
  2824. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2825. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2826. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2827. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2828. pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
  2829. t, status, ts->resp, ts->stat);
  2830. pm8001_ccb_task_free(pm8001_ha, ccb);
  2831. } else {
  2832. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2833. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  2834. }
  2835. }
  2836. void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha,
  2837. void *piomb)
  2838. {
  2839. struct set_dev_state_resp *pPayload =
  2840. (struct set_dev_state_resp *)(piomb + 4);
  2841. u32 tag = le32_to_cpu(pPayload->tag);
  2842. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2843. struct pm8001_device *pm8001_dev = ccb->device;
  2844. u32 status = le32_to_cpu(pPayload->status);
  2845. u32 device_id = le32_to_cpu(pPayload->device_id);
  2846. u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS;
  2847. u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS;
  2848. pm8001_dbg(pm8001_ha, MSG,
  2849. "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n",
  2850. device_id, pds, nds, status);
  2851. complete(pm8001_dev->setds_completion);
  2852. pm8001_ccb_free(pm8001_ha, ccb);
  2853. }
  2854. void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2855. {
  2856. struct get_nvm_data_resp *pPayload =
  2857. (struct get_nvm_data_resp *)(piomb + 4);
  2858. u32 tag = le32_to_cpu(pPayload->tag);
  2859. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2860. u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
  2861. complete(pm8001_ha->nvmd_completion);
  2862. pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n");
  2863. if ((dlen_status & NVMD_STAT) != 0) {
  2864. pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n",
  2865. dlen_status);
  2866. }
  2867. pm8001_ccb_free(pm8001_ha, ccb);
  2868. }
  2869. void
  2870. pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2871. {
  2872. struct fw_control_ex *fw_control_context;
  2873. struct get_nvm_data_resp *pPayload =
  2874. (struct get_nvm_data_resp *)(piomb + 4);
  2875. u32 tag = le32_to_cpu(pPayload->tag);
  2876. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2877. u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
  2878. u32 ir_tds_bn_dps_das_nvm =
  2879. le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm);
  2880. void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr;
  2881. fw_control_context = ccb->fw_control_context;
  2882. pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n");
  2883. if ((dlen_status & NVMD_STAT) != 0) {
  2884. pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n",
  2885. dlen_status);
  2886. complete(pm8001_ha->nvmd_completion);
  2887. /* We should free tag during failure also, the tag is not being
  2888. * freed by requesting path anywhere.
  2889. */
  2890. pm8001_ccb_free(pm8001_ha, ccb);
  2891. return;
  2892. }
  2893. if (ir_tds_bn_dps_das_nvm & IPMode) {
  2894. /* indirect mode - IR bit set */
  2895. pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n");
  2896. if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) {
  2897. if (ir_tds_bn_dps_das_nvm == 0x80a80200) {
  2898. memcpy(pm8001_ha->sas_addr,
  2899. ((u8 *)virt_addr + 4),
  2900. SAS_ADDR_SIZE);
  2901. pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n");
  2902. }
  2903. } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM)
  2904. || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) ||
  2905. ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) {
  2906. ;
  2907. } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP)
  2908. || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) {
  2909. ;
  2910. } else {
  2911. /* Should not be happened*/
  2912. pm8001_dbg(pm8001_ha, MSG,
  2913. "(IR=1)Wrong Device type 0x%x\n",
  2914. ir_tds_bn_dps_das_nvm);
  2915. }
  2916. } else /* direct mode */{
  2917. pm8001_dbg(pm8001_ha, MSG,
  2918. "Get NVMD success, IR=0, dataLen=%d\n",
  2919. (dlen_status & NVMD_LEN) >> 24);
  2920. }
  2921. /* Though fw_control_context is freed below, usrAddr still needs
  2922. * to be updated as this holds the response to the request function
  2923. */
  2924. memcpy(fw_control_context->usrAddr,
  2925. pm8001_ha->memoryMap.region[NVMD].virt_ptr,
  2926. fw_control_context->len);
  2927. kfree(ccb->fw_control_context);
  2928. /* To avoid race condition, complete should be
  2929. * called after the message is copied to
  2930. * fw_control_context->usrAddr
  2931. */
  2932. complete(pm8001_ha->nvmd_completion);
  2933. pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n");
  2934. pm8001_ccb_free(pm8001_ha, ccb);
  2935. }
  2936. int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2937. {
  2938. u32 tag;
  2939. struct local_phy_ctl_resp *pPayload =
  2940. (struct local_phy_ctl_resp *)(piomb + 4);
  2941. u32 status = le32_to_cpu(pPayload->status);
  2942. u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS;
  2943. u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS;
  2944. tag = le32_to_cpu(pPayload->tag);
  2945. if (status != 0) {
  2946. pm8001_dbg(pm8001_ha, MSG,
  2947. "%x phy execute %x phy op failed!\n",
  2948. phy_id, phy_op);
  2949. } else {
  2950. pm8001_dbg(pm8001_ha, MSG,
  2951. "%x phy execute %x phy op success!\n",
  2952. phy_id, phy_op);
  2953. pm8001_ha->phy[phy_id].reset_success = true;
  2954. }
  2955. if (pm8001_ha->phy[phy_id].enable_completion) {
  2956. complete(pm8001_ha->phy[phy_id].enable_completion);
  2957. pm8001_ha->phy[phy_id].enable_completion = NULL;
  2958. }
  2959. pm8001_tag_free(pm8001_ha, tag);
  2960. return 0;
  2961. }
  2962. /**
  2963. * pm8001_bytes_dmaed - one of the interface function communication with libsas
  2964. * @pm8001_ha: our hba card information
  2965. * @i: which phy that received the event.
  2966. *
  2967. * when HBA driver received the identify done event or initiate FIS received
  2968. * event(for SATA), it will invoke this function to notify the sas layer that
  2969. * the sas toplogy has formed, please discover the whole sas domain,
  2970. * while receive a broadcast(change) primitive just tell the sas
  2971. * layer to discover the changed domain rather than the whole domain.
  2972. */
  2973. void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i)
  2974. {
  2975. struct pm8001_phy *phy = &pm8001_ha->phy[i];
  2976. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  2977. if (!phy->phy_attached)
  2978. return;
  2979. if (phy->phy_type & PORT_TYPE_SAS) {
  2980. struct sas_identify_frame *id;
  2981. id = (struct sas_identify_frame *)phy->frame_rcvd;
  2982. id->dev_type = phy->identify.device_type;
  2983. id->initiator_bits = SAS_PROTOCOL_ALL;
  2984. id->target_bits = phy->identify.target_port_protocols;
  2985. } else if (phy->phy_type & PORT_TYPE_SATA) {
  2986. /*Nothing*/
  2987. }
  2988. pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i);
  2989. sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
  2990. sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC);
  2991. }
  2992. /* Get the link rate speed */
  2993. void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate)
  2994. {
  2995. struct sas_phy *sas_phy = phy->sas_phy.phy;
  2996. switch (link_rate) {
  2997. case PHY_SPEED_120:
  2998. phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS;
  2999. break;
  3000. case PHY_SPEED_60:
  3001. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  3002. break;
  3003. case PHY_SPEED_30:
  3004. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  3005. break;
  3006. case PHY_SPEED_15:
  3007. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  3008. break;
  3009. }
  3010. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  3011. sas_phy->maximum_linkrate_hw = phy->maximum_linkrate;
  3012. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  3013. sas_phy->maximum_linkrate = phy->maximum_linkrate;
  3014. sas_phy->minimum_linkrate = phy->minimum_linkrate;
  3015. }
  3016. /**
  3017. * pm8001_get_attached_sas_addr - extract/generate attached SAS address
  3018. * @phy: pointer to asd_phy
  3019. * @sas_addr: pointer to buffer where the SAS address is to be written
  3020. *
  3021. * This function extracts the SAS address from an IDENTIFY frame
  3022. * received. If OOB is SATA, then a SAS address is generated from the
  3023. * HA tables.
  3024. *
  3025. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  3026. * buffer.
  3027. */
  3028. void pm8001_get_attached_sas_addr(struct pm8001_phy *phy,
  3029. u8 *sas_addr)
  3030. {
  3031. if (phy->sas_phy.frame_rcvd[0] == 0x34
  3032. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  3033. struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha;
  3034. /* FIS device-to-host */
  3035. u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr);
  3036. addr += phy->sas_phy.id;
  3037. *(__be64 *)sas_addr = cpu_to_be64(addr);
  3038. } else {
  3039. struct sas_identify_frame *idframe =
  3040. (void *) phy->sas_phy.frame_rcvd;
  3041. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  3042. }
  3043. }
  3044. /**
  3045. * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
  3046. * @pm8001_ha: our hba card information
  3047. * @Qnum: the outbound queue message number.
  3048. * @SEA: source of event to ack
  3049. * @port_id: port id.
  3050. * @phyId: phy id.
  3051. * @param0: parameter 0.
  3052. * @param1: parameter 1.
  3053. */
  3054. static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
  3055. u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
  3056. {
  3057. struct hw_event_ack_req payload;
  3058. u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
  3059. memset((u8 *)&payload, 0, sizeof(payload));
  3060. payload.tag = cpu_to_le32(1);
  3061. payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
  3062. ((phyId & 0x0F) << 4) | (port_id & 0x0F));
  3063. payload.param0 = cpu_to_le32(param0);
  3064. payload.param1 = cpu_to_le32(param1);
  3065. pm8001_mpi_build_cmd(pm8001_ha, Qnum, opc, &payload, sizeof(payload), 0);
  3066. }
  3067. static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
  3068. u32 phyId, u32 phy_op);
  3069. /**
  3070. * hw_event_sas_phy_up -FW tells me a SAS phy up event.
  3071. * @pm8001_ha: our hba card information
  3072. * @piomb: IO message buffer
  3073. */
  3074. static void
  3075. hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3076. {
  3077. struct hw_event_resp *pPayload =
  3078. (struct hw_event_resp *)(piomb + 4);
  3079. u32 lr_evt_status_phyid_portid =
  3080. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  3081. u8 link_rate =
  3082. (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
  3083. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  3084. u8 phy_id =
  3085. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  3086. u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
  3087. u8 portstate = (u8)(npip_portstate & 0x0000000F);
  3088. struct pm8001_port *port = &pm8001_ha->port[port_id];
  3089. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  3090. unsigned long flags;
  3091. u8 deviceType = pPayload->sas_identify.dev_type;
  3092. phy->port = port;
  3093. port->port_id = port_id;
  3094. port->port_state = portstate;
  3095. phy->phy_state = PHY_STATE_LINK_UP_SPC;
  3096. pm8001_dbg(pm8001_ha, MSG,
  3097. "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n",
  3098. port_id, phy_id);
  3099. switch (deviceType) {
  3100. case SAS_PHY_UNUSED:
  3101. pm8001_dbg(pm8001_ha, MSG, "device type no device.\n");
  3102. break;
  3103. case SAS_END_DEVICE:
  3104. pm8001_dbg(pm8001_ha, MSG, "end device.\n");
  3105. pm8001_chip_phy_ctl_req(pm8001_ha, phy_id,
  3106. PHY_NOTIFY_ENABLE_SPINUP);
  3107. port->port_attached = 1;
  3108. pm8001_get_lrate_mode(phy, link_rate);
  3109. break;
  3110. case SAS_EDGE_EXPANDER_DEVICE:
  3111. pm8001_dbg(pm8001_ha, MSG, "expander device.\n");
  3112. port->port_attached = 1;
  3113. pm8001_get_lrate_mode(phy, link_rate);
  3114. break;
  3115. case SAS_FANOUT_EXPANDER_DEVICE:
  3116. pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n");
  3117. port->port_attached = 1;
  3118. pm8001_get_lrate_mode(phy, link_rate);
  3119. break;
  3120. default:
  3121. pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n",
  3122. deviceType);
  3123. break;
  3124. }
  3125. phy->phy_type |= PORT_TYPE_SAS;
  3126. phy->identify.device_type = deviceType;
  3127. phy->phy_attached = 1;
  3128. if (phy->identify.device_type == SAS_END_DEVICE)
  3129. phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
  3130. else if (phy->identify.device_type != SAS_PHY_UNUSED)
  3131. phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
  3132. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  3133. sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC);
  3134. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  3135. memcpy(phy->frame_rcvd, &pPayload->sas_identify,
  3136. sizeof(struct sas_identify_frame)-4);
  3137. phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
  3138. pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  3139. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  3140. if (pm8001_ha->flags == PM8001F_RUN_TIME)
  3141. mdelay(200);/*delay a moment to wait disk to spinup*/
  3142. pm8001_bytes_dmaed(pm8001_ha, phy_id);
  3143. }
  3144. /**
  3145. * hw_event_sata_phy_up -FW tells me a SATA phy up event.
  3146. * @pm8001_ha: our hba card information
  3147. * @piomb: IO message buffer
  3148. */
  3149. static void
  3150. hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3151. {
  3152. struct hw_event_resp *pPayload =
  3153. (struct hw_event_resp *)(piomb + 4);
  3154. u32 lr_evt_status_phyid_portid =
  3155. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  3156. u8 link_rate =
  3157. (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
  3158. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  3159. u8 phy_id =
  3160. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  3161. u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
  3162. u8 portstate = (u8)(npip_portstate & 0x0000000F);
  3163. struct pm8001_port *port = &pm8001_ha->port[port_id];
  3164. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  3165. unsigned long flags;
  3166. pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n",
  3167. port_id, phy_id);
  3168. phy->port = port;
  3169. port->port_id = port_id;
  3170. port->port_state = portstate;
  3171. phy->phy_state = PHY_STATE_LINK_UP_SPC;
  3172. port->port_attached = 1;
  3173. pm8001_get_lrate_mode(phy, link_rate);
  3174. phy->phy_type |= PORT_TYPE_SATA;
  3175. phy->phy_attached = 1;
  3176. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  3177. sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC);
  3178. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  3179. memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
  3180. sizeof(struct dev_to_host_fis));
  3181. phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
  3182. phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
  3183. phy->identify.device_type = SAS_SATA_DEV;
  3184. pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  3185. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  3186. pm8001_bytes_dmaed(pm8001_ha, phy_id);
  3187. }
  3188. /**
  3189. * hw_event_phy_down -we should notify the libsas the phy is down.
  3190. * @pm8001_ha: our hba card information
  3191. * @piomb: IO message buffer
  3192. */
  3193. static void
  3194. hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3195. {
  3196. struct hw_event_resp *pPayload =
  3197. (struct hw_event_resp *)(piomb + 4);
  3198. u32 lr_evt_status_phyid_portid =
  3199. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  3200. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  3201. u8 phy_id =
  3202. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  3203. u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
  3204. u8 portstate = (u8)(npip_portstate & 0x0000000F);
  3205. struct pm8001_port *port = &pm8001_ha->port[port_id];
  3206. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  3207. port->port_state = portstate;
  3208. phy->phy_type = 0;
  3209. phy->identify.device_type = 0;
  3210. phy->phy_attached = 0;
  3211. memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE);
  3212. switch (portstate) {
  3213. case PORT_VALID:
  3214. break;
  3215. case PORT_INVALID:
  3216. pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n",
  3217. port_id);
  3218. pm8001_dbg(pm8001_ha, MSG,
  3219. " Last phy Down and port invalid\n");
  3220. port->port_attached = 0;
  3221. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
  3222. port_id, phy_id, 0, 0);
  3223. break;
  3224. case PORT_IN_RESET:
  3225. pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n",
  3226. port_id);
  3227. break;
  3228. case PORT_NOT_ESTABLISHED:
  3229. pm8001_dbg(pm8001_ha, MSG,
  3230. " phy Down and PORT_NOT_ESTABLISHED\n");
  3231. port->port_attached = 0;
  3232. break;
  3233. case PORT_LOSTCOMM:
  3234. pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n");
  3235. pm8001_dbg(pm8001_ha, MSG,
  3236. " Last phy Down and port invalid\n");
  3237. port->port_attached = 0;
  3238. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
  3239. port_id, phy_id, 0, 0);
  3240. break;
  3241. default:
  3242. port->port_attached = 0;
  3243. pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n",
  3244. portstate);
  3245. break;
  3246. }
  3247. }
  3248. /**
  3249. * pm8001_mpi_reg_resp -process register device ID response.
  3250. * @pm8001_ha: our hba card information
  3251. * @piomb: IO message buffer
  3252. *
  3253. * when sas layer find a device it will notify LLDD, then the driver register
  3254. * the domain device to FW, this event is the return device ID which the FW
  3255. * has assigned, from now, inter-communication with FW is no longer using the
  3256. * SAS address, use device ID which FW assigned.
  3257. */
  3258. int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3259. {
  3260. u32 status;
  3261. u32 device_id;
  3262. u32 htag;
  3263. struct pm8001_ccb_info *ccb;
  3264. struct pm8001_device *pm8001_dev;
  3265. struct dev_reg_resp *registerRespPayload =
  3266. (struct dev_reg_resp *)(piomb + 4);
  3267. htag = le32_to_cpu(registerRespPayload->tag);
  3268. ccb = &pm8001_ha->ccb_info[htag];
  3269. pm8001_dev = ccb->device;
  3270. status = le32_to_cpu(registerRespPayload->status);
  3271. device_id = le32_to_cpu(registerRespPayload->device_id);
  3272. pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n",
  3273. status);
  3274. switch (status) {
  3275. case DEVREG_SUCCESS:
  3276. pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n");
  3277. pm8001_dev->device_id = device_id;
  3278. break;
  3279. case DEVREG_FAILURE_OUT_OF_RESOURCE:
  3280. pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n");
  3281. break;
  3282. case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED:
  3283. pm8001_dbg(pm8001_ha, MSG,
  3284. "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n");
  3285. break;
  3286. case DEVREG_FAILURE_INVALID_PHY_ID:
  3287. pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n");
  3288. break;
  3289. case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED:
  3290. pm8001_dbg(pm8001_ha, MSG,
  3291. "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n");
  3292. break;
  3293. case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE:
  3294. pm8001_dbg(pm8001_ha, MSG,
  3295. "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n");
  3296. break;
  3297. case DEVREG_FAILURE_PORT_NOT_VALID_STATE:
  3298. pm8001_dbg(pm8001_ha, MSG,
  3299. "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n");
  3300. break;
  3301. case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID:
  3302. pm8001_dbg(pm8001_ha, MSG,
  3303. "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n");
  3304. break;
  3305. default:
  3306. pm8001_dbg(pm8001_ha, MSG,
  3307. "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n");
  3308. break;
  3309. }
  3310. complete(pm8001_dev->dcompletion);
  3311. pm8001_ccb_free(pm8001_ha, ccb);
  3312. return 0;
  3313. }
  3314. int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3315. {
  3316. u32 status;
  3317. u32 device_id;
  3318. struct dev_reg_resp *registerRespPayload =
  3319. (struct dev_reg_resp *)(piomb + 4);
  3320. status = le32_to_cpu(registerRespPayload->status);
  3321. device_id = le32_to_cpu(registerRespPayload->device_id);
  3322. if (status != 0)
  3323. pm8001_dbg(pm8001_ha, MSG,
  3324. " deregister device failed ,status = %x, device_id = %x\n",
  3325. status, device_id);
  3326. return 0;
  3327. }
  3328. /**
  3329. * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command.
  3330. * @pm8001_ha: our hba card information
  3331. * @piomb: IO message buffer
  3332. */
  3333. int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha,
  3334. void *piomb)
  3335. {
  3336. u32 status;
  3337. struct fw_flash_Update_resp *ppayload =
  3338. (struct fw_flash_Update_resp *)(piomb + 4);
  3339. u32 tag = le32_to_cpu(ppayload->tag);
  3340. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  3341. status = le32_to_cpu(ppayload->status);
  3342. switch (status) {
  3343. case FLASH_UPDATE_COMPLETE_PENDING_REBOOT:
  3344. pm8001_dbg(pm8001_ha, MSG,
  3345. ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n");
  3346. break;
  3347. case FLASH_UPDATE_IN_PROGRESS:
  3348. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n");
  3349. break;
  3350. case FLASH_UPDATE_HDR_ERR:
  3351. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n");
  3352. break;
  3353. case FLASH_UPDATE_OFFSET_ERR:
  3354. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n");
  3355. break;
  3356. case FLASH_UPDATE_CRC_ERR:
  3357. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n");
  3358. break;
  3359. case FLASH_UPDATE_LENGTH_ERR:
  3360. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n");
  3361. break;
  3362. case FLASH_UPDATE_HW_ERR:
  3363. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n");
  3364. break;
  3365. case FLASH_UPDATE_DNLD_NOT_SUPPORTED:
  3366. pm8001_dbg(pm8001_ha, MSG,
  3367. ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n");
  3368. break;
  3369. case FLASH_UPDATE_DISABLED:
  3370. pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n");
  3371. break;
  3372. default:
  3373. pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n",
  3374. status);
  3375. break;
  3376. }
  3377. kfree(ccb->fw_control_context);
  3378. pm8001_ccb_free(pm8001_ha, ccb);
  3379. complete(pm8001_ha->nvmd_completion);
  3380. return 0;
  3381. }
  3382. int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3383. {
  3384. u32 status;
  3385. int i;
  3386. struct general_event_resp *pPayload =
  3387. (struct general_event_resp *)(piomb + 4);
  3388. status = le32_to_cpu(pPayload->status);
  3389. pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status);
  3390. for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++)
  3391. pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n",
  3392. i,
  3393. pPayload->inb_IOMB_payload[i]);
  3394. return 0;
  3395. }
  3396. int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3397. {
  3398. struct sas_task *t;
  3399. struct pm8001_ccb_info *ccb;
  3400. unsigned long flags;
  3401. u32 status ;
  3402. u32 tag, scp;
  3403. struct task_status_struct *ts;
  3404. struct pm8001_device *pm8001_dev;
  3405. struct task_abort_resp *pPayload =
  3406. (struct task_abort_resp *)(piomb + 4);
  3407. status = le32_to_cpu(pPayload->status);
  3408. tag = le32_to_cpu(pPayload->tag);
  3409. scp = le32_to_cpu(pPayload->scp);
  3410. ccb = &pm8001_ha->ccb_info[tag];
  3411. t = ccb->task;
  3412. pm8001_dev = ccb->device; /* retrieve device */
  3413. if (!t) {
  3414. pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n");
  3415. return -1;
  3416. }
  3417. if (t->task_proto == SAS_PROTOCOL_INTERNAL_ABORT)
  3418. atomic_dec(&pm8001_dev->running_req);
  3419. ts = &t->task_status;
  3420. if (status != 0)
  3421. pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n",
  3422. status, tag, scp);
  3423. switch (status) {
  3424. case IO_SUCCESS:
  3425. pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n");
  3426. ts->resp = SAS_TASK_COMPLETE;
  3427. ts->stat = SAS_SAM_STAT_GOOD;
  3428. break;
  3429. case IO_NOT_VALID:
  3430. pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n");
  3431. ts->resp = TMF_RESP_FUNC_FAILED;
  3432. break;
  3433. }
  3434. spin_lock_irqsave(&t->task_state_lock, flags);
  3435. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  3436. t->task_state_flags |= SAS_TASK_STATE_DONE;
  3437. spin_unlock_irqrestore(&t->task_state_lock, flags);
  3438. pm8001_ccb_task_free(pm8001_ha, ccb);
  3439. mb();
  3440. if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) {
  3441. sas_free_task(t);
  3442. pm8001_dev->id &= ~NCQ_ABORT_ALL_FLAG;
  3443. } else {
  3444. t->task_done(t);
  3445. }
  3446. return 0;
  3447. }
  3448. /**
  3449. * mpi_hw_event -The hw event has come.
  3450. * @pm8001_ha: our hba card information
  3451. * @piomb: IO message buffer
  3452. */
  3453. static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3454. {
  3455. unsigned long flags;
  3456. struct hw_event_resp *pPayload =
  3457. (struct hw_event_resp *)(piomb + 4);
  3458. u32 lr_evt_status_phyid_portid =
  3459. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  3460. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  3461. u8 phy_id =
  3462. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  3463. u16 eventType =
  3464. (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8);
  3465. u8 status =
  3466. (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24);
  3467. struct sas_ha_struct *sas_ha = pm8001_ha->sas;
  3468. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  3469. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  3470. pm8001_dbg(pm8001_ha, DEVIO,
  3471. "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n",
  3472. port_id, phy_id, eventType, status);
  3473. switch (eventType) {
  3474. case HW_EVENT_PHY_START_STATUS:
  3475. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n",
  3476. status);
  3477. if (status == 0)
  3478. phy->phy_state = 1;
  3479. if (pm8001_ha->flags == PM8001F_RUN_TIME &&
  3480. phy->enable_completion != NULL) {
  3481. complete(phy->enable_completion);
  3482. phy->enable_completion = NULL;
  3483. }
  3484. break;
  3485. case HW_EVENT_SAS_PHY_UP:
  3486. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n");
  3487. hw_event_sas_phy_up(pm8001_ha, piomb);
  3488. break;
  3489. case HW_EVENT_SATA_PHY_UP:
  3490. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n");
  3491. hw_event_sata_phy_up(pm8001_ha, piomb);
  3492. break;
  3493. case HW_EVENT_PHY_STOP_STATUS:
  3494. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n",
  3495. status);
  3496. if (status == 0)
  3497. phy->phy_state = 0;
  3498. break;
  3499. case HW_EVENT_SATA_SPINUP_HOLD:
  3500. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n");
  3501. sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD,
  3502. GFP_ATOMIC);
  3503. break;
  3504. case HW_EVENT_PHY_DOWN:
  3505. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n");
  3506. sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL,
  3507. GFP_ATOMIC);
  3508. phy->phy_attached = 0;
  3509. phy->phy_state = 0;
  3510. hw_event_phy_down(pm8001_ha, piomb);
  3511. break;
  3512. case HW_EVENT_PORT_INVALID:
  3513. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n");
  3514. sas_phy_disconnected(sas_phy);
  3515. phy->phy_attached = 0;
  3516. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3517. GFP_ATOMIC);
  3518. break;
  3519. /* the broadcast change primitive received, tell the LIBSAS this event
  3520. to revalidate the sas domain*/
  3521. case HW_EVENT_BROADCAST_CHANGE:
  3522. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n");
  3523. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
  3524. port_id, phy_id, 1, 0);
  3525. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3526. sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
  3527. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3528. sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
  3529. GFP_ATOMIC);
  3530. break;
  3531. case HW_EVENT_PHY_ERROR:
  3532. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n");
  3533. sas_phy_disconnected(&phy->sas_phy);
  3534. phy->phy_attached = 0;
  3535. sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC);
  3536. break;
  3537. case HW_EVENT_BROADCAST_EXP:
  3538. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n");
  3539. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3540. sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
  3541. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3542. sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
  3543. GFP_ATOMIC);
  3544. break;
  3545. case HW_EVENT_LINK_ERR_INVALID_DWORD:
  3546. pm8001_dbg(pm8001_ha, MSG,
  3547. "HW_EVENT_LINK_ERR_INVALID_DWORD\n");
  3548. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3549. HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
  3550. sas_phy_disconnected(sas_phy);
  3551. phy->phy_attached = 0;
  3552. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3553. GFP_ATOMIC);
  3554. break;
  3555. case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
  3556. pm8001_dbg(pm8001_ha, MSG,
  3557. "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n");
  3558. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3559. HW_EVENT_LINK_ERR_DISPARITY_ERROR,
  3560. port_id, phy_id, 0, 0);
  3561. sas_phy_disconnected(sas_phy);
  3562. phy->phy_attached = 0;
  3563. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3564. GFP_ATOMIC);
  3565. break;
  3566. case HW_EVENT_LINK_ERR_CODE_VIOLATION:
  3567. pm8001_dbg(pm8001_ha, MSG,
  3568. "HW_EVENT_LINK_ERR_CODE_VIOLATION\n");
  3569. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3570. HW_EVENT_LINK_ERR_CODE_VIOLATION,
  3571. port_id, phy_id, 0, 0);
  3572. sas_phy_disconnected(sas_phy);
  3573. phy->phy_attached = 0;
  3574. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3575. GFP_ATOMIC);
  3576. break;
  3577. case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
  3578. pm8001_dbg(pm8001_ha, MSG,
  3579. "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n");
  3580. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3581. HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
  3582. port_id, phy_id, 0, 0);
  3583. sas_phy_disconnected(sas_phy);
  3584. phy->phy_attached = 0;
  3585. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3586. GFP_ATOMIC);
  3587. break;
  3588. case HW_EVENT_MALFUNCTION:
  3589. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n");
  3590. break;
  3591. case HW_EVENT_BROADCAST_SES:
  3592. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n");
  3593. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3594. sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
  3595. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3596. sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
  3597. GFP_ATOMIC);
  3598. break;
  3599. case HW_EVENT_INBOUND_CRC_ERROR:
  3600. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n");
  3601. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3602. HW_EVENT_INBOUND_CRC_ERROR,
  3603. port_id, phy_id, 0, 0);
  3604. break;
  3605. case HW_EVENT_HARD_RESET_RECEIVED:
  3606. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n");
  3607. sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC);
  3608. break;
  3609. case HW_EVENT_ID_FRAME_TIMEOUT:
  3610. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n");
  3611. sas_phy_disconnected(sas_phy);
  3612. phy->phy_attached = 0;
  3613. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3614. GFP_ATOMIC);
  3615. break;
  3616. case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
  3617. pm8001_dbg(pm8001_ha, MSG,
  3618. "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n");
  3619. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3620. HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
  3621. port_id, phy_id, 0, 0);
  3622. sas_phy_disconnected(sas_phy);
  3623. phy->phy_attached = 0;
  3624. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3625. GFP_ATOMIC);
  3626. break;
  3627. case HW_EVENT_PORT_RESET_TIMER_TMO:
  3628. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n");
  3629. sas_phy_disconnected(sas_phy);
  3630. phy->phy_attached = 0;
  3631. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3632. GFP_ATOMIC);
  3633. break;
  3634. case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
  3635. pm8001_dbg(pm8001_ha, MSG,
  3636. "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n");
  3637. sas_phy_disconnected(sas_phy);
  3638. phy->phy_attached = 0;
  3639. sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
  3640. GFP_ATOMIC);
  3641. break;
  3642. case HW_EVENT_PORT_RECOVER:
  3643. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n");
  3644. break;
  3645. case HW_EVENT_PORT_RESET_COMPLETE:
  3646. pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n");
  3647. break;
  3648. case EVENT_BROADCAST_ASYNCH_EVENT:
  3649. pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n");
  3650. break;
  3651. default:
  3652. pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n",
  3653. eventType);
  3654. break;
  3655. }
  3656. return 0;
  3657. }
  3658. /**
  3659. * process_one_iomb - process one outbound Queue memory block
  3660. * @pm8001_ha: our hba card information
  3661. * @piomb: IO message buffer
  3662. */
  3663. static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3664. {
  3665. __le32 pHeader = *(__le32 *)piomb;
  3666. u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF);
  3667. pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n");
  3668. switch (opc) {
  3669. case OPC_OUB_ECHO:
  3670. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n");
  3671. break;
  3672. case OPC_OUB_HW_EVENT:
  3673. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n");
  3674. mpi_hw_event(pm8001_ha, piomb);
  3675. break;
  3676. case OPC_OUB_SSP_COMP:
  3677. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n");
  3678. mpi_ssp_completion(pm8001_ha, piomb);
  3679. break;
  3680. case OPC_OUB_SMP_COMP:
  3681. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n");
  3682. mpi_smp_completion(pm8001_ha, piomb);
  3683. break;
  3684. case OPC_OUB_LOCAL_PHY_CNTRL:
  3685. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n");
  3686. pm8001_mpi_local_phy_ctl(pm8001_ha, piomb);
  3687. break;
  3688. case OPC_OUB_DEV_REGIST:
  3689. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n");
  3690. pm8001_mpi_reg_resp(pm8001_ha, piomb);
  3691. break;
  3692. case OPC_OUB_DEREG_DEV:
  3693. pm8001_dbg(pm8001_ha, MSG, "unregister the device\n");
  3694. pm8001_mpi_dereg_resp(pm8001_ha, piomb);
  3695. break;
  3696. case OPC_OUB_GET_DEV_HANDLE:
  3697. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n");
  3698. break;
  3699. case OPC_OUB_SATA_COMP:
  3700. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n");
  3701. mpi_sata_completion(pm8001_ha, piomb);
  3702. break;
  3703. case OPC_OUB_SATA_EVENT:
  3704. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n");
  3705. mpi_sata_event(pm8001_ha, piomb);
  3706. break;
  3707. case OPC_OUB_SSP_EVENT:
  3708. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n");
  3709. mpi_ssp_event(pm8001_ha, piomb);
  3710. break;
  3711. case OPC_OUB_DEV_HANDLE_ARRIV:
  3712. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n");
  3713. /*This is for target*/
  3714. break;
  3715. case OPC_OUB_SSP_RECV_EVENT:
  3716. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n");
  3717. /*This is for target*/
  3718. break;
  3719. case OPC_OUB_DEV_INFO:
  3720. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n");
  3721. break;
  3722. case OPC_OUB_FW_FLASH_UPDATE:
  3723. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n");
  3724. pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb);
  3725. break;
  3726. case OPC_OUB_GPIO_RESPONSE:
  3727. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n");
  3728. break;
  3729. case OPC_OUB_GPIO_EVENT:
  3730. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n");
  3731. break;
  3732. case OPC_OUB_GENERAL_EVENT:
  3733. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n");
  3734. pm8001_mpi_general_event(pm8001_ha, piomb);
  3735. break;
  3736. case OPC_OUB_SSP_ABORT_RSP:
  3737. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n");
  3738. pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
  3739. break;
  3740. case OPC_OUB_SATA_ABORT_RSP:
  3741. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n");
  3742. pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
  3743. break;
  3744. case OPC_OUB_SAS_DIAG_MODE_START_END:
  3745. pm8001_dbg(pm8001_ha, MSG,
  3746. "OPC_OUB_SAS_DIAG_MODE_START_END\n");
  3747. break;
  3748. case OPC_OUB_SAS_DIAG_EXECUTE:
  3749. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n");
  3750. break;
  3751. case OPC_OUB_GET_TIME_STAMP:
  3752. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n");
  3753. break;
  3754. case OPC_OUB_SAS_HW_EVENT_ACK:
  3755. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n");
  3756. break;
  3757. case OPC_OUB_PORT_CONTROL:
  3758. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n");
  3759. break;
  3760. case OPC_OUB_SMP_ABORT_RSP:
  3761. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n");
  3762. pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
  3763. break;
  3764. case OPC_OUB_GET_NVMD_DATA:
  3765. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n");
  3766. pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb);
  3767. break;
  3768. case OPC_OUB_SET_NVMD_DATA:
  3769. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n");
  3770. pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb);
  3771. break;
  3772. case OPC_OUB_DEVICE_HANDLE_REMOVAL:
  3773. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n");
  3774. break;
  3775. case OPC_OUB_SET_DEVICE_STATE:
  3776. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n");
  3777. pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb);
  3778. break;
  3779. case OPC_OUB_GET_DEVICE_STATE:
  3780. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n");
  3781. break;
  3782. case OPC_OUB_SET_DEV_INFO:
  3783. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n");
  3784. break;
  3785. case OPC_OUB_SAS_RE_INITIALIZE:
  3786. pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n");
  3787. break;
  3788. default:
  3789. pm8001_dbg(pm8001_ha, DEVIO,
  3790. "Unknown outbound Queue IOMB OPC = %x\n",
  3791. opc);
  3792. break;
  3793. }
  3794. }
  3795. static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec)
  3796. {
  3797. struct outbound_queue_table *circularQ;
  3798. void *pMsg1 = NULL;
  3799. u8 bc;
  3800. u32 ret = MPI_IO_STATUS_FAIL;
  3801. unsigned long flags;
  3802. spin_lock_irqsave(&pm8001_ha->lock, flags);
  3803. circularQ = &pm8001_ha->outbnd_q_tbl[vec];
  3804. do {
  3805. ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
  3806. if (MPI_IO_STATUS_SUCCESS == ret) {
  3807. /* process the outbound message */
  3808. process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4));
  3809. /* free the message from the outbound circular buffer */
  3810. pm8001_mpi_msg_free_set(pm8001_ha, pMsg1,
  3811. circularQ, bc);
  3812. }
  3813. if (MPI_IO_STATUS_BUSY == ret) {
  3814. /* Update the producer index from SPC */
  3815. circularQ->producer_index =
  3816. cpu_to_le32(pm8001_read_32(circularQ->pi_virt));
  3817. if (le32_to_cpu(circularQ->producer_index) ==
  3818. circularQ->consumer_idx)
  3819. /* OQ is empty */
  3820. break;
  3821. }
  3822. } while (1);
  3823. spin_unlock_irqrestore(&pm8001_ha->lock, flags);
  3824. return ret;
  3825. }
  3826. /* DMA_... to our direction translation. */
  3827. static const u8 data_dir_flags[] = {
  3828. [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */
  3829. [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */
  3830. [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */
  3831. [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */
  3832. };
  3833. void
  3834. pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd)
  3835. {
  3836. int i;
  3837. struct scatterlist *sg;
  3838. struct pm8001_prd *buf_prd = prd;
  3839. for_each_sg(scatter, sg, nr, i) {
  3840. buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
  3841. buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg));
  3842. buf_prd->im_len.e = 0;
  3843. buf_prd++;
  3844. }
  3845. }
  3846. static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd)
  3847. {
  3848. psmp_cmd->tag = hTag;
  3849. psmp_cmd->device_id = cpu_to_le32(deviceID);
  3850. psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
  3851. }
  3852. /**
  3853. * pm8001_chip_smp_req - send a SMP task to FW
  3854. * @pm8001_ha: our hba card information.
  3855. * @ccb: the ccb information this request used.
  3856. */
  3857. static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
  3858. struct pm8001_ccb_info *ccb)
  3859. {
  3860. int elem, rc;
  3861. struct sas_task *task = ccb->task;
  3862. struct domain_device *dev = task->dev;
  3863. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  3864. struct scatterlist *sg_req, *sg_resp;
  3865. u32 req_len, resp_len;
  3866. struct smp_req smp_cmd;
  3867. u32 opc;
  3868. memset(&smp_cmd, 0, sizeof(smp_cmd));
  3869. /*
  3870. * DMA-map SMP request, response buffers
  3871. */
  3872. sg_req = &task->smp_task.smp_req;
  3873. elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE);
  3874. if (!elem)
  3875. return -ENOMEM;
  3876. req_len = sg_dma_len(sg_req);
  3877. sg_resp = &task->smp_task.smp_resp;
  3878. elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE);
  3879. if (!elem) {
  3880. rc = -ENOMEM;
  3881. goto err_out;
  3882. }
  3883. resp_len = sg_dma_len(sg_resp);
  3884. /* must be in dwords */
  3885. if ((req_len & 0x3) || (resp_len & 0x3)) {
  3886. rc = -EINVAL;
  3887. goto err_out_2;
  3888. }
  3889. opc = OPC_INB_SMP_REQUEST;
  3890. smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
  3891. smp_cmd.long_smp_req.long_req_addr =
  3892. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
  3893. smp_cmd.long_smp_req.long_req_size =
  3894. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
  3895. smp_cmd.long_smp_req.long_resp_addr =
  3896. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
  3897. smp_cmd.long_smp_req.long_resp_size =
  3898. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
  3899. build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd);
  3900. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc,
  3901. &smp_cmd, sizeof(smp_cmd), 0);
  3902. if (rc)
  3903. goto err_out_2;
  3904. return 0;
  3905. err_out_2:
  3906. dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
  3907. DMA_FROM_DEVICE);
  3908. err_out:
  3909. dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
  3910. DMA_TO_DEVICE);
  3911. return rc;
  3912. }
  3913. /**
  3914. * pm8001_chip_ssp_io_req - send a SSP task to FW
  3915. * @pm8001_ha: our hba card information.
  3916. * @ccb: the ccb information this request used.
  3917. */
  3918. static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
  3919. struct pm8001_ccb_info *ccb)
  3920. {
  3921. struct sas_task *task = ccb->task;
  3922. struct domain_device *dev = task->dev;
  3923. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  3924. struct ssp_ini_io_start_req ssp_cmd;
  3925. u32 tag = ccb->ccb_tag;
  3926. u64 phys_addr;
  3927. u32 opc = OPC_INB_SSPINIIOSTART;
  3928. memset(&ssp_cmd, 0, sizeof(ssp_cmd));
  3929. memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
  3930. ssp_cmd.dir_m_tlr =
  3931. cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for
  3932. SAS 1.1 compatible TLR*/
  3933. ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
  3934. ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
  3935. ssp_cmd.tag = cpu_to_le32(tag);
  3936. if (task->ssp_task.enable_first_burst)
  3937. ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
  3938. ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
  3939. ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
  3940. memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd,
  3941. task->ssp_task.cmd->cmd_len);
  3942. /* fill in PRD (scatter/gather) table, if any */
  3943. if (task->num_scatter > 1) {
  3944. pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
  3945. phys_addr = ccb->ccb_dma_handle;
  3946. ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr));
  3947. ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr));
  3948. ssp_cmd.esgl = cpu_to_le32(1<<31);
  3949. } else if (task->num_scatter == 1) {
  3950. u64 dma_addr = sg_dma_address(task->scatter);
  3951. ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr));
  3952. ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr));
  3953. ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
  3954. ssp_cmd.esgl = 0;
  3955. } else if (task->num_scatter == 0) {
  3956. ssp_cmd.addr_low = 0;
  3957. ssp_cmd.addr_high = 0;
  3958. ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
  3959. ssp_cmd.esgl = 0;
  3960. }
  3961. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &ssp_cmd,
  3962. sizeof(ssp_cmd), 0);
  3963. }
  3964. static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
  3965. struct pm8001_ccb_info *ccb)
  3966. {
  3967. struct sas_task *task = ccb->task;
  3968. struct domain_device *dev = task->dev;
  3969. struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
  3970. u32 tag = ccb->ccb_tag;
  3971. struct sata_start_req sata_cmd;
  3972. u32 hdr_tag, ncg_tag = 0;
  3973. u64 phys_addr;
  3974. u32 ATAP = 0x0;
  3975. u32 dir;
  3976. unsigned long flags;
  3977. u32 opc = OPC_INB_SATA_HOST_OPSTART;
  3978. memset(&sata_cmd, 0, sizeof(sata_cmd));
  3979. if (task->data_dir == DMA_NONE && !task->ata_task.use_ncq) {
  3980. ATAP = 0x04; /* no data*/
  3981. pm8001_dbg(pm8001_ha, IO, "no data\n");
  3982. } else if (likely(!task->ata_task.device_control_reg_update)) {
  3983. if (task->ata_task.use_ncq &&
  3984. dev->sata_dev.class != ATA_DEV_ATAPI) {
  3985. ATAP = 0x07; /* FPDMA */
  3986. pm8001_dbg(pm8001_ha, IO, "FPDMA\n");
  3987. } else if (task->ata_task.dma_xfer) {
  3988. ATAP = 0x06; /* DMA */
  3989. pm8001_dbg(pm8001_ha, IO, "DMA\n");
  3990. } else {
  3991. ATAP = 0x05; /* PIO*/
  3992. pm8001_dbg(pm8001_ha, IO, "PIO\n");
  3993. }
  3994. }
  3995. if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) {
  3996. task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
  3997. ncg_tag = hdr_tag;
  3998. }
  3999. dir = data_dir_flags[task->data_dir] << 8;
  4000. sata_cmd.tag = cpu_to_le32(tag);
  4001. sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
  4002. sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
  4003. sata_cmd.ncqtag_atap_dir_m =
  4004. cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir);
  4005. sata_cmd.sata_fis = task->ata_task.fis;
  4006. if (likely(!task->ata_task.device_control_reg_update))
  4007. sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
  4008. sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
  4009. /* fill in PRD (scatter/gather) table, if any */
  4010. if (task->num_scatter > 1) {
  4011. pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
  4012. phys_addr = ccb->ccb_dma_handle;
  4013. sata_cmd.addr_low = lower_32_bits(phys_addr);
  4014. sata_cmd.addr_high = upper_32_bits(phys_addr);
  4015. sata_cmd.esgl = cpu_to_le32(1 << 31);
  4016. } else if (task->num_scatter == 1) {
  4017. u64 dma_addr = sg_dma_address(task->scatter);
  4018. sata_cmd.addr_low = lower_32_bits(dma_addr);
  4019. sata_cmd.addr_high = upper_32_bits(dma_addr);
  4020. sata_cmd.len = cpu_to_le32(task->total_xfer_len);
  4021. sata_cmd.esgl = 0;
  4022. } else if (task->num_scatter == 0) {
  4023. sata_cmd.addr_low = 0;
  4024. sata_cmd.addr_high = 0;
  4025. sata_cmd.len = cpu_to_le32(task->total_xfer_len);
  4026. sata_cmd.esgl = 0;
  4027. }
  4028. /* Check for read log for failed drive and return */
  4029. if (sata_cmd.sata_fis.command == 0x2f) {
  4030. if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) ||
  4031. (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) ||
  4032. (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) {
  4033. struct task_status_struct *ts;
  4034. pm8001_ha_dev->id &= 0xDFFFFFFF;
  4035. ts = &task->task_status;
  4036. spin_lock_irqsave(&task->task_state_lock, flags);
  4037. ts->resp = SAS_TASK_COMPLETE;
  4038. ts->stat = SAS_SAM_STAT_GOOD;
  4039. task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  4040. task->task_state_flags |= SAS_TASK_STATE_DONE;
  4041. if (unlikely((task->task_state_flags &
  4042. SAS_TASK_STATE_ABORTED))) {
  4043. spin_unlock_irqrestore(&task->task_state_lock,
  4044. flags);
  4045. pm8001_dbg(pm8001_ha, FAIL,
  4046. "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n",
  4047. task, ts->resp,
  4048. ts->stat);
  4049. pm8001_ccb_task_free(pm8001_ha, ccb);
  4050. } else {
  4051. spin_unlock_irqrestore(&task->task_state_lock,
  4052. flags);
  4053. pm8001_ccb_task_free_done(pm8001_ha, ccb);
  4054. return 0;
  4055. }
  4056. }
  4057. }
  4058. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd,
  4059. sizeof(sata_cmd), 0);
  4060. }
  4061. /**
  4062. * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND
  4063. * @pm8001_ha: our hba card information.
  4064. * @phy_id: the phy id which we wanted to start up.
  4065. */
  4066. static int
  4067. pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
  4068. {
  4069. struct phy_start_req payload;
  4070. u32 tag = 0x01;
  4071. u32 opcode = OPC_INB_PHYSTART;
  4072. memset(&payload, 0, sizeof(payload));
  4073. payload.tag = cpu_to_le32(tag);
  4074. /*
  4075. ** [0:7] PHY Identifier
  4076. ** [8:11] link rate 1.5G, 3G, 6G
  4077. ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both
  4078. ** [14] 0b disable spin up hold; 1b enable spin up hold
  4079. */
  4080. payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
  4081. LINKMODE_AUTO | LINKRATE_15 |
  4082. LINKRATE_30 | LINKRATE_60 | phy_id);
  4083. payload.sas_identify.dev_type = SAS_END_DEVICE;
  4084. payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
  4085. memcpy(payload.sas_identify.sas_addr,
  4086. &pm8001_ha->phy[phy_id].dev_sas_addr, SAS_ADDR_SIZE);
  4087. payload.sas_identify.phy_id = phy_id;
  4088. return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload,
  4089. sizeof(payload), 0);
  4090. }
  4091. /**
  4092. * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
  4093. * @pm8001_ha: our hba card information.
  4094. * @phy_id: the phy id which we wanted to start up.
  4095. */
  4096. static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
  4097. u8 phy_id)
  4098. {
  4099. struct phy_stop_req payload;
  4100. u32 tag = 0x01;
  4101. u32 opcode = OPC_INB_PHYSTOP;
  4102. memset(&payload, 0, sizeof(payload));
  4103. payload.tag = cpu_to_le32(tag);
  4104. payload.phy_id = cpu_to_le32(phy_id);
  4105. return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload,
  4106. sizeof(payload), 0);
  4107. }
  4108. /*
  4109. * see comments on pm8001_mpi_reg_resp.
  4110. */
  4111. static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
  4112. struct pm8001_device *pm8001_dev, u32 flag)
  4113. {
  4114. struct reg_dev_req payload;
  4115. u32 opc;
  4116. u32 stp_sspsmp_sata = 0x4;
  4117. u32 linkrate, phy_id;
  4118. int rc;
  4119. struct pm8001_ccb_info *ccb;
  4120. u8 retryFlag = 0x1;
  4121. u16 firstBurstSize = 0;
  4122. u16 ITNT = 2000;
  4123. struct domain_device *dev = pm8001_dev->sas_device;
  4124. struct domain_device *parent_dev = dev->parent;
  4125. struct pm8001_port *port = dev->port->lldd_port;
  4126. memset(&payload, 0, sizeof(payload));
  4127. ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL);
  4128. if (!ccb)
  4129. return -SAS_QUEUE_FULL;
  4130. payload.tag = cpu_to_le32(ccb->ccb_tag);
  4131. if (flag == 1)
  4132. stp_sspsmp_sata = 0x02; /*direct attached sata */
  4133. else {
  4134. if (pm8001_dev->dev_type == SAS_SATA_DEV)
  4135. stp_sspsmp_sata = 0x00; /* stp*/
  4136. else if (pm8001_dev->dev_type == SAS_END_DEVICE ||
  4137. dev_is_expander(pm8001_dev->dev_type))
  4138. stp_sspsmp_sata = 0x01; /*ssp or smp*/
  4139. }
  4140. if (parent_dev && dev_is_expander(parent_dev->dev_type))
  4141. phy_id = parent_dev->ex_dev.ex_phy->phy_id;
  4142. else
  4143. phy_id = pm8001_dev->attached_phy;
  4144. opc = OPC_INB_REG_DEV;
  4145. linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
  4146. pm8001_dev->sas_device->linkrate : dev->port->linkrate;
  4147. payload.phyid_portid =
  4148. cpu_to_le32(((port->port_id) & 0x0F) |
  4149. ((phy_id & 0x0F) << 4));
  4150. payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) |
  4151. ((linkrate & 0x0F) * 0x1000000) |
  4152. ((stp_sspsmp_sata & 0x03) * 0x10000000));
  4153. payload.firstburstsize_ITNexustimeout =
  4154. cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
  4155. memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr,
  4156. SAS_ADDR_SIZE);
  4157. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4158. sizeof(payload), 0);
  4159. if (rc)
  4160. pm8001_ccb_free(pm8001_ha, ccb);
  4161. return rc;
  4162. }
  4163. /*
  4164. * see comments on pm8001_mpi_reg_resp.
  4165. */
  4166. int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha,
  4167. u32 device_id)
  4168. {
  4169. struct dereg_dev_req payload;
  4170. u32 opc = OPC_INB_DEREG_DEV_HANDLE;
  4171. memset(&payload, 0, sizeof(payload));
  4172. payload.tag = cpu_to_le32(1);
  4173. payload.device_id = cpu_to_le32(device_id);
  4174. pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n",
  4175. device_id);
  4176. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4177. sizeof(payload), 0);
  4178. }
  4179. /**
  4180. * pm8001_chip_phy_ctl_req - support the local phy operation
  4181. * @pm8001_ha: our hba card information.
  4182. * @phyId: the phy id which we wanted to operate
  4183. * @phy_op: the phy operation to request
  4184. */
  4185. static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
  4186. u32 phyId, u32 phy_op)
  4187. {
  4188. struct local_phy_ctl_req payload;
  4189. u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
  4190. memset(&payload, 0, sizeof(payload));
  4191. payload.tag = cpu_to_le32(1);
  4192. payload.phyop_phyid =
  4193. cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F));
  4194. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4195. sizeof(payload), 0);
  4196. }
  4197. static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha)
  4198. {
  4199. #ifdef PM8001_USE_MSIX
  4200. return 1;
  4201. #else
  4202. u32 value;
  4203. value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
  4204. if (value)
  4205. return 1;
  4206. return 0;
  4207. #endif
  4208. }
  4209. /**
  4210. * pm8001_chip_isr - PM8001 isr handler.
  4211. * @pm8001_ha: our hba card information.
  4212. * @vec: IRQ number
  4213. */
  4214. static irqreturn_t
  4215. pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec)
  4216. {
  4217. pm8001_chip_interrupt_disable(pm8001_ha, vec);
  4218. pm8001_dbg(pm8001_ha, DEVIO,
  4219. "irq vec %d, ODMR:0x%x\n",
  4220. vec, pm8001_cr32(pm8001_ha, 0, 0x30));
  4221. process_oq(pm8001_ha, vec);
  4222. pm8001_chip_interrupt_enable(pm8001_ha, vec);
  4223. return IRQ_HANDLED;
  4224. }
  4225. static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc,
  4226. u32 dev_id, enum sas_internal_abort type, u32 task_tag, u32 cmd_tag)
  4227. {
  4228. struct task_abort_req task_abort;
  4229. memset(&task_abort, 0, sizeof(task_abort));
  4230. if (type == SAS_INTERNAL_ABORT_SINGLE) {
  4231. task_abort.abort_all = 0;
  4232. task_abort.device_id = cpu_to_le32(dev_id);
  4233. task_abort.tag_to_abort = cpu_to_le32(task_tag);
  4234. } else if (type == SAS_INTERNAL_ABORT_DEV) {
  4235. task_abort.abort_all = cpu_to_le32(1);
  4236. task_abort.device_id = cpu_to_le32(dev_id);
  4237. } else {
  4238. pm8001_dbg(pm8001_ha, EH, "unknown type (%d)\n", type);
  4239. return -EIO;
  4240. }
  4241. task_abort.tag = cpu_to_le32(cmd_tag);
  4242. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort,
  4243. sizeof(task_abort), 0);
  4244. }
  4245. /*
  4246. * pm8001_chip_abort_task - SAS abort task when error or exception happened.
  4247. */
  4248. int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha,
  4249. struct pm8001_ccb_info *ccb)
  4250. {
  4251. struct sas_task *task = ccb->task;
  4252. struct sas_internal_abort_task *abort = &task->abort_task;
  4253. struct pm8001_device *pm8001_dev = ccb->device;
  4254. int rc = TMF_RESP_FUNC_FAILED;
  4255. u32 opc, device_id;
  4256. pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n",
  4257. ccb->ccb_tag, abort->tag);
  4258. if (pm8001_dev->dev_type == SAS_END_DEVICE)
  4259. opc = OPC_INB_SSP_ABORT;
  4260. else if (pm8001_dev->dev_type == SAS_SATA_DEV)
  4261. opc = OPC_INB_SATA_ABORT;
  4262. else
  4263. opc = OPC_INB_SMP_ABORT;/* SMP */
  4264. device_id = pm8001_dev->device_id;
  4265. rc = send_task_abort(pm8001_ha, opc, device_id, abort->type,
  4266. abort->tag, ccb->ccb_tag);
  4267. if (rc != TMF_RESP_FUNC_COMPLETE)
  4268. pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc);
  4269. return rc;
  4270. }
  4271. /**
  4272. * pm8001_chip_ssp_tm_req - built the task management command.
  4273. * @pm8001_ha: our hba card information.
  4274. * @ccb: the ccb information.
  4275. * @tmf: task management function.
  4276. */
  4277. int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha,
  4278. struct pm8001_ccb_info *ccb, struct sas_tmf_task *tmf)
  4279. {
  4280. struct sas_task *task = ccb->task;
  4281. struct domain_device *dev = task->dev;
  4282. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  4283. u32 opc = OPC_INB_SSPINITMSTART;
  4284. struct ssp_ini_tm_start_req sspTMCmd;
  4285. memset(&sspTMCmd, 0, sizeof(sspTMCmd));
  4286. sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id);
  4287. sspTMCmd.relate_tag = cpu_to_le32((u32)tmf->tag_of_task_to_be_managed);
  4288. sspTMCmd.tmf = cpu_to_le32(tmf->tmf);
  4289. memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8);
  4290. sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag);
  4291. if (pm8001_ha->chip_id != chip_8001)
  4292. sspTMCmd.ds_ads_m = cpu_to_le32(0x08);
  4293. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sspTMCmd,
  4294. sizeof(sspTMCmd), 0);
  4295. }
  4296. int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha,
  4297. void *payload)
  4298. {
  4299. u32 opc = OPC_INB_GET_NVMD_DATA;
  4300. u32 nvmd_type;
  4301. int rc;
  4302. struct pm8001_ccb_info *ccb;
  4303. struct get_nvm_data_req nvmd_req;
  4304. struct fw_control_ex *fw_control_context;
  4305. struct pm8001_ioctl_payload *ioctl_payload = payload;
  4306. nvmd_type = ioctl_payload->minor_function;
  4307. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  4308. if (!fw_control_context)
  4309. return -ENOMEM;
  4310. fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific;
  4311. fw_control_context->len = ioctl_payload->rd_length;
  4312. memset(&nvmd_req, 0, sizeof(nvmd_req));
  4313. ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL);
  4314. if (!ccb) {
  4315. kfree(fw_control_context);
  4316. return -SAS_QUEUE_FULL;
  4317. }
  4318. ccb->fw_control_context = fw_control_context;
  4319. nvmd_req.tag = cpu_to_le32(ccb->ccb_tag);
  4320. switch (nvmd_type) {
  4321. case TWI_DEVICE: {
  4322. u32 twi_addr, twi_page_size;
  4323. twi_addr = 0xa8;
  4324. twi_page_size = 2;
  4325. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
  4326. twi_page_size << 8 | TWI_DEVICE);
  4327. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
  4328. nvmd_req.resp_addr_hi =
  4329. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4330. nvmd_req.resp_addr_lo =
  4331. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4332. break;
  4333. }
  4334. case C_SEEPROM: {
  4335. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
  4336. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
  4337. nvmd_req.resp_addr_hi =
  4338. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4339. nvmd_req.resp_addr_lo =
  4340. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4341. break;
  4342. }
  4343. case VPD_FLASH: {
  4344. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
  4345. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
  4346. nvmd_req.resp_addr_hi =
  4347. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4348. nvmd_req.resp_addr_lo =
  4349. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4350. break;
  4351. }
  4352. case EXPAN_ROM: {
  4353. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
  4354. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
  4355. nvmd_req.resp_addr_hi =
  4356. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4357. nvmd_req.resp_addr_lo =
  4358. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4359. break;
  4360. }
  4361. case IOP_RDUMP: {
  4362. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP);
  4363. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
  4364. nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset);
  4365. nvmd_req.resp_addr_hi =
  4366. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4367. nvmd_req.resp_addr_lo =
  4368. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4369. break;
  4370. }
  4371. default:
  4372. break;
  4373. }
  4374. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req,
  4375. sizeof(nvmd_req), 0);
  4376. if (rc) {
  4377. kfree(fw_control_context);
  4378. pm8001_ccb_free(pm8001_ha, ccb);
  4379. }
  4380. return rc;
  4381. }
  4382. int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha,
  4383. void *payload)
  4384. {
  4385. u32 opc = OPC_INB_SET_NVMD_DATA;
  4386. u32 nvmd_type;
  4387. int rc;
  4388. struct pm8001_ccb_info *ccb;
  4389. struct set_nvm_data_req nvmd_req;
  4390. struct fw_control_ex *fw_control_context;
  4391. struct pm8001_ioctl_payload *ioctl_payload = payload;
  4392. nvmd_type = ioctl_payload->minor_function;
  4393. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  4394. if (!fw_control_context)
  4395. return -ENOMEM;
  4396. memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr,
  4397. &ioctl_payload->func_specific,
  4398. ioctl_payload->wr_length);
  4399. memset(&nvmd_req, 0, sizeof(nvmd_req));
  4400. ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL);
  4401. if (!ccb) {
  4402. kfree(fw_control_context);
  4403. return -SAS_QUEUE_FULL;
  4404. }
  4405. ccb->fw_control_context = fw_control_context;
  4406. nvmd_req.tag = cpu_to_le32(ccb->ccb_tag);
  4407. switch (nvmd_type) {
  4408. case TWI_DEVICE: {
  4409. u32 twi_addr, twi_page_size;
  4410. twi_addr = 0xa8;
  4411. twi_page_size = 2;
  4412. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4413. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
  4414. twi_page_size << 8 | TWI_DEVICE);
  4415. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
  4416. nvmd_req.resp_addr_hi =
  4417. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4418. nvmd_req.resp_addr_lo =
  4419. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4420. break;
  4421. }
  4422. case C_SEEPROM:
  4423. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
  4424. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
  4425. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4426. nvmd_req.resp_addr_hi =
  4427. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4428. nvmd_req.resp_addr_lo =
  4429. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4430. break;
  4431. case VPD_FLASH:
  4432. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
  4433. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
  4434. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4435. nvmd_req.resp_addr_hi =
  4436. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4437. nvmd_req.resp_addr_lo =
  4438. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4439. break;
  4440. case EXPAN_ROM:
  4441. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
  4442. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
  4443. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4444. nvmd_req.resp_addr_hi =
  4445. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4446. nvmd_req.resp_addr_lo =
  4447. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4448. break;
  4449. default:
  4450. break;
  4451. }
  4452. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req,
  4453. sizeof(nvmd_req), 0);
  4454. if (rc) {
  4455. kfree(fw_control_context);
  4456. pm8001_ccb_free(pm8001_ha, ccb);
  4457. }
  4458. return rc;
  4459. }
  4460. /**
  4461. * pm8001_chip_fw_flash_update_build - support the firmware update operation
  4462. * @pm8001_ha: our hba card information.
  4463. * @fw_flash_updata_info: firmware flash update param
  4464. * @tag: Tag to apply to the payload
  4465. */
  4466. int
  4467. pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha,
  4468. void *fw_flash_updata_info, u32 tag)
  4469. {
  4470. struct fw_flash_Update_req payload;
  4471. struct fw_flash_updata_info *info;
  4472. u32 opc = OPC_INB_FW_FLASH_UPDATE;
  4473. memset(&payload, 0, sizeof(struct fw_flash_Update_req));
  4474. info = fw_flash_updata_info;
  4475. payload.tag = cpu_to_le32(tag);
  4476. payload.cur_image_len = cpu_to_le32(info->cur_image_len);
  4477. payload.cur_image_offset = cpu_to_le32(info->cur_image_offset);
  4478. payload.total_image_len = cpu_to_le32(info->total_image_len);
  4479. payload.len = info->sgl.im_len.len ;
  4480. payload.sgl_addr_lo =
  4481. cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr)));
  4482. payload.sgl_addr_hi =
  4483. cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr)));
  4484. return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4485. sizeof(payload), 0);
  4486. }
  4487. int
  4488. pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha,
  4489. void *payload)
  4490. {
  4491. struct fw_flash_updata_info flash_update_info;
  4492. struct fw_control_info *fw_control;
  4493. struct fw_control_ex *fw_control_context;
  4494. int rc;
  4495. struct pm8001_ccb_info *ccb;
  4496. void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr;
  4497. dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr;
  4498. struct pm8001_ioctl_payload *ioctl_payload = payload;
  4499. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  4500. if (!fw_control_context)
  4501. return -ENOMEM;
  4502. fw_control = (struct fw_control_info *)&ioctl_payload->func_specific;
  4503. pm8001_dbg(pm8001_ha, DEVIO,
  4504. "dma fw_control context input length :%x\n",
  4505. fw_control->len);
  4506. memcpy(buffer, fw_control->buffer, fw_control->len);
  4507. flash_update_info.sgl.addr = cpu_to_le64(phys_addr);
  4508. flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len);
  4509. flash_update_info.sgl.im_len.e = 0;
  4510. flash_update_info.cur_image_offset = fw_control->offset;
  4511. flash_update_info.cur_image_len = fw_control->len;
  4512. flash_update_info.total_image_len = fw_control->size;
  4513. fw_control_context->fw_control = fw_control;
  4514. fw_control_context->virtAddr = buffer;
  4515. fw_control_context->phys_addr = phys_addr;
  4516. fw_control_context->len = fw_control->len;
  4517. ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL);
  4518. if (!ccb) {
  4519. kfree(fw_control_context);
  4520. return -SAS_QUEUE_FULL;
  4521. }
  4522. ccb->fw_control_context = fw_control_context;
  4523. rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info,
  4524. ccb->ccb_tag);
  4525. if (rc) {
  4526. kfree(fw_control_context);
  4527. pm8001_ccb_free(pm8001_ha, ccb);
  4528. }
  4529. return rc;
  4530. }
  4531. ssize_t
  4532. pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf)
  4533. {
  4534. u32 value, rem, offset = 0, bar = 0;
  4535. u32 index, work_offset, dw_length;
  4536. u32 shift_value, gsm_base, gsm_dump_offset;
  4537. char *direct_data;
  4538. struct Scsi_Host *shost = class_to_shost(cdev);
  4539. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  4540. struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
  4541. direct_data = buf;
  4542. gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset;
  4543. /* check max is 1 Mbytes */
  4544. if ((length > 0x100000) || (gsm_dump_offset & 3) ||
  4545. ((gsm_dump_offset + length) > 0x1000000))
  4546. return -EINVAL;
  4547. if (pm8001_ha->chip_id == chip_8001)
  4548. bar = 2;
  4549. else
  4550. bar = 1;
  4551. work_offset = gsm_dump_offset & 0xFFFF0000;
  4552. offset = gsm_dump_offset & 0x0000FFFF;
  4553. gsm_dump_offset = work_offset;
  4554. /* adjust length to dword boundary */
  4555. rem = length & 3;
  4556. dw_length = length >> 2;
  4557. for (index = 0; index < dw_length; index++) {
  4558. if ((work_offset + offset) & 0xFFFF0000) {
  4559. if (pm8001_ha->chip_id == chip_8001)
  4560. shift_value = ((gsm_dump_offset + offset) &
  4561. SHIFT_REG_64K_MASK);
  4562. else
  4563. shift_value = (((gsm_dump_offset + offset) &
  4564. SHIFT_REG_64K_MASK) >>
  4565. SHIFT_REG_BIT_SHIFT);
  4566. if (pm8001_ha->chip_id == chip_8001) {
  4567. gsm_base = GSM_BASE;
  4568. if (-1 == pm8001_bar4_shift(pm8001_ha,
  4569. (gsm_base + shift_value)))
  4570. return -EIO;
  4571. } else {
  4572. gsm_base = 0;
  4573. if (-1 == pm80xx_bar4_shift(pm8001_ha,
  4574. (gsm_base + shift_value)))
  4575. return -EIO;
  4576. }
  4577. gsm_dump_offset = (gsm_dump_offset + offset) &
  4578. 0xFFFF0000;
  4579. work_offset = 0;
  4580. offset = offset & 0x0000FFFF;
  4581. }
  4582. value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) &
  4583. 0x0000FFFF);
  4584. direct_data += sprintf(direct_data, "%08x ", value);
  4585. offset += 4;
  4586. }
  4587. if (rem != 0) {
  4588. value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) &
  4589. 0x0000FFFF);
  4590. /* xfr for non_dw */
  4591. direct_data += sprintf(direct_data, "%08x ", value);
  4592. }
  4593. /* Shift back to BAR4 original address */
  4594. if (-1 == pm8001_bar4_shift(pm8001_ha, 0))
  4595. return -EIO;
  4596. pm8001_ha->fatal_forensic_shift_offset += 1024;
  4597. if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000)
  4598. pm8001_ha->fatal_forensic_shift_offset = 0;
  4599. return direct_data - buf;
  4600. }
  4601. int
  4602. pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha,
  4603. struct pm8001_device *pm8001_dev, u32 state)
  4604. {
  4605. struct set_dev_state_req payload;
  4606. struct pm8001_ccb_info *ccb;
  4607. int rc;
  4608. u32 opc = OPC_INB_SET_DEVICE_STATE;
  4609. memset(&payload, 0, sizeof(payload));
  4610. ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL);
  4611. if (!ccb)
  4612. return -SAS_QUEUE_FULL;
  4613. payload.tag = cpu_to_le32(ccb->ccb_tag);
  4614. payload.device_id = cpu_to_le32(pm8001_dev->device_id);
  4615. payload.nds = cpu_to_le32(state);
  4616. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4617. sizeof(payload), 0);
  4618. if (rc)
  4619. pm8001_ccb_free(pm8001_ha, ccb);
  4620. return rc;
  4621. }
  4622. static int
  4623. pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha)
  4624. {
  4625. struct sas_re_initialization_req payload;
  4626. struct pm8001_ccb_info *ccb;
  4627. int rc;
  4628. u32 opc = OPC_INB_SAS_RE_INITIALIZE;
  4629. memset(&payload, 0, sizeof(payload));
  4630. ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL);
  4631. if (!ccb)
  4632. return -SAS_QUEUE_FULL;
  4633. payload.tag = cpu_to_le32(ccb->ccb_tag);
  4634. payload.SSAHOLT = cpu_to_le32(0xd << 25);
  4635. payload.sata_hol_tmo = cpu_to_le32(80);
  4636. payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff);
  4637. rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload,
  4638. sizeof(payload), 0);
  4639. if (rc)
  4640. pm8001_ccb_free(pm8001_ha, ccb);
  4641. return rc;
  4642. }
  4643. const struct pm8001_dispatch pm8001_8001_dispatch = {
  4644. .name = "pmc8001",
  4645. .chip_init = pm8001_chip_init,
  4646. .chip_post_init = pm8001_chip_post_init,
  4647. .chip_soft_rst = pm8001_chip_soft_rst,
  4648. .chip_rst = pm8001_hw_chip_rst,
  4649. .chip_iounmap = pm8001_chip_iounmap,
  4650. .isr = pm8001_chip_isr,
  4651. .is_our_interrupt = pm8001_chip_is_our_interrupt,
  4652. .isr_process_oq = process_oq,
  4653. .interrupt_enable = pm8001_chip_interrupt_enable,
  4654. .interrupt_disable = pm8001_chip_interrupt_disable,
  4655. .make_prd = pm8001_chip_make_sg,
  4656. .smp_req = pm8001_chip_smp_req,
  4657. .ssp_io_req = pm8001_chip_ssp_io_req,
  4658. .sata_req = pm8001_chip_sata_req,
  4659. .phy_start_req = pm8001_chip_phy_start_req,
  4660. .phy_stop_req = pm8001_chip_phy_stop_req,
  4661. .reg_dev_req = pm8001_chip_reg_dev_req,
  4662. .dereg_dev_req = pm8001_chip_dereg_dev_req,
  4663. .phy_ctl_req = pm8001_chip_phy_ctl_req,
  4664. .task_abort = pm8001_chip_abort_task,
  4665. .ssp_tm_req = pm8001_chip_ssp_tm_req,
  4666. .get_nvmd_req = pm8001_chip_get_nvmd_req,
  4667. .set_nvmd_req = pm8001_chip_set_nvmd_req,
  4668. .fw_flash_update_req = pm8001_chip_fw_flash_update_req,
  4669. .set_dev_state_req = pm8001_chip_set_dev_state_req,
  4670. .sas_re_init_req = pm8001_chip_sas_re_initialization,
  4671. .fatal_errors = pm80xx_fatal_errors,
  4672. };