of_reserved_mem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Device tree based initialization code for reserved memory.
  4. *
  5. * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7. * http://www.samsung.com
  8. * Author: Marek Szyprowski <[email protected]>
  9. * Author: Josh Cartwright <[email protected]>
  10. */
  11. #define pr_fmt(fmt) "OF: reserved mem: " fmt
  12. #include <linux/err.h>
  13. #include <linux/of.h>
  14. #include <linux/of_fdt.h>
  15. #include <linux/of_platform.h>
  16. #include <linux/mm.h>
  17. #include <linux/sizes.h>
  18. #include <linux/of_reserved_mem.h>
  19. #include <linux/sort.h>
  20. #include <linux/slab.h>
  21. #include <linux/memblock.h>
  22. #include <linux/kmemleak.h>
  23. #include <linux/cma.h>
  24. #include "of_private.h"
  25. #define MAX_RESERVED_REGIONS 128
  26. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  27. static int reserved_mem_count;
  28. static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  29. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  30. phys_addr_t *res_base)
  31. {
  32. phys_addr_t base;
  33. int err = 0;
  34. end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  35. align = !align ? SMP_CACHE_BYTES : align;
  36. base = memblock_phys_alloc_range(size, align, start, end);
  37. if (!base)
  38. return -ENOMEM;
  39. *res_base = base;
  40. if (nomap) {
  41. err = memblock_mark_nomap(base, size);
  42. if (err)
  43. memblock_phys_free(base, size);
  44. }
  45. kmemleak_ignore_phys(base);
  46. return err;
  47. }
  48. /*
  49. * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
  50. */
  51. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  52. phys_addr_t base, phys_addr_t size)
  53. {
  54. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  55. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  56. pr_err("not enough space for all defined regions.\n");
  57. return;
  58. }
  59. rmem->fdt_node = node;
  60. rmem->name = uname;
  61. rmem->base = base;
  62. rmem->size = size;
  63. reserved_mem_count++;
  64. return;
  65. }
  66. /*
  67. * __reserved_mem_alloc_size() - allocate reserved memory described by
  68. * 'size', 'alignment' and 'alloc-ranges' properties.
  69. */
  70. static int __init __reserved_mem_alloc_size(unsigned long node,
  71. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  72. {
  73. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  74. phys_addr_t start = 0, end = 0;
  75. phys_addr_t base = 0, align = 0, size;
  76. int len;
  77. const __be32 *prop;
  78. bool nomap;
  79. int ret;
  80. prop = of_get_flat_dt_prop(node, "size", &len);
  81. if (!prop)
  82. return -EINVAL;
  83. if (len != dt_root_size_cells * sizeof(__be32)) {
  84. pr_err("invalid size property in '%s' node.\n", uname);
  85. return -EINVAL;
  86. }
  87. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  88. prop = of_get_flat_dt_prop(node, "alignment", &len);
  89. if (prop) {
  90. if (len != dt_root_addr_cells * sizeof(__be32)) {
  91. pr_err("invalid alignment property in '%s' node.\n",
  92. uname);
  93. return -EINVAL;
  94. }
  95. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  96. }
  97. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  98. /* Need adjust the alignment to satisfy the CMA requirement */
  99. if (IS_ENABLED(CONFIG_CMA)
  100. && of_flat_dt_is_compatible(node, "shared-dma-pool")
  101. && of_get_flat_dt_prop(node, "reusable", NULL)
  102. && !nomap)
  103. align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
  104. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  105. if (prop) {
  106. if (len % t_len != 0) {
  107. pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
  108. uname);
  109. return -EINVAL;
  110. }
  111. base = 0;
  112. while (len > 0) {
  113. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  114. end = start + dt_mem_next_cell(dt_root_size_cells,
  115. &prop);
  116. ret = early_init_dt_alloc_reserved_memory_arch(size,
  117. align, start, end, nomap, &base);
  118. if (ret == 0) {
  119. pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
  120. uname, &base,
  121. (unsigned long)(size / SZ_1M));
  122. break;
  123. }
  124. len -= t_len;
  125. }
  126. } else {
  127. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  128. 0, 0, nomap, &base);
  129. if (ret == 0)
  130. pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
  131. uname, &base, (unsigned long)(size / SZ_1M));
  132. }
  133. if (base == 0) {
  134. pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
  135. uname, (unsigned long)(size / SZ_1M));
  136. return -ENOMEM;
  137. }
  138. *res_base = base;
  139. *res_size = size;
  140. return 0;
  141. }
  142. static const struct of_device_id __rmem_of_table_sentinel
  143. __used __section("__reservedmem_of_table_end");
  144. /*
  145. * __reserved_mem_init_node() - call region specific reserved memory init code
  146. */
  147. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  148. {
  149. extern const struct of_device_id __reservedmem_of_table[];
  150. const struct of_device_id *i;
  151. int ret = -ENOENT;
  152. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  153. reservedmem_of_init_fn initfn = i->data;
  154. const char *compat = i->compatible;
  155. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  156. continue;
  157. ret = initfn(rmem);
  158. if (ret == 0) {
  159. pr_info("initialized node %s, compatible id %s\n",
  160. rmem->name, compat);
  161. break;
  162. }
  163. }
  164. return ret;
  165. }
  166. static int __init __rmem_cmp(const void *a, const void *b)
  167. {
  168. const struct reserved_mem *ra = a, *rb = b;
  169. if (ra->base < rb->base)
  170. return -1;
  171. if (ra->base > rb->base)
  172. return 1;
  173. /*
  174. * Put the dynamic allocations (address == 0, size == 0) before static
  175. * allocations at address 0x0 so that overlap detection works
  176. * correctly.
  177. */
  178. if (ra->size < rb->size)
  179. return -1;
  180. if (ra->size > rb->size)
  181. return 1;
  182. return 0;
  183. }
  184. static void __init __rmem_check_for_overlap(void)
  185. {
  186. int i;
  187. if (reserved_mem_count < 2)
  188. return;
  189. sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
  190. __rmem_cmp, NULL);
  191. for (i = 0; i < reserved_mem_count - 1; i++) {
  192. struct reserved_mem *this, *next;
  193. this = &reserved_mem[i];
  194. next = &reserved_mem[i + 1];
  195. if (this->base + this->size > next->base) {
  196. phys_addr_t this_end, next_end;
  197. this_end = this->base + this->size;
  198. next_end = next->base + next->size;
  199. pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
  200. this->name, &this->base, &this_end,
  201. next->name, &next->base, &next_end);
  202. }
  203. }
  204. }
  205. /**
  206. * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
  207. */
  208. void __init fdt_init_reserved_mem(void)
  209. {
  210. int i;
  211. /* check for overlapping reserved regions */
  212. __rmem_check_for_overlap();
  213. for (i = 0; i < reserved_mem_count; i++) {
  214. struct reserved_mem *rmem = &reserved_mem[i];
  215. unsigned long node = rmem->fdt_node;
  216. int len;
  217. const __be32 *prop;
  218. int err = 0;
  219. bool nomap;
  220. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  221. prop = of_get_flat_dt_prop(node, "phandle", &len);
  222. if (!prop)
  223. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  224. if (prop)
  225. rmem->phandle = of_read_number(prop, len/4);
  226. if (rmem->size == 0)
  227. err = __reserved_mem_alloc_size(node, rmem->name,
  228. &rmem->base, &rmem->size);
  229. if (err == 0) {
  230. err = __reserved_mem_init_node(rmem);
  231. if (err != 0 && err != -ENOENT) {
  232. pr_info("node %s compatible matching fail\n",
  233. rmem->name);
  234. if (nomap)
  235. memblock_clear_nomap(rmem->base, rmem->size);
  236. else
  237. memblock_phys_free(rmem->base,
  238. rmem->size);
  239. } else {
  240. phys_addr_t end = rmem->base + rmem->size - 1;
  241. bool reusable =
  242. (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
  243. pr_info("%pa..%pa ( %lu KB ) %s %s %s\n",
  244. &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
  245. nomap ? "nomap" : "map",
  246. reusable ? "reusable" : "non-reusable",
  247. rmem->name ? rmem->name : "unknown");
  248. }
  249. }
  250. }
  251. }
  252. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  253. {
  254. unsigned int i;
  255. if (!node->phandle)
  256. return NULL;
  257. for (i = 0; i < reserved_mem_count; i++)
  258. if (reserved_mem[i].phandle == node->phandle)
  259. return &reserved_mem[i];
  260. return NULL;
  261. }
  262. struct rmem_assigned_device {
  263. struct device *dev;
  264. struct reserved_mem *rmem;
  265. struct list_head list;
  266. };
  267. static LIST_HEAD(of_rmem_assigned_device_list);
  268. static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
  269. /**
  270. * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
  271. * given device
  272. * @dev: Pointer to the device to configure
  273. * @np: Pointer to the device_node with 'reserved-memory' property
  274. * @idx: Index of selected region
  275. *
  276. * This function assigns respective DMA-mapping operations based on reserved
  277. * memory region specified by 'memory-region' property in @np node to the @dev
  278. * device. When driver needs to use more than one reserved memory region, it
  279. * should allocate child devices and initialize regions by name for each of
  280. * child device.
  281. *
  282. * Returns error code or zero on success.
  283. */
  284. int of_reserved_mem_device_init_by_idx(struct device *dev,
  285. struct device_node *np, int idx)
  286. {
  287. struct rmem_assigned_device *rd;
  288. struct device_node *target;
  289. struct reserved_mem *rmem;
  290. int ret;
  291. if (!np || !dev)
  292. return -EINVAL;
  293. target = of_parse_phandle(np, "memory-region", idx);
  294. if (!target)
  295. return -ENODEV;
  296. if (!of_device_is_available(target)) {
  297. of_node_put(target);
  298. return 0;
  299. }
  300. rmem = __find_rmem(target);
  301. of_node_put(target);
  302. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  303. return -EINVAL;
  304. rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
  305. if (!rd)
  306. return -ENOMEM;
  307. ret = rmem->ops->device_init(rmem, dev);
  308. if (ret == 0) {
  309. rd->dev = dev;
  310. rd->rmem = rmem;
  311. mutex_lock(&of_rmem_assigned_device_mutex);
  312. list_add(&rd->list, &of_rmem_assigned_device_list);
  313. mutex_unlock(&of_rmem_assigned_device_mutex);
  314. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  315. } else {
  316. kfree(rd);
  317. }
  318. return ret;
  319. }
  320. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
  321. /**
  322. * of_reserved_mem_device_init_by_name() - assign named reserved memory region
  323. * to given device
  324. * @dev: pointer to the device to configure
  325. * @np: pointer to the device node with 'memory-region' property
  326. * @name: name of the selected memory region
  327. *
  328. * Returns: 0 on success or a negative error-code on failure.
  329. */
  330. int of_reserved_mem_device_init_by_name(struct device *dev,
  331. struct device_node *np,
  332. const char *name)
  333. {
  334. int idx = of_property_match_string(np, "memory-region-names", name);
  335. return of_reserved_mem_device_init_by_idx(dev, np, idx);
  336. }
  337. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
  338. /**
  339. * of_reserved_mem_device_release() - release reserved memory device structures
  340. * @dev: Pointer to the device to deconfigure
  341. *
  342. * This function releases structures allocated for memory region handling for
  343. * the given device.
  344. */
  345. void of_reserved_mem_device_release(struct device *dev)
  346. {
  347. struct rmem_assigned_device *rd, *tmp;
  348. LIST_HEAD(release_list);
  349. mutex_lock(&of_rmem_assigned_device_mutex);
  350. list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
  351. if (rd->dev == dev)
  352. list_move_tail(&rd->list, &release_list);
  353. }
  354. mutex_unlock(&of_rmem_assigned_device_mutex);
  355. list_for_each_entry_safe(rd, tmp, &release_list, list) {
  356. if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
  357. rd->rmem->ops->device_release(rd->rmem, dev);
  358. kfree(rd);
  359. }
  360. }
  361. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
  362. /**
  363. * of_reserved_mem_lookup() - acquire reserved_mem from a device node
  364. * @np: node pointer of the desired reserved-memory region
  365. *
  366. * This function allows drivers to acquire a reference to the reserved_mem
  367. * struct based on a device node handle.
  368. *
  369. * Returns a reserved_mem reference, or NULL on error.
  370. */
  371. struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
  372. {
  373. const char *name;
  374. int i;
  375. if (!np->full_name)
  376. return NULL;
  377. name = kbasename(np->full_name);
  378. for (i = 0; i < reserved_mem_count; i++)
  379. if (!strcmp(reserved_mem[i].name, name))
  380. return &reserved_mem[i];
  381. return NULL;
  382. }
  383. EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);