ptp_sysfs.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PTP 1588 clock support - sysfs interface.
  4. *
  5. * Copyright (C) 2010 OMICRON electronics GmbH
  6. * Copyright 2021 NXP
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/slab.h>
  10. #include "ptp_private.h"
  11. static ssize_t clock_name_show(struct device *dev,
  12. struct device_attribute *attr, char *page)
  13. {
  14. struct ptp_clock *ptp = dev_get_drvdata(dev);
  15. return sysfs_emit(page, "%s\n", ptp->info->name);
  16. }
  17. static DEVICE_ATTR_RO(clock_name);
  18. #define PTP_SHOW_INT(name, var) \
  19. static ssize_t var##_show(struct device *dev, \
  20. struct device_attribute *attr, char *page) \
  21. { \
  22. struct ptp_clock *ptp = dev_get_drvdata(dev); \
  23. return snprintf(page, PAGE_SIZE-1, "%d\n", ptp->info->var); \
  24. } \
  25. static DEVICE_ATTR(name, 0444, var##_show, NULL);
  26. PTP_SHOW_INT(max_adjustment, max_adj);
  27. PTP_SHOW_INT(n_alarms, n_alarm);
  28. PTP_SHOW_INT(n_external_timestamps, n_ext_ts);
  29. PTP_SHOW_INT(n_periodic_outputs, n_per_out);
  30. PTP_SHOW_INT(n_programmable_pins, n_pins);
  31. PTP_SHOW_INT(pps_available, pps);
  32. static ssize_t extts_enable_store(struct device *dev,
  33. struct device_attribute *attr,
  34. const char *buf, size_t count)
  35. {
  36. struct ptp_clock *ptp = dev_get_drvdata(dev);
  37. struct ptp_clock_info *ops = ptp->info;
  38. struct ptp_clock_request req = { .type = PTP_CLK_REQ_EXTTS };
  39. int cnt, enable;
  40. int err = -EINVAL;
  41. cnt = sscanf(buf, "%u %d", &req.extts.index, &enable);
  42. if (cnt != 2)
  43. goto out;
  44. if (req.extts.index >= ops->n_ext_ts)
  45. goto out;
  46. err = ops->enable(ops, &req, enable ? 1 : 0);
  47. if (err)
  48. goto out;
  49. return count;
  50. out:
  51. return err;
  52. }
  53. static DEVICE_ATTR(extts_enable, 0220, NULL, extts_enable_store);
  54. static ssize_t extts_fifo_show(struct device *dev,
  55. struct device_attribute *attr, char *page)
  56. {
  57. struct ptp_clock *ptp = dev_get_drvdata(dev);
  58. struct timestamp_event_queue *queue = &ptp->tsevq;
  59. struct ptp_extts_event event;
  60. unsigned long flags;
  61. size_t qcnt;
  62. int cnt = 0;
  63. memset(&event, 0, sizeof(event));
  64. if (mutex_lock_interruptible(&ptp->tsevq_mux))
  65. return -ERESTARTSYS;
  66. spin_lock_irqsave(&queue->lock, flags);
  67. qcnt = queue_cnt(queue);
  68. if (qcnt) {
  69. event = queue->buf[queue->head];
  70. /* Paired with READ_ONCE() in queue_cnt() */
  71. WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
  72. }
  73. spin_unlock_irqrestore(&queue->lock, flags);
  74. if (!qcnt)
  75. goto out;
  76. cnt = snprintf(page, PAGE_SIZE, "%u %lld %u\n",
  77. event.index, event.t.sec, event.t.nsec);
  78. out:
  79. mutex_unlock(&ptp->tsevq_mux);
  80. return cnt;
  81. }
  82. static DEVICE_ATTR(fifo, 0444, extts_fifo_show, NULL);
  83. static ssize_t period_store(struct device *dev,
  84. struct device_attribute *attr,
  85. const char *buf, size_t count)
  86. {
  87. struct ptp_clock *ptp = dev_get_drvdata(dev);
  88. struct ptp_clock_info *ops = ptp->info;
  89. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PEROUT };
  90. int cnt, enable, err = -EINVAL;
  91. cnt = sscanf(buf, "%u %lld %u %lld %u", &req.perout.index,
  92. &req.perout.start.sec, &req.perout.start.nsec,
  93. &req.perout.period.sec, &req.perout.period.nsec);
  94. if (cnt != 5)
  95. goto out;
  96. if (req.perout.index >= ops->n_per_out)
  97. goto out;
  98. enable = req.perout.period.sec || req.perout.period.nsec;
  99. err = ops->enable(ops, &req, enable);
  100. if (err)
  101. goto out;
  102. return count;
  103. out:
  104. return err;
  105. }
  106. static DEVICE_ATTR(period, 0220, NULL, period_store);
  107. static ssize_t pps_enable_store(struct device *dev,
  108. struct device_attribute *attr,
  109. const char *buf, size_t count)
  110. {
  111. struct ptp_clock *ptp = dev_get_drvdata(dev);
  112. struct ptp_clock_info *ops = ptp->info;
  113. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PPS };
  114. int cnt, enable;
  115. int err = -EINVAL;
  116. if (!capable(CAP_SYS_TIME))
  117. return -EPERM;
  118. cnt = sscanf(buf, "%d", &enable);
  119. if (cnt != 1)
  120. goto out;
  121. err = ops->enable(ops, &req, enable ? 1 : 0);
  122. if (err)
  123. goto out;
  124. return count;
  125. out:
  126. return err;
  127. }
  128. static DEVICE_ATTR(pps_enable, 0220, NULL, pps_enable_store);
  129. static int unregister_vclock(struct device *dev, void *data)
  130. {
  131. struct ptp_clock *ptp = dev_get_drvdata(dev);
  132. struct ptp_clock_info *info = ptp->info;
  133. struct ptp_vclock *vclock;
  134. u32 *num = data;
  135. vclock = info_to_vclock(info);
  136. dev_info(dev->parent, "delete virtual clock ptp%d\n",
  137. vclock->clock->index);
  138. ptp_vclock_unregister(vclock);
  139. (*num)--;
  140. /* For break. Not error. */
  141. if (*num == 0)
  142. return -EINVAL;
  143. return 0;
  144. }
  145. static ssize_t n_vclocks_show(struct device *dev,
  146. struct device_attribute *attr, char *page)
  147. {
  148. struct ptp_clock *ptp = dev_get_drvdata(dev);
  149. ssize_t size;
  150. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  151. return -ERESTARTSYS;
  152. size = snprintf(page, PAGE_SIZE - 1, "%u\n", ptp->n_vclocks);
  153. mutex_unlock(&ptp->n_vclocks_mux);
  154. return size;
  155. }
  156. static ssize_t n_vclocks_store(struct device *dev,
  157. struct device_attribute *attr,
  158. const char *buf, size_t count)
  159. {
  160. struct ptp_clock *ptp = dev_get_drvdata(dev);
  161. struct ptp_vclock *vclock;
  162. int err = -EINVAL;
  163. u32 num, i;
  164. if (kstrtou32(buf, 0, &num))
  165. return err;
  166. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  167. return -ERESTARTSYS;
  168. if (num > ptp->max_vclocks) {
  169. dev_err(dev, "max value is %d\n", ptp->max_vclocks);
  170. goto out;
  171. }
  172. /* Need to create more vclocks */
  173. if (num > ptp->n_vclocks) {
  174. for (i = 0; i < num - ptp->n_vclocks; i++) {
  175. vclock = ptp_vclock_register(ptp);
  176. if (!vclock)
  177. goto out;
  178. *(ptp->vclock_index + ptp->n_vclocks + i) =
  179. vclock->clock->index;
  180. dev_info(dev, "new virtual clock ptp%d\n",
  181. vclock->clock->index);
  182. }
  183. }
  184. /* Need to delete vclocks */
  185. if (num < ptp->n_vclocks) {
  186. i = ptp->n_vclocks - num;
  187. device_for_each_child_reverse(dev, &i,
  188. unregister_vclock);
  189. for (i = 1; i <= ptp->n_vclocks - num; i++)
  190. *(ptp->vclock_index + ptp->n_vclocks - i) = -1;
  191. }
  192. /* Need to inform about changed physical clock behavior */
  193. if (!ptp->has_cycles) {
  194. if (num == 0)
  195. dev_info(dev, "only physical clock in use now\n");
  196. else
  197. dev_info(dev, "guarantee physical clock free running\n");
  198. }
  199. ptp->n_vclocks = num;
  200. mutex_unlock(&ptp->n_vclocks_mux);
  201. return count;
  202. out:
  203. mutex_unlock(&ptp->n_vclocks_mux);
  204. return err;
  205. }
  206. static DEVICE_ATTR_RW(n_vclocks);
  207. static ssize_t max_vclocks_show(struct device *dev,
  208. struct device_attribute *attr, char *page)
  209. {
  210. struct ptp_clock *ptp = dev_get_drvdata(dev);
  211. ssize_t size;
  212. size = snprintf(page, PAGE_SIZE - 1, "%u\n", ptp->max_vclocks);
  213. return size;
  214. }
  215. static ssize_t max_vclocks_store(struct device *dev,
  216. struct device_attribute *attr,
  217. const char *buf, size_t count)
  218. {
  219. struct ptp_clock *ptp = dev_get_drvdata(dev);
  220. unsigned int *vclock_index;
  221. int err = -EINVAL;
  222. size_t size;
  223. u32 max;
  224. if (kstrtou32(buf, 0, &max) || max == 0)
  225. return -EINVAL;
  226. if (max == ptp->max_vclocks)
  227. return count;
  228. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  229. return -ERESTARTSYS;
  230. if (max < ptp->n_vclocks)
  231. goto out;
  232. size = sizeof(int) * max;
  233. vclock_index = kzalloc(size, GFP_KERNEL);
  234. if (!vclock_index) {
  235. err = -ENOMEM;
  236. goto out;
  237. }
  238. size = sizeof(int) * ptp->n_vclocks;
  239. memcpy(vclock_index, ptp->vclock_index, size);
  240. kfree(ptp->vclock_index);
  241. ptp->vclock_index = vclock_index;
  242. ptp->max_vclocks = max;
  243. mutex_unlock(&ptp->n_vclocks_mux);
  244. return count;
  245. out:
  246. mutex_unlock(&ptp->n_vclocks_mux);
  247. return err;
  248. }
  249. static DEVICE_ATTR_RW(max_vclocks);
  250. static struct attribute *ptp_attrs[] = {
  251. &dev_attr_clock_name.attr,
  252. &dev_attr_max_adjustment.attr,
  253. &dev_attr_n_alarms.attr,
  254. &dev_attr_n_external_timestamps.attr,
  255. &dev_attr_n_periodic_outputs.attr,
  256. &dev_attr_n_programmable_pins.attr,
  257. &dev_attr_pps_available.attr,
  258. &dev_attr_extts_enable.attr,
  259. &dev_attr_fifo.attr,
  260. &dev_attr_period.attr,
  261. &dev_attr_pps_enable.attr,
  262. &dev_attr_n_vclocks.attr,
  263. &dev_attr_max_vclocks.attr,
  264. NULL
  265. };
  266. static umode_t ptp_is_attribute_visible(struct kobject *kobj,
  267. struct attribute *attr, int n)
  268. {
  269. struct device *dev = kobj_to_dev(kobj);
  270. struct ptp_clock *ptp = dev_get_drvdata(dev);
  271. struct ptp_clock_info *info = ptp->info;
  272. umode_t mode = attr->mode;
  273. if (attr == &dev_attr_extts_enable.attr ||
  274. attr == &dev_attr_fifo.attr) {
  275. if (!info->n_ext_ts)
  276. mode = 0;
  277. } else if (attr == &dev_attr_period.attr) {
  278. if (!info->n_per_out)
  279. mode = 0;
  280. } else if (attr == &dev_attr_pps_enable.attr) {
  281. if (!info->pps)
  282. mode = 0;
  283. } else if (attr == &dev_attr_n_vclocks.attr ||
  284. attr == &dev_attr_max_vclocks.attr) {
  285. if (ptp->is_virtual_clock)
  286. mode = 0;
  287. }
  288. return mode;
  289. }
  290. static const struct attribute_group ptp_group = {
  291. .is_visible = ptp_is_attribute_visible,
  292. .attrs = ptp_attrs,
  293. };
  294. const struct attribute_group *ptp_groups[] = {
  295. &ptp_group,
  296. NULL
  297. };
  298. static int ptp_pin_name2index(struct ptp_clock *ptp, const char *name)
  299. {
  300. int i;
  301. for (i = 0; i < ptp->info->n_pins; i++) {
  302. if (!strcmp(ptp->info->pin_config[i].name, name))
  303. return i;
  304. }
  305. return -1;
  306. }
  307. static ssize_t ptp_pin_show(struct device *dev, struct device_attribute *attr,
  308. char *page)
  309. {
  310. struct ptp_clock *ptp = dev_get_drvdata(dev);
  311. unsigned int func, chan;
  312. int index;
  313. index = ptp_pin_name2index(ptp, attr->attr.name);
  314. if (index < 0)
  315. return -EINVAL;
  316. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  317. return -ERESTARTSYS;
  318. func = ptp->info->pin_config[index].func;
  319. chan = ptp->info->pin_config[index].chan;
  320. mutex_unlock(&ptp->pincfg_mux);
  321. return sysfs_emit(page, "%u %u\n", func, chan);
  322. }
  323. static ssize_t ptp_pin_store(struct device *dev, struct device_attribute *attr,
  324. const char *buf, size_t count)
  325. {
  326. struct ptp_clock *ptp = dev_get_drvdata(dev);
  327. unsigned int func, chan;
  328. int cnt, err, index;
  329. cnt = sscanf(buf, "%u %u", &func, &chan);
  330. if (cnt != 2)
  331. return -EINVAL;
  332. index = ptp_pin_name2index(ptp, attr->attr.name);
  333. if (index < 0)
  334. return -EINVAL;
  335. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  336. return -ERESTARTSYS;
  337. err = ptp_set_pinfunc(ptp, index, func, chan);
  338. mutex_unlock(&ptp->pincfg_mux);
  339. if (err)
  340. return err;
  341. return count;
  342. }
  343. int ptp_populate_pin_groups(struct ptp_clock *ptp)
  344. {
  345. struct ptp_clock_info *info = ptp->info;
  346. int err = -ENOMEM, i, n_pins = info->n_pins;
  347. if (!n_pins)
  348. return 0;
  349. ptp->pin_dev_attr = kcalloc(n_pins, sizeof(*ptp->pin_dev_attr),
  350. GFP_KERNEL);
  351. if (!ptp->pin_dev_attr)
  352. goto no_dev_attr;
  353. ptp->pin_attr = kcalloc(1 + n_pins, sizeof(*ptp->pin_attr), GFP_KERNEL);
  354. if (!ptp->pin_attr)
  355. goto no_pin_attr;
  356. for (i = 0; i < n_pins; i++) {
  357. struct device_attribute *da = &ptp->pin_dev_attr[i];
  358. sysfs_attr_init(&da->attr);
  359. da->attr.name = info->pin_config[i].name;
  360. da->attr.mode = 0644;
  361. da->show = ptp_pin_show;
  362. da->store = ptp_pin_store;
  363. ptp->pin_attr[i] = &da->attr;
  364. }
  365. ptp->pin_attr_group.name = "pins";
  366. ptp->pin_attr_group.attrs = ptp->pin_attr;
  367. ptp->pin_attr_groups[0] = &ptp->pin_attr_group;
  368. return 0;
  369. no_pin_attr:
  370. kfree(ptp->pin_dev_attr);
  371. no_dev_attr:
  372. return err;
  373. }
  374. void ptp_cleanup_pin_groups(struct ptp_clock *ptp)
  375. {
  376. kfree(ptp->pin_attr);
  377. kfree(ptp->pin_dev_attr);
  378. }