tcp.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * NVMe over Fabrics TCP host.
  4. * Copyright (c) 2018 Lightbits Labs. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/err.h>
  11. #include <linux/nvme-tcp.h>
  12. #include <net/sock.h>
  13. #include <net/tcp.h>
  14. #include <linux/blk-mq.h>
  15. #include <crypto/hash.h>
  16. #include <net/busy_poll.h>
  17. #include "nvme.h"
  18. #include "fabrics.h"
  19. struct nvme_tcp_queue;
  20. /* Define the socket priority to use for connections were it is desirable
  21. * that the NIC consider performing optimized packet processing or filtering.
  22. * A non-zero value being sufficient to indicate general consideration of any
  23. * possible optimization. Making it a module param allows for alternative
  24. * values that may be unique for some NIC implementations.
  25. */
  26. static int so_priority;
  27. module_param(so_priority, int, 0644);
  28. MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
  29. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  30. /* lockdep can detect a circular dependency of the form
  31. * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
  32. * because dependencies are tracked for both nvme-tcp and user contexts. Using
  33. * a separate class prevents lockdep from conflating nvme-tcp socket use with
  34. * user-space socket API use.
  35. */
  36. static struct lock_class_key nvme_tcp_sk_key[2];
  37. static struct lock_class_key nvme_tcp_slock_key[2];
  38. static void nvme_tcp_reclassify_socket(struct socket *sock)
  39. {
  40. struct sock *sk = sock->sk;
  41. if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
  42. return;
  43. switch (sk->sk_family) {
  44. case AF_INET:
  45. sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
  46. &nvme_tcp_slock_key[0],
  47. "sk_lock-AF_INET-NVME",
  48. &nvme_tcp_sk_key[0]);
  49. break;
  50. case AF_INET6:
  51. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
  52. &nvme_tcp_slock_key[1],
  53. "sk_lock-AF_INET6-NVME",
  54. &nvme_tcp_sk_key[1]);
  55. break;
  56. default:
  57. WARN_ON_ONCE(1);
  58. }
  59. }
  60. #else
  61. static void nvme_tcp_reclassify_socket(struct socket *sock) { }
  62. #endif
  63. enum nvme_tcp_send_state {
  64. NVME_TCP_SEND_CMD_PDU = 0,
  65. NVME_TCP_SEND_H2C_PDU,
  66. NVME_TCP_SEND_DATA,
  67. NVME_TCP_SEND_DDGST,
  68. };
  69. struct nvme_tcp_request {
  70. struct nvme_request req;
  71. void *pdu;
  72. struct nvme_tcp_queue *queue;
  73. u32 data_len;
  74. u32 pdu_len;
  75. u32 pdu_sent;
  76. u32 h2cdata_left;
  77. u32 h2cdata_offset;
  78. u16 ttag;
  79. __le16 status;
  80. struct list_head entry;
  81. struct llist_node lentry;
  82. __le32 ddgst;
  83. struct bio *curr_bio;
  84. struct iov_iter iter;
  85. /* send state */
  86. size_t offset;
  87. size_t data_sent;
  88. enum nvme_tcp_send_state state;
  89. };
  90. enum nvme_tcp_queue_flags {
  91. NVME_TCP_Q_ALLOCATED = 0,
  92. NVME_TCP_Q_LIVE = 1,
  93. NVME_TCP_Q_POLLING = 2,
  94. };
  95. enum nvme_tcp_recv_state {
  96. NVME_TCP_RECV_PDU = 0,
  97. NVME_TCP_RECV_DATA,
  98. NVME_TCP_RECV_DDGST,
  99. };
  100. struct nvme_tcp_ctrl;
  101. struct nvme_tcp_queue {
  102. struct socket *sock;
  103. struct work_struct io_work;
  104. int io_cpu;
  105. struct mutex queue_lock;
  106. struct mutex send_mutex;
  107. struct llist_head req_list;
  108. struct list_head send_list;
  109. /* recv state */
  110. void *pdu;
  111. int pdu_remaining;
  112. int pdu_offset;
  113. size_t data_remaining;
  114. size_t ddgst_remaining;
  115. unsigned int nr_cqe;
  116. /* send state */
  117. struct nvme_tcp_request *request;
  118. u32 maxh2cdata;
  119. size_t cmnd_capsule_len;
  120. struct nvme_tcp_ctrl *ctrl;
  121. unsigned long flags;
  122. bool rd_enabled;
  123. bool hdr_digest;
  124. bool data_digest;
  125. struct ahash_request *rcv_hash;
  126. struct ahash_request *snd_hash;
  127. __le32 exp_ddgst;
  128. __le32 recv_ddgst;
  129. struct page_frag_cache pf_cache;
  130. void (*state_change)(struct sock *);
  131. void (*data_ready)(struct sock *);
  132. void (*write_space)(struct sock *);
  133. };
  134. struct nvme_tcp_ctrl {
  135. /* read only in the hot path */
  136. struct nvme_tcp_queue *queues;
  137. struct blk_mq_tag_set tag_set;
  138. /* other member variables */
  139. struct list_head list;
  140. struct blk_mq_tag_set admin_tag_set;
  141. struct sockaddr_storage addr;
  142. struct sockaddr_storage src_addr;
  143. struct nvme_ctrl ctrl;
  144. struct work_struct err_work;
  145. struct delayed_work connect_work;
  146. struct nvme_tcp_request async_req;
  147. u32 io_queues[HCTX_MAX_TYPES];
  148. };
  149. static LIST_HEAD(nvme_tcp_ctrl_list);
  150. static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
  151. static struct workqueue_struct *nvme_tcp_wq;
  152. static const struct blk_mq_ops nvme_tcp_mq_ops;
  153. static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
  154. static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
  155. static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
  156. {
  157. return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
  158. }
  159. static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
  160. {
  161. return queue - queue->ctrl->queues;
  162. }
  163. static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
  164. {
  165. u32 queue_idx = nvme_tcp_queue_id(queue);
  166. if (queue_idx == 0)
  167. return queue->ctrl->admin_tag_set.tags[queue_idx];
  168. return queue->ctrl->tag_set.tags[queue_idx - 1];
  169. }
  170. static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
  171. {
  172. return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
  173. }
  174. static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
  175. {
  176. return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
  177. }
  178. static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
  179. {
  180. if (nvme_is_fabrics(req->req.cmd))
  181. return NVME_TCP_ADMIN_CCSZ;
  182. return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
  183. }
  184. static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
  185. {
  186. return req == &req->queue->ctrl->async_req;
  187. }
  188. static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
  189. {
  190. struct request *rq;
  191. if (unlikely(nvme_tcp_async_req(req)))
  192. return false; /* async events don't have a request */
  193. rq = blk_mq_rq_from_pdu(req);
  194. return rq_data_dir(rq) == WRITE && req->data_len &&
  195. req->data_len <= nvme_tcp_inline_data_size(req);
  196. }
  197. static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
  198. {
  199. return req->iter.bvec->bv_page;
  200. }
  201. static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
  202. {
  203. return req->iter.bvec->bv_offset + req->iter.iov_offset;
  204. }
  205. static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
  206. {
  207. return min_t(size_t, iov_iter_single_seg_count(&req->iter),
  208. req->pdu_len - req->pdu_sent);
  209. }
  210. static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
  211. {
  212. return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
  213. req->pdu_len - req->pdu_sent : 0;
  214. }
  215. static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
  216. int len)
  217. {
  218. return nvme_tcp_pdu_data_left(req) <= len;
  219. }
  220. static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
  221. unsigned int dir)
  222. {
  223. struct request *rq = blk_mq_rq_from_pdu(req);
  224. struct bio_vec *vec;
  225. unsigned int size;
  226. int nr_bvec;
  227. size_t offset;
  228. if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
  229. vec = &rq->special_vec;
  230. nr_bvec = 1;
  231. size = blk_rq_payload_bytes(rq);
  232. offset = 0;
  233. } else {
  234. struct bio *bio = req->curr_bio;
  235. struct bvec_iter bi;
  236. struct bio_vec bv;
  237. vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
  238. nr_bvec = 0;
  239. bio_for_each_bvec(bv, bio, bi) {
  240. nr_bvec++;
  241. }
  242. size = bio->bi_iter.bi_size;
  243. offset = bio->bi_iter.bi_bvec_done;
  244. }
  245. iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
  246. req->iter.iov_offset = offset;
  247. }
  248. static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
  249. int len)
  250. {
  251. req->data_sent += len;
  252. req->pdu_sent += len;
  253. iov_iter_advance(&req->iter, len);
  254. if (!iov_iter_count(&req->iter) &&
  255. req->data_sent < req->data_len) {
  256. req->curr_bio = req->curr_bio->bi_next;
  257. nvme_tcp_init_iter(req, ITER_SOURCE);
  258. }
  259. }
  260. static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
  261. {
  262. int ret;
  263. /* drain the send queue as much as we can... */
  264. do {
  265. ret = nvme_tcp_try_send(queue);
  266. } while (ret > 0);
  267. }
  268. static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
  269. {
  270. return !list_empty(&queue->send_list) ||
  271. !llist_empty(&queue->req_list);
  272. }
  273. static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
  274. bool sync, bool last)
  275. {
  276. struct nvme_tcp_queue *queue = req->queue;
  277. bool empty;
  278. empty = llist_add(&req->lentry, &queue->req_list) &&
  279. list_empty(&queue->send_list) && !queue->request;
  280. /*
  281. * if we're the first on the send_list and we can try to send
  282. * directly, otherwise queue io_work. Also, only do that if we
  283. * are on the same cpu, so we don't introduce contention.
  284. */
  285. if (queue->io_cpu == raw_smp_processor_id() &&
  286. sync && empty && mutex_trylock(&queue->send_mutex)) {
  287. nvme_tcp_send_all(queue);
  288. mutex_unlock(&queue->send_mutex);
  289. }
  290. if (last && nvme_tcp_queue_more(queue))
  291. queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
  292. }
  293. static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
  294. {
  295. struct nvme_tcp_request *req;
  296. struct llist_node *node;
  297. for (node = llist_del_all(&queue->req_list); node; node = node->next) {
  298. req = llist_entry(node, struct nvme_tcp_request, lentry);
  299. list_add(&req->entry, &queue->send_list);
  300. }
  301. }
  302. static inline struct nvme_tcp_request *
  303. nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
  304. {
  305. struct nvme_tcp_request *req;
  306. req = list_first_entry_or_null(&queue->send_list,
  307. struct nvme_tcp_request, entry);
  308. if (!req) {
  309. nvme_tcp_process_req_list(queue);
  310. req = list_first_entry_or_null(&queue->send_list,
  311. struct nvme_tcp_request, entry);
  312. if (unlikely(!req))
  313. return NULL;
  314. }
  315. list_del(&req->entry);
  316. return req;
  317. }
  318. static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
  319. __le32 *dgst)
  320. {
  321. ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
  322. crypto_ahash_final(hash);
  323. }
  324. static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
  325. struct page *page, off_t off, size_t len)
  326. {
  327. struct scatterlist sg;
  328. sg_init_table(&sg, 1);
  329. sg_set_page(&sg, page, len, off);
  330. ahash_request_set_crypt(hash, &sg, NULL, len);
  331. crypto_ahash_update(hash);
  332. }
  333. static inline void nvme_tcp_hdgst(struct ahash_request *hash,
  334. void *pdu, size_t len)
  335. {
  336. struct scatterlist sg;
  337. sg_init_one(&sg, pdu, len);
  338. ahash_request_set_crypt(hash, &sg, pdu + len, len);
  339. crypto_ahash_digest(hash);
  340. }
  341. static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
  342. void *pdu, size_t pdu_len)
  343. {
  344. struct nvme_tcp_hdr *hdr = pdu;
  345. __le32 recv_digest;
  346. __le32 exp_digest;
  347. if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
  348. dev_err(queue->ctrl->ctrl.device,
  349. "queue %d: header digest flag is cleared\n",
  350. nvme_tcp_queue_id(queue));
  351. return -EPROTO;
  352. }
  353. recv_digest = *(__le32 *)(pdu + hdr->hlen);
  354. nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
  355. exp_digest = *(__le32 *)(pdu + hdr->hlen);
  356. if (recv_digest != exp_digest) {
  357. dev_err(queue->ctrl->ctrl.device,
  358. "header digest error: recv %#x expected %#x\n",
  359. le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
  360. return -EIO;
  361. }
  362. return 0;
  363. }
  364. static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
  365. {
  366. struct nvme_tcp_hdr *hdr = pdu;
  367. u8 digest_len = nvme_tcp_hdgst_len(queue);
  368. u32 len;
  369. len = le32_to_cpu(hdr->plen) - hdr->hlen -
  370. ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
  371. if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
  372. dev_err(queue->ctrl->ctrl.device,
  373. "queue %d: data digest flag is cleared\n",
  374. nvme_tcp_queue_id(queue));
  375. return -EPROTO;
  376. }
  377. crypto_ahash_init(queue->rcv_hash);
  378. return 0;
  379. }
  380. static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
  381. struct request *rq, unsigned int hctx_idx)
  382. {
  383. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  384. page_frag_free(req->pdu);
  385. }
  386. static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
  387. struct request *rq, unsigned int hctx_idx,
  388. unsigned int numa_node)
  389. {
  390. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
  391. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  392. struct nvme_tcp_cmd_pdu *pdu;
  393. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  394. struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
  395. u8 hdgst = nvme_tcp_hdgst_len(queue);
  396. req->pdu = page_frag_alloc(&queue->pf_cache,
  397. sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
  398. GFP_KERNEL | __GFP_ZERO);
  399. if (!req->pdu)
  400. return -ENOMEM;
  401. pdu = req->pdu;
  402. req->queue = queue;
  403. nvme_req(rq)->ctrl = &ctrl->ctrl;
  404. nvme_req(rq)->cmd = &pdu->cmd;
  405. return 0;
  406. }
  407. static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  408. unsigned int hctx_idx)
  409. {
  410. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
  411. struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
  412. hctx->driver_data = queue;
  413. return 0;
  414. }
  415. static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  416. unsigned int hctx_idx)
  417. {
  418. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
  419. struct nvme_tcp_queue *queue = &ctrl->queues[0];
  420. hctx->driver_data = queue;
  421. return 0;
  422. }
  423. static enum nvme_tcp_recv_state
  424. nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
  425. {
  426. return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
  427. (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
  428. NVME_TCP_RECV_DATA;
  429. }
  430. static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
  431. {
  432. queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
  433. nvme_tcp_hdgst_len(queue);
  434. queue->pdu_offset = 0;
  435. queue->data_remaining = -1;
  436. queue->ddgst_remaining = 0;
  437. }
  438. static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
  439. {
  440. if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
  441. return;
  442. dev_warn(ctrl->device, "starting error recovery\n");
  443. queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
  444. }
  445. static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
  446. struct nvme_completion *cqe)
  447. {
  448. struct nvme_tcp_request *req;
  449. struct request *rq;
  450. rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
  451. if (!rq) {
  452. dev_err(queue->ctrl->ctrl.device,
  453. "got bad cqe.command_id %#x on queue %d\n",
  454. cqe->command_id, nvme_tcp_queue_id(queue));
  455. nvme_tcp_error_recovery(&queue->ctrl->ctrl);
  456. return -EINVAL;
  457. }
  458. req = blk_mq_rq_to_pdu(rq);
  459. if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
  460. req->status = cqe->status;
  461. if (!nvme_try_complete_req(rq, req->status, cqe->result))
  462. nvme_complete_rq(rq);
  463. queue->nr_cqe++;
  464. return 0;
  465. }
  466. static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
  467. struct nvme_tcp_data_pdu *pdu)
  468. {
  469. struct request *rq;
  470. rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
  471. if (!rq) {
  472. dev_err(queue->ctrl->ctrl.device,
  473. "got bad c2hdata.command_id %#x on queue %d\n",
  474. pdu->command_id, nvme_tcp_queue_id(queue));
  475. return -ENOENT;
  476. }
  477. if (!blk_rq_payload_bytes(rq)) {
  478. dev_err(queue->ctrl->ctrl.device,
  479. "queue %d tag %#x unexpected data\n",
  480. nvme_tcp_queue_id(queue), rq->tag);
  481. return -EIO;
  482. }
  483. queue->data_remaining = le32_to_cpu(pdu->data_length);
  484. if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
  485. unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
  486. dev_err(queue->ctrl->ctrl.device,
  487. "queue %d tag %#x SUCCESS set but not last PDU\n",
  488. nvme_tcp_queue_id(queue), rq->tag);
  489. nvme_tcp_error_recovery(&queue->ctrl->ctrl);
  490. return -EPROTO;
  491. }
  492. return 0;
  493. }
  494. static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
  495. struct nvme_tcp_rsp_pdu *pdu)
  496. {
  497. struct nvme_completion *cqe = &pdu->cqe;
  498. int ret = 0;
  499. /*
  500. * AEN requests are special as they don't time out and can
  501. * survive any kind of queue freeze and often don't respond to
  502. * aborts. We don't even bother to allocate a struct request
  503. * for them but rather special case them here.
  504. */
  505. if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
  506. cqe->command_id)))
  507. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  508. &cqe->result);
  509. else
  510. ret = nvme_tcp_process_nvme_cqe(queue, cqe);
  511. return ret;
  512. }
  513. static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
  514. {
  515. struct nvme_tcp_data_pdu *data = req->pdu;
  516. struct nvme_tcp_queue *queue = req->queue;
  517. struct request *rq = blk_mq_rq_from_pdu(req);
  518. u32 h2cdata_sent = req->pdu_len;
  519. u8 hdgst = nvme_tcp_hdgst_len(queue);
  520. u8 ddgst = nvme_tcp_ddgst_len(queue);
  521. req->state = NVME_TCP_SEND_H2C_PDU;
  522. req->offset = 0;
  523. req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
  524. req->pdu_sent = 0;
  525. req->h2cdata_left -= req->pdu_len;
  526. req->h2cdata_offset += h2cdata_sent;
  527. memset(data, 0, sizeof(*data));
  528. data->hdr.type = nvme_tcp_h2c_data;
  529. if (!req->h2cdata_left)
  530. data->hdr.flags = NVME_TCP_F_DATA_LAST;
  531. if (queue->hdr_digest)
  532. data->hdr.flags |= NVME_TCP_F_HDGST;
  533. if (queue->data_digest)
  534. data->hdr.flags |= NVME_TCP_F_DDGST;
  535. data->hdr.hlen = sizeof(*data);
  536. data->hdr.pdo = data->hdr.hlen + hdgst;
  537. data->hdr.plen =
  538. cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
  539. data->ttag = req->ttag;
  540. data->command_id = nvme_cid(rq);
  541. data->data_offset = cpu_to_le32(req->h2cdata_offset);
  542. data->data_length = cpu_to_le32(req->pdu_len);
  543. }
  544. static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
  545. struct nvme_tcp_r2t_pdu *pdu)
  546. {
  547. struct nvme_tcp_request *req;
  548. struct request *rq;
  549. u32 r2t_length = le32_to_cpu(pdu->r2t_length);
  550. u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
  551. rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
  552. if (!rq) {
  553. dev_err(queue->ctrl->ctrl.device,
  554. "got bad r2t.command_id %#x on queue %d\n",
  555. pdu->command_id, nvme_tcp_queue_id(queue));
  556. return -ENOENT;
  557. }
  558. req = blk_mq_rq_to_pdu(rq);
  559. if (unlikely(!r2t_length)) {
  560. dev_err(queue->ctrl->ctrl.device,
  561. "req %d r2t len is %u, probably a bug...\n",
  562. rq->tag, r2t_length);
  563. return -EPROTO;
  564. }
  565. if (unlikely(req->data_sent + r2t_length > req->data_len)) {
  566. dev_err(queue->ctrl->ctrl.device,
  567. "req %d r2t len %u exceeded data len %u (%zu sent)\n",
  568. rq->tag, r2t_length, req->data_len, req->data_sent);
  569. return -EPROTO;
  570. }
  571. if (unlikely(r2t_offset < req->data_sent)) {
  572. dev_err(queue->ctrl->ctrl.device,
  573. "req %d unexpected r2t offset %u (expected %zu)\n",
  574. rq->tag, r2t_offset, req->data_sent);
  575. return -EPROTO;
  576. }
  577. req->pdu_len = 0;
  578. req->h2cdata_left = r2t_length;
  579. req->h2cdata_offset = r2t_offset;
  580. req->ttag = pdu->ttag;
  581. nvme_tcp_setup_h2c_data_pdu(req);
  582. nvme_tcp_queue_request(req, false, true);
  583. return 0;
  584. }
  585. static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
  586. unsigned int *offset, size_t *len)
  587. {
  588. struct nvme_tcp_hdr *hdr;
  589. char *pdu = queue->pdu;
  590. size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
  591. int ret;
  592. ret = skb_copy_bits(skb, *offset,
  593. &pdu[queue->pdu_offset], rcv_len);
  594. if (unlikely(ret))
  595. return ret;
  596. queue->pdu_remaining -= rcv_len;
  597. queue->pdu_offset += rcv_len;
  598. *offset += rcv_len;
  599. *len -= rcv_len;
  600. if (queue->pdu_remaining)
  601. return 0;
  602. hdr = queue->pdu;
  603. if (queue->hdr_digest) {
  604. ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
  605. if (unlikely(ret))
  606. return ret;
  607. }
  608. if (queue->data_digest) {
  609. ret = nvme_tcp_check_ddgst(queue, queue->pdu);
  610. if (unlikely(ret))
  611. return ret;
  612. }
  613. switch (hdr->type) {
  614. case nvme_tcp_c2h_data:
  615. return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
  616. case nvme_tcp_rsp:
  617. nvme_tcp_init_recv_ctx(queue);
  618. return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
  619. case nvme_tcp_r2t:
  620. nvme_tcp_init_recv_ctx(queue);
  621. return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
  622. default:
  623. dev_err(queue->ctrl->ctrl.device,
  624. "unsupported pdu type (%d)\n", hdr->type);
  625. return -EINVAL;
  626. }
  627. }
  628. static inline void nvme_tcp_end_request(struct request *rq, u16 status)
  629. {
  630. union nvme_result res = {};
  631. if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
  632. nvme_complete_rq(rq);
  633. }
  634. static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
  635. unsigned int *offset, size_t *len)
  636. {
  637. struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
  638. struct request *rq =
  639. nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
  640. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  641. while (true) {
  642. int recv_len, ret;
  643. recv_len = min_t(size_t, *len, queue->data_remaining);
  644. if (!recv_len)
  645. break;
  646. if (!iov_iter_count(&req->iter)) {
  647. req->curr_bio = req->curr_bio->bi_next;
  648. /*
  649. * If we don`t have any bios it means that controller
  650. * sent more data than we requested, hence error
  651. */
  652. if (!req->curr_bio) {
  653. dev_err(queue->ctrl->ctrl.device,
  654. "queue %d no space in request %#x",
  655. nvme_tcp_queue_id(queue), rq->tag);
  656. nvme_tcp_init_recv_ctx(queue);
  657. return -EIO;
  658. }
  659. nvme_tcp_init_iter(req, ITER_DEST);
  660. }
  661. /* we can read only from what is left in this bio */
  662. recv_len = min_t(size_t, recv_len,
  663. iov_iter_count(&req->iter));
  664. if (queue->data_digest)
  665. ret = skb_copy_and_hash_datagram_iter(skb, *offset,
  666. &req->iter, recv_len, queue->rcv_hash);
  667. else
  668. ret = skb_copy_datagram_iter(skb, *offset,
  669. &req->iter, recv_len);
  670. if (ret) {
  671. dev_err(queue->ctrl->ctrl.device,
  672. "queue %d failed to copy request %#x data",
  673. nvme_tcp_queue_id(queue), rq->tag);
  674. return ret;
  675. }
  676. *len -= recv_len;
  677. *offset += recv_len;
  678. queue->data_remaining -= recv_len;
  679. }
  680. if (!queue->data_remaining) {
  681. if (queue->data_digest) {
  682. nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
  683. queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
  684. } else {
  685. if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
  686. nvme_tcp_end_request(rq,
  687. le16_to_cpu(req->status));
  688. queue->nr_cqe++;
  689. }
  690. nvme_tcp_init_recv_ctx(queue);
  691. }
  692. }
  693. return 0;
  694. }
  695. static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
  696. struct sk_buff *skb, unsigned int *offset, size_t *len)
  697. {
  698. struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
  699. char *ddgst = (char *)&queue->recv_ddgst;
  700. size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
  701. off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
  702. int ret;
  703. ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
  704. if (unlikely(ret))
  705. return ret;
  706. queue->ddgst_remaining -= recv_len;
  707. *offset += recv_len;
  708. *len -= recv_len;
  709. if (queue->ddgst_remaining)
  710. return 0;
  711. if (queue->recv_ddgst != queue->exp_ddgst) {
  712. struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
  713. pdu->command_id);
  714. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  715. req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
  716. dev_err(queue->ctrl->ctrl.device,
  717. "data digest error: recv %#x expected %#x\n",
  718. le32_to_cpu(queue->recv_ddgst),
  719. le32_to_cpu(queue->exp_ddgst));
  720. }
  721. if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
  722. struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
  723. pdu->command_id);
  724. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  725. nvme_tcp_end_request(rq, le16_to_cpu(req->status));
  726. queue->nr_cqe++;
  727. }
  728. nvme_tcp_init_recv_ctx(queue);
  729. return 0;
  730. }
  731. static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
  732. unsigned int offset, size_t len)
  733. {
  734. struct nvme_tcp_queue *queue = desc->arg.data;
  735. size_t consumed = len;
  736. int result;
  737. while (len) {
  738. switch (nvme_tcp_recv_state(queue)) {
  739. case NVME_TCP_RECV_PDU:
  740. result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
  741. break;
  742. case NVME_TCP_RECV_DATA:
  743. result = nvme_tcp_recv_data(queue, skb, &offset, &len);
  744. break;
  745. case NVME_TCP_RECV_DDGST:
  746. result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
  747. break;
  748. default:
  749. result = -EFAULT;
  750. }
  751. if (result) {
  752. dev_err(queue->ctrl->ctrl.device,
  753. "receive failed: %d\n", result);
  754. queue->rd_enabled = false;
  755. nvme_tcp_error_recovery(&queue->ctrl->ctrl);
  756. return result;
  757. }
  758. }
  759. return consumed;
  760. }
  761. static void nvme_tcp_data_ready(struct sock *sk)
  762. {
  763. struct nvme_tcp_queue *queue;
  764. read_lock_bh(&sk->sk_callback_lock);
  765. queue = sk->sk_user_data;
  766. if (likely(queue && queue->rd_enabled) &&
  767. !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
  768. queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
  769. read_unlock_bh(&sk->sk_callback_lock);
  770. }
  771. static void nvme_tcp_write_space(struct sock *sk)
  772. {
  773. struct nvme_tcp_queue *queue;
  774. read_lock_bh(&sk->sk_callback_lock);
  775. queue = sk->sk_user_data;
  776. if (likely(queue && sk_stream_is_writeable(sk))) {
  777. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  778. queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
  779. }
  780. read_unlock_bh(&sk->sk_callback_lock);
  781. }
  782. static void nvme_tcp_state_change(struct sock *sk)
  783. {
  784. struct nvme_tcp_queue *queue;
  785. read_lock_bh(&sk->sk_callback_lock);
  786. queue = sk->sk_user_data;
  787. if (!queue)
  788. goto done;
  789. switch (sk->sk_state) {
  790. case TCP_CLOSE:
  791. case TCP_CLOSE_WAIT:
  792. case TCP_LAST_ACK:
  793. case TCP_FIN_WAIT1:
  794. case TCP_FIN_WAIT2:
  795. nvme_tcp_error_recovery(&queue->ctrl->ctrl);
  796. break;
  797. default:
  798. dev_info(queue->ctrl->ctrl.device,
  799. "queue %d socket state %d\n",
  800. nvme_tcp_queue_id(queue), sk->sk_state);
  801. }
  802. queue->state_change(sk);
  803. done:
  804. read_unlock_bh(&sk->sk_callback_lock);
  805. }
  806. static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
  807. {
  808. queue->request = NULL;
  809. }
  810. static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
  811. {
  812. if (nvme_tcp_async_req(req)) {
  813. union nvme_result res = {};
  814. nvme_complete_async_event(&req->queue->ctrl->ctrl,
  815. cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
  816. } else {
  817. nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
  818. NVME_SC_HOST_PATH_ERROR);
  819. }
  820. }
  821. static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
  822. {
  823. struct nvme_tcp_queue *queue = req->queue;
  824. int req_data_len = req->data_len;
  825. u32 h2cdata_left = req->h2cdata_left;
  826. while (true) {
  827. struct page *page = nvme_tcp_req_cur_page(req);
  828. size_t offset = nvme_tcp_req_cur_offset(req);
  829. size_t len = nvme_tcp_req_cur_length(req);
  830. bool last = nvme_tcp_pdu_last_send(req, len);
  831. int req_data_sent = req->data_sent;
  832. int ret, flags = MSG_DONTWAIT;
  833. if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
  834. flags |= MSG_EOR;
  835. else
  836. flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
  837. if (sendpage_ok(page)) {
  838. ret = kernel_sendpage(queue->sock, page, offset, len,
  839. flags);
  840. } else {
  841. ret = sock_no_sendpage(queue->sock, page, offset, len,
  842. flags);
  843. }
  844. if (ret <= 0)
  845. return ret;
  846. if (queue->data_digest)
  847. nvme_tcp_ddgst_update(queue->snd_hash, page,
  848. offset, ret);
  849. /*
  850. * update the request iterator except for the last payload send
  851. * in the request where we don't want to modify it as we may
  852. * compete with the RX path completing the request.
  853. */
  854. if (req_data_sent + ret < req_data_len)
  855. nvme_tcp_advance_req(req, ret);
  856. /* fully successful last send in current PDU */
  857. if (last && ret == len) {
  858. if (queue->data_digest) {
  859. nvme_tcp_ddgst_final(queue->snd_hash,
  860. &req->ddgst);
  861. req->state = NVME_TCP_SEND_DDGST;
  862. req->offset = 0;
  863. } else {
  864. if (h2cdata_left)
  865. nvme_tcp_setup_h2c_data_pdu(req);
  866. else
  867. nvme_tcp_done_send_req(queue);
  868. }
  869. return 1;
  870. }
  871. }
  872. return -EAGAIN;
  873. }
  874. static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
  875. {
  876. struct nvme_tcp_queue *queue = req->queue;
  877. struct nvme_tcp_cmd_pdu *pdu = req->pdu;
  878. bool inline_data = nvme_tcp_has_inline_data(req);
  879. u8 hdgst = nvme_tcp_hdgst_len(queue);
  880. int len = sizeof(*pdu) + hdgst - req->offset;
  881. int flags = MSG_DONTWAIT;
  882. int ret;
  883. if (inline_data || nvme_tcp_queue_more(queue))
  884. flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
  885. else
  886. flags |= MSG_EOR;
  887. if (queue->hdr_digest && !req->offset)
  888. nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
  889. ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
  890. offset_in_page(pdu) + req->offset, len, flags);
  891. if (unlikely(ret <= 0))
  892. return ret;
  893. len -= ret;
  894. if (!len) {
  895. if (inline_data) {
  896. req->state = NVME_TCP_SEND_DATA;
  897. if (queue->data_digest)
  898. crypto_ahash_init(queue->snd_hash);
  899. } else {
  900. nvme_tcp_done_send_req(queue);
  901. }
  902. return 1;
  903. }
  904. req->offset += ret;
  905. return -EAGAIN;
  906. }
  907. static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
  908. {
  909. struct nvme_tcp_queue *queue = req->queue;
  910. struct nvme_tcp_data_pdu *pdu = req->pdu;
  911. u8 hdgst = nvme_tcp_hdgst_len(queue);
  912. int len = sizeof(*pdu) - req->offset + hdgst;
  913. int ret;
  914. if (queue->hdr_digest && !req->offset)
  915. nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
  916. if (!req->h2cdata_left)
  917. ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
  918. offset_in_page(pdu) + req->offset, len,
  919. MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
  920. else
  921. ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
  922. offset_in_page(pdu) + req->offset, len,
  923. MSG_DONTWAIT | MSG_MORE);
  924. if (unlikely(ret <= 0))
  925. return ret;
  926. len -= ret;
  927. if (!len) {
  928. req->state = NVME_TCP_SEND_DATA;
  929. if (queue->data_digest)
  930. crypto_ahash_init(queue->snd_hash);
  931. return 1;
  932. }
  933. req->offset += ret;
  934. return -EAGAIN;
  935. }
  936. static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
  937. {
  938. struct nvme_tcp_queue *queue = req->queue;
  939. size_t offset = req->offset;
  940. u32 h2cdata_left = req->h2cdata_left;
  941. int ret;
  942. struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
  943. struct kvec iov = {
  944. .iov_base = (u8 *)&req->ddgst + req->offset,
  945. .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
  946. };
  947. if (nvme_tcp_queue_more(queue))
  948. msg.msg_flags |= MSG_MORE;
  949. else
  950. msg.msg_flags |= MSG_EOR;
  951. ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
  952. if (unlikely(ret <= 0))
  953. return ret;
  954. if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
  955. if (h2cdata_left)
  956. nvme_tcp_setup_h2c_data_pdu(req);
  957. else
  958. nvme_tcp_done_send_req(queue);
  959. return 1;
  960. }
  961. req->offset += ret;
  962. return -EAGAIN;
  963. }
  964. static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
  965. {
  966. struct nvme_tcp_request *req;
  967. unsigned int noreclaim_flag;
  968. int ret = 1;
  969. if (!queue->request) {
  970. queue->request = nvme_tcp_fetch_request(queue);
  971. if (!queue->request)
  972. return 0;
  973. }
  974. req = queue->request;
  975. noreclaim_flag = memalloc_noreclaim_save();
  976. if (req->state == NVME_TCP_SEND_CMD_PDU) {
  977. ret = nvme_tcp_try_send_cmd_pdu(req);
  978. if (ret <= 0)
  979. goto done;
  980. if (!nvme_tcp_has_inline_data(req))
  981. goto out;
  982. }
  983. if (req->state == NVME_TCP_SEND_H2C_PDU) {
  984. ret = nvme_tcp_try_send_data_pdu(req);
  985. if (ret <= 0)
  986. goto done;
  987. }
  988. if (req->state == NVME_TCP_SEND_DATA) {
  989. ret = nvme_tcp_try_send_data(req);
  990. if (ret <= 0)
  991. goto done;
  992. }
  993. if (req->state == NVME_TCP_SEND_DDGST)
  994. ret = nvme_tcp_try_send_ddgst(req);
  995. done:
  996. if (ret == -EAGAIN) {
  997. ret = 0;
  998. } else if (ret < 0) {
  999. dev_err(queue->ctrl->ctrl.device,
  1000. "failed to send request %d\n", ret);
  1001. nvme_tcp_fail_request(queue->request);
  1002. nvme_tcp_done_send_req(queue);
  1003. }
  1004. out:
  1005. memalloc_noreclaim_restore(noreclaim_flag);
  1006. return ret;
  1007. }
  1008. static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
  1009. {
  1010. struct socket *sock = queue->sock;
  1011. struct sock *sk = sock->sk;
  1012. read_descriptor_t rd_desc;
  1013. int consumed;
  1014. rd_desc.arg.data = queue;
  1015. rd_desc.count = 1;
  1016. lock_sock(sk);
  1017. queue->nr_cqe = 0;
  1018. consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
  1019. release_sock(sk);
  1020. return consumed;
  1021. }
  1022. static void nvme_tcp_io_work(struct work_struct *w)
  1023. {
  1024. struct nvme_tcp_queue *queue =
  1025. container_of(w, struct nvme_tcp_queue, io_work);
  1026. unsigned long deadline = jiffies + msecs_to_jiffies(1);
  1027. do {
  1028. bool pending = false;
  1029. int result;
  1030. if (mutex_trylock(&queue->send_mutex)) {
  1031. result = nvme_tcp_try_send(queue);
  1032. mutex_unlock(&queue->send_mutex);
  1033. if (result > 0)
  1034. pending = true;
  1035. else if (unlikely(result < 0))
  1036. break;
  1037. }
  1038. result = nvme_tcp_try_recv(queue);
  1039. if (result > 0)
  1040. pending = true;
  1041. else if (unlikely(result < 0))
  1042. return;
  1043. if (!pending || !queue->rd_enabled)
  1044. return;
  1045. } while (!time_after(jiffies, deadline)); /* quota is exhausted */
  1046. queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
  1047. }
  1048. static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
  1049. {
  1050. struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
  1051. ahash_request_free(queue->rcv_hash);
  1052. ahash_request_free(queue->snd_hash);
  1053. crypto_free_ahash(tfm);
  1054. }
  1055. static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
  1056. {
  1057. struct crypto_ahash *tfm;
  1058. tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
  1059. if (IS_ERR(tfm))
  1060. return PTR_ERR(tfm);
  1061. queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
  1062. if (!queue->snd_hash)
  1063. goto free_tfm;
  1064. ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
  1065. queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
  1066. if (!queue->rcv_hash)
  1067. goto free_snd_hash;
  1068. ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
  1069. return 0;
  1070. free_snd_hash:
  1071. ahash_request_free(queue->snd_hash);
  1072. free_tfm:
  1073. crypto_free_ahash(tfm);
  1074. return -ENOMEM;
  1075. }
  1076. static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
  1077. {
  1078. struct nvme_tcp_request *async = &ctrl->async_req;
  1079. page_frag_free(async->pdu);
  1080. }
  1081. static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
  1082. {
  1083. struct nvme_tcp_queue *queue = &ctrl->queues[0];
  1084. struct nvme_tcp_request *async = &ctrl->async_req;
  1085. u8 hdgst = nvme_tcp_hdgst_len(queue);
  1086. async->pdu = page_frag_alloc(&queue->pf_cache,
  1087. sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
  1088. GFP_KERNEL | __GFP_ZERO);
  1089. if (!async->pdu)
  1090. return -ENOMEM;
  1091. async->queue = &ctrl->queues[0];
  1092. return 0;
  1093. }
  1094. static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
  1095. {
  1096. struct page *page;
  1097. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1098. struct nvme_tcp_queue *queue = &ctrl->queues[qid];
  1099. unsigned int noreclaim_flag;
  1100. if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
  1101. return;
  1102. if (queue->hdr_digest || queue->data_digest)
  1103. nvme_tcp_free_crypto(queue);
  1104. if (queue->pf_cache.va) {
  1105. page = virt_to_head_page(queue->pf_cache.va);
  1106. __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
  1107. queue->pf_cache.va = NULL;
  1108. }
  1109. noreclaim_flag = memalloc_noreclaim_save();
  1110. sock_release(queue->sock);
  1111. memalloc_noreclaim_restore(noreclaim_flag);
  1112. kfree(queue->pdu);
  1113. mutex_destroy(&queue->send_mutex);
  1114. mutex_destroy(&queue->queue_lock);
  1115. }
  1116. static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
  1117. {
  1118. struct nvme_tcp_icreq_pdu *icreq;
  1119. struct nvme_tcp_icresp_pdu *icresp;
  1120. struct msghdr msg = {};
  1121. struct kvec iov;
  1122. bool ctrl_hdgst, ctrl_ddgst;
  1123. u32 maxh2cdata;
  1124. int ret;
  1125. icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
  1126. if (!icreq)
  1127. return -ENOMEM;
  1128. icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
  1129. if (!icresp) {
  1130. ret = -ENOMEM;
  1131. goto free_icreq;
  1132. }
  1133. icreq->hdr.type = nvme_tcp_icreq;
  1134. icreq->hdr.hlen = sizeof(*icreq);
  1135. icreq->hdr.pdo = 0;
  1136. icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
  1137. icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
  1138. icreq->maxr2t = 0; /* single inflight r2t supported */
  1139. icreq->hpda = 0; /* no alignment constraint */
  1140. if (queue->hdr_digest)
  1141. icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
  1142. if (queue->data_digest)
  1143. icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
  1144. iov.iov_base = icreq;
  1145. iov.iov_len = sizeof(*icreq);
  1146. ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
  1147. if (ret < 0)
  1148. goto free_icresp;
  1149. memset(&msg, 0, sizeof(msg));
  1150. iov.iov_base = icresp;
  1151. iov.iov_len = sizeof(*icresp);
  1152. ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
  1153. iov.iov_len, msg.msg_flags);
  1154. if (ret < 0)
  1155. goto free_icresp;
  1156. ret = -EINVAL;
  1157. if (icresp->hdr.type != nvme_tcp_icresp) {
  1158. pr_err("queue %d: bad type returned %d\n",
  1159. nvme_tcp_queue_id(queue), icresp->hdr.type);
  1160. goto free_icresp;
  1161. }
  1162. if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
  1163. pr_err("queue %d: bad pdu length returned %d\n",
  1164. nvme_tcp_queue_id(queue), icresp->hdr.plen);
  1165. goto free_icresp;
  1166. }
  1167. if (icresp->pfv != NVME_TCP_PFV_1_0) {
  1168. pr_err("queue %d: bad pfv returned %d\n",
  1169. nvme_tcp_queue_id(queue), icresp->pfv);
  1170. goto free_icresp;
  1171. }
  1172. ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
  1173. if ((queue->data_digest && !ctrl_ddgst) ||
  1174. (!queue->data_digest && ctrl_ddgst)) {
  1175. pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
  1176. nvme_tcp_queue_id(queue),
  1177. queue->data_digest ? "enabled" : "disabled",
  1178. ctrl_ddgst ? "enabled" : "disabled");
  1179. goto free_icresp;
  1180. }
  1181. ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
  1182. if ((queue->hdr_digest && !ctrl_hdgst) ||
  1183. (!queue->hdr_digest && ctrl_hdgst)) {
  1184. pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
  1185. nvme_tcp_queue_id(queue),
  1186. queue->hdr_digest ? "enabled" : "disabled",
  1187. ctrl_hdgst ? "enabled" : "disabled");
  1188. goto free_icresp;
  1189. }
  1190. if (icresp->cpda != 0) {
  1191. pr_err("queue %d: unsupported cpda returned %d\n",
  1192. nvme_tcp_queue_id(queue), icresp->cpda);
  1193. goto free_icresp;
  1194. }
  1195. maxh2cdata = le32_to_cpu(icresp->maxdata);
  1196. if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
  1197. pr_err("queue %d: invalid maxh2cdata returned %u\n",
  1198. nvme_tcp_queue_id(queue), maxh2cdata);
  1199. goto free_icresp;
  1200. }
  1201. queue->maxh2cdata = maxh2cdata;
  1202. ret = 0;
  1203. free_icresp:
  1204. kfree(icresp);
  1205. free_icreq:
  1206. kfree(icreq);
  1207. return ret;
  1208. }
  1209. static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
  1210. {
  1211. return nvme_tcp_queue_id(queue) == 0;
  1212. }
  1213. static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
  1214. {
  1215. struct nvme_tcp_ctrl *ctrl = queue->ctrl;
  1216. int qid = nvme_tcp_queue_id(queue);
  1217. return !nvme_tcp_admin_queue(queue) &&
  1218. qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
  1219. }
  1220. static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
  1221. {
  1222. struct nvme_tcp_ctrl *ctrl = queue->ctrl;
  1223. int qid = nvme_tcp_queue_id(queue);
  1224. return !nvme_tcp_admin_queue(queue) &&
  1225. !nvme_tcp_default_queue(queue) &&
  1226. qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
  1227. ctrl->io_queues[HCTX_TYPE_READ];
  1228. }
  1229. static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
  1230. {
  1231. struct nvme_tcp_ctrl *ctrl = queue->ctrl;
  1232. int qid = nvme_tcp_queue_id(queue);
  1233. return !nvme_tcp_admin_queue(queue) &&
  1234. !nvme_tcp_default_queue(queue) &&
  1235. !nvme_tcp_read_queue(queue) &&
  1236. qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
  1237. ctrl->io_queues[HCTX_TYPE_READ] +
  1238. ctrl->io_queues[HCTX_TYPE_POLL];
  1239. }
  1240. static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
  1241. {
  1242. struct nvme_tcp_ctrl *ctrl = queue->ctrl;
  1243. int qid = nvme_tcp_queue_id(queue);
  1244. int n = 0;
  1245. if (nvme_tcp_default_queue(queue))
  1246. n = qid - 1;
  1247. else if (nvme_tcp_read_queue(queue))
  1248. n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
  1249. else if (nvme_tcp_poll_queue(queue))
  1250. n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
  1251. ctrl->io_queues[HCTX_TYPE_READ] - 1;
  1252. queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
  1253. }
  1254. static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
  1255. {
  1256. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1257. struct nvme_tcp_queue *queue = &ctrl->queues[qid];
  1258. int ret, rcv_pdu_size;
  1259. mutex_init(&queue->queue_lock);
  1260. queue->ctrl = ctrl;
  1261. init_llist_head(&queue->req_list);
  1262. INIT_LIST_HEAD(&queue->send_list);
  1263. mutex_init(&queue->send_mutex);
  1264. INIT_WORK(&queue->io_work, nvme_tcp_io_work);
  1265. if (qid > 0)
  1266. queue->cmnd_capsule_len = nctrl->ioccsz * 16;
  1267. else
  1268. queue->cmnd_capsule_len = sizeof(struct nvme_command) +
  1269. NVME_TCP_ADMIN_CCSZ;
  1270. ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
  1271. IPPROTO_TCP, &queue->sock);
  1272. if (ret) {
  1273. dev_err(nctrl->device,
  1274. "failed to create socket: %d\n", ret);
  1275. goto err_destroy_mutex;
  1276. }
  1277. nvme_tcp_reclassify_socket(queue->sock);
  1278. /* Single syn retry */
  1279. tcp_sock_set_syncnt(queue->sock->sk, 1);
  1280. /* Set TCP no delay */
  1281. tcp_sock_set_nodelay(queue->sock->sk);
  1282. /*
  1283. * Cleanup whatever is sitting in the TCP transmit queue on socket
  1284. * close. This is done to prevent stale data from being sent should
  1285. * the network connection be restored before TCP times out.
  1286. */
  1287. sock_no_linger(queue->sock->sk);
  1288. if (so_priority > 0)
  1289. sock_set_priority(queue->sock->sk, so_priority);
  1290. /* Set socket type of service */
  1291. if (nctrl->opts->tos >= 0)
  1292. ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
  1293. /* Set 10 seconds timeout for icresp recvmsg */
  1294. queue->sock->sk->sk_rcvtimeo = 10 * HZ;
  1295. queue->sock->sk->sk_allocation = GFP_ATOMIC;
  1296. nvme_tcp_set_queue_io_cpu(queue);
  1297. queue->request = NULL;
  1298. queue->data_remaining = 0;
  1299. queue->ddgst_remaining = 0;
  1300. queue->pdu_remaining = 0;
  1301. queue->pdu_offset = 0;
  1302. sk_set_memalloc(queue->sock->sk);
  1303. if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
  1304. ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
  1305. sizeof(ctrl->src_addr));
  1306. if (ret) {
  1307. dev_err(nctrl->device,
  1308. "failed to bind queue %d socket %d\n",
  1309. qid, ret);
  1310. goto err_sock;
  1311. }
  1312. }
  1313. if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
  1314. char *iface = nctrl->opts->host_iface;
  1315. sockptr_t optval = KERNEL_SOCKPTR(iface);
  1316. ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
  1317. optval, strlen(iface));
  1318. if (ret) {
  1319. dev_err(nctrl->device,
  1320. "failed to bind to interface %s queue %d err %d\n",
  1321. iface, qid, ret);
  1322. goto err_sock;
  1323. }
  1324. }
  1325. queue->hdr_digest = nctrl->opts->hdr_digest;
  1326. queue->data_digest = nctrl->opts->data_digest;
  1327. if (queue->hdr_digest || queue->data_digest) {
  1328. ret = nvme_tcp_alloc_crypto(queue);
  1329. if (ret) {
  1330. dev_err(nctrl->device,
  1331. "failed to allocate queue %d crypto\n", qid);
  1332. goto err_sock;
  1333. }
  1334. }
  1335. rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
  1336. nvme_tcp_hdgst_len(queue);
  1337. queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
  1338. if (!queue->pdu) {
  1339. ret = -ENOMEM;
  1340. goto err_crypto;
  1341. }
  1342. dev_dbg(nctrl->device, "connecting queue %d\n",
  1343. nvme_tcp_queue_id(queue));
  1344. ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
  1345. sizeof(ctrl->addr), 0);
  1346. if (ret) {
  1347. dev_err(nctrl->device,
  1348. "failed to connect socket: %d\n", ret);
  1349. goto err_rcv_pdu;
  1350. }
  1351. ret = nvme_tcp_init_connection(queue);
  1352. if (ret)
  1353. goto err_init_connect;
  1354. set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
  1355. return 0;
  1356. err_init_connect:
  1357. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  1358. err_rcv_pdu:
  1359. kfree(queue->pdu);
  1360. err_crypto:
  1361. if (queue->hdr_digest || queue->data_digest)
  1362. nvme_tcp_free_crypto(queue);
  1363. err_sock:
  1364. sock_release(queue->sock);
  1365. queue->sock = NULL;
  1366. err_destroy_mutex:
  1367. mutex_destroy(&queue->send_mutex);
  1368. mutex_destroy(&queue->queue_lock);
  1369. return ret;
  1370. }
  1371. static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
  1372. {
  1373. struct socket *sock = queue->sock;
  1374. write_lock_bh(&sock->sk->sk_callback_lock);
  1375. sock->sk->sk_user_data = NULL;
  1376. sock->sk->sk_data_ready = queue->data_ready;
  1377. sock->sk->sk_state_change = queue->state_change;
  1378. sock->sk->sk_write_space = queue->write_space;
  1379. write_unlock_bh(&sock->sk->sk_callback_lock);
  1380. }
  1381. static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
  1382. {
  1383. kernel_sock_shutdown(queue->sock, SHUT_RDWR);
  1384. nvme_tcp_restore_sock_ops(queue);
  1385. cancel_work_sync(&queue->io_work);
  1386. }
  1387. static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
  1388. {
  1389. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1390. struct nvme_tcp_queue *queue = &ctrl->queues[qid];
  1391. if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
  1392. return;
  1393. mutex_lock(&queue->queue_lock);
  1394. if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
  1395. __nvme_tcp_stop_queue(queue);
  1396. mutex_unlock(&queue->queue_lock);
  1397. }
  1398. static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
  1399. {
  1400. write_lock_bh(&queue->sock->sk->sk_callback_lock);
  1401. queue->sock->sk->sk_user_data = queue;
  1402. queue->state_change = queue->sock->sk->sk_state_change;
  1403. queue->data_ready = queue->sock->sk->sk_data_ready;
  1404. queue->write_space = queue->sock->sk->sk_write_space;
  1405. queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
  1406. queue->sock->sk->sk_state_change = nvme_tcp_state_change;
  1407. queue->sock->sk->sk_write_space = nvme_tcp_write_space;
  1408. #ifdef CONFIG_NET_RX_BUSY_POLL
  1409. queue->sock->sk->sk_ll_usec = 1;
  1410. #endif
  1411. write_unlock_bh(&queue->sock->sk->sk_callback_lock);
  1412. }
  1413. static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
  1414. {
  1415. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1416. struct nvme_tcp_queue *queue = &ctrl->queues[idx];
  1417. int ret;
  1418. queue->rd_enabled = true;
  1419. nvme_tcp_init_recv_ctx(queue);
  1420. nvme_tcp_setup_sock_ops(queue);
  1421. if (idx)
  1422. ret = nvmf_connect_io_queue(nctrl, idx);
  1423. else
  1424. ret = nvmf_connect_admin_queue(nctrl);
  1425. if (!ret) {
  1426. set_bit(NVME_TCP_Q_LIVE, &queue->flags);
  1427. } else {
  1428. if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
  1429. __nvme_tcp_stop_queue(queue);
  1430. dev_err(nctrl->device,
  1431. "failed to connect queue: %d ret=%d\n", idx, ret);
  1432. }
  1433. return ret;
  1434. }
  1435. static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
  1436. {
  1437. if (to_tcp_ctrl(ctrl)->async_req.pdu) {
  1438. cancel_work_sync(&ctrl->async_event_work);
  1439. nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
  1440. to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
  1441. }
  1442. nvme_tcp_free_queue(ctrl, 0);
  1443. }
  1444. static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
  1445. {
  1446. int i;
  1447. for (i = 1; i < ctrl->queue_count; i++)
  1448. nvme_tcp_free_queue(ctrl, i);
  1449. }
  1450. static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
  1451. {
  1452. int i;
  1453. for (i = 1; i < ctrl->queue_count; i++)
  1454. nvme_tcp_stop_queue(ctrl, i);
  1455. }
  1456. static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
  1457. int first, int last)
  1458. {
  1459. int i, ret;
  1460. for (i = first; i < last; i++) {
  1461. ret = nvme_tcp_start_queue(ctrl, i);
  1462. if (ret)
  1463. goto out_stop_queues;
  1464. }
  1465. return 0;
  1466. out_stop_queues:
  1467. for (i--; i >= first; i--)
  1468. nvme_tcp_stop_queue(ctrl, i);
  1469. return ret;
  1470. }
  1471. static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
  1472. {
  1473. int ret;
  1474. ret = nvme_tcp_alloc_queue(ctrl, 0);
  1475. if (ret)
  1476. return ret;
  1477. ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
  1478. if (ret)
  1479. goto out_free_queue;
  1480. return 0;
  1481. out_free_queue:
  1482. nvme_tcp_free_queue(ctrl, 0);
  1483. return ret;
  1484. }
  1485. static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
  1486. {
  1487. int i, ret;
  1488. for (i = 1; i < ctrl->queue_count; i++) {
  1489. ret = nvme_tcp_alloc_queue(ctrl, i);
  1490. if (ret)
  1491. goto out_free_queues;
  1492. }
  1493. return 0;
  1494. out_free_queues:
  1495. for (i--; i >= 1; i--)
  1496. nvme_tcp_free_queue(ctrl, i);
  1497. return ret;
  1498. }
  1499. static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
  1500. {
  1501. unsigned int nr_io_queues;
  1502. nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
  1503. nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
  1504. nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
  1505. return nr_io_queues;
  1506. }
  1507. static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
  1508. unsigned int nr_io_queues)
  1509. {
  1510. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1511. struct nvmf_ctrl_options *opts = nctrl->opts;
  1512. if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
  1513. /*
  1514. * separate read/write queues
  1515. * hand out dedicated default queues only after we have
  1516. * sufficient read queues.
  1517. */
  1518. ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
  1519. nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
  1520. ctrl->io_queues[HCTX_TYPE_DEFAULT] =
  1521. min(opts->nr_write_queues, nr_io_queues);
  1522. nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
  1523. } else {
  1524. /*
  1525. * shared read/write queues
  1526. * either no write queues were requested, or we don't have
  1527. * sufficient queue count to have dedicated default queues.
  1528. */
  1529. ctrl->io_queues[HCTX_TYPE_DEFAULT] =
  1530. min(opts->nr_io_queues, nr_io_queues);
  1531. nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
  1532. }
  1533. if (opts->nr_poll_queues && nr_io_queues) {
  1534. /* map dedicated poll queues only if we have queues left */
  1535. ctrl->io_queues[HCTX_TYPE_POLL] =
  1536. min(opts->nr_poll_queues, nr_io_queues);
  1537. }
  1538. }
  1539. static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
  1540. {
  1541. unsigned int nr_io_queues;
  1542. int ret;
  1543. nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
  1544. ret = nvme_set_queue_count(ctrl, &nr_io_queues);
  1545. if (ret)
  1546. return ret;
  1547. if (nr_io_queues == 0) {
  1548. dev_err(ctrl->device,
  1549. "unable to set any I/O queues\n");
  1550. return -ENOMEM;
  1551. }
  1552. ctrl->queue_count = nr_io_queues + 1;
  1553. dev_info(ctrl->device,
  1554. "creating %d I/O queues.\n", nr_io_queues);
  1555. nvme_tcp_set_io_queues(ctrl, nr_io_queues);
  1556. return __nvme_tcp_alloc_io_queues(ctrl);
  1557. }
  1558. static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
  1559. {
  1560. nvme_tcp_stop_io_queues(ctrl);
  1561. if (remove)
  1562. nvme_remove_io_tag_set(ctrl);
  1563. nvme_tcp_free_io_queues(ctrl);
  1564. }
  1565. static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
  1566. {
  1567. int ret, nr_queues;
  1568. ret = nvme_tcp_alloc_io_queues(ctrl);
  1569. if (ret)
  1570. return ret;
  1571. if (new) {
  1572. ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
  1573. &nvme_tcp_mq_ops,
  1574. ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
  1575. sizeof(struct nvme_tcp_request));
  1576. if (ret)
  1577. goto out_free_io_queues;
  1578. }
  1579. /*
  1580. * Only start IO queues for which we have allocated the tagset
  1581. * and limitted it to the available queues. On reconnects, the
  1582. * queue number might have changed.
  1583. */
  1584. nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
  1585. ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
  1586. if (ret)
  1587. goto out_cleanup_connect_q;
  1588. if (!new) {
  1589. nvme_start_freeze(ctrl);
  1590. nvme_start_queues(ctrl);
  1591. if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
  1592. /*
  1593. * If we timed out waiting for freeze we are likely to
  1594. * be stuck. Fail the controller initialization just
  1595. * to be safe.
  1596. */
  1597. ret = -ENODEV;
  1598. nvme_unfreeze(ctrl);
  1599. goto out_wait_freeze_timed_out;
  1600. }
  1601. blk_mq_update_nr_hw_queues(ctrl->tagset,
  1602. ctrl->queue_count - 1);
  1603. nvme_unfreeze(ctrl);
  1604. }
  1605. /*
  1606. * If the number of queues has increased (reconnect case)
  1607. * start all new queues now.
  1608. */
  1609. ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
  1610. ctrl->tagset->nr_hw_queues + 1);
  1611. if (ret)
  1612. goto out_wait_freeze_timed_out;
  1613. return 0;
  1614. out_wait_freeze_timed_out:
  1615. nvme_stop_queues(ctrl);
  1616. nvme_sync_io_queues(ctrl);
  1617. nvme_tcp_stop_io_queues(ctrl);
  1618. out_cleanup_connect_q:
  1619. nvme_cancel_tagset(ctrl);
  1620. if (new)
  1621. nvme_remove_io_tag_set(ctrl);
  1622. out_free_io_queues:
  1623. nvme_tcp_free_io_queues(ctrl);
  1624. return ret;
  1625. }
  1626. static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
  1627. {
  1628. nvme_tcp_stop_queue(ctrl, 0);
  1629. if (remove)
  1630. nvme_remove_admin_tag_set(ctrl);
  1631. nvme_tcp_free_admin_queue(ctrl);
  1632. }
  1633. static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
  1634. {
  1635. int error;
  1636. error = nvme_tcp_alloc_admin_queue(ctrl);
  1637. if (error)
  1638. return error;
  1639. if (new) {
  1640. error = nvme_alloc_admin_tag_set(ctrl,
  1641. &to_tcp_ctrl(ctrl)->admin_tag_set,
  1642. &nvme_tcp_admin_mq_ops,
  1643. sizeof(struct nvme_tcp_request));
  1644. if (error)
  1645. goto out_free_queue;
  1646. }
  1647. error = nvme_tcp_start_queue(ctrl, 0);
  1648. if (error)
  1649. goto out_cleanup_tagset;
  1650. error = nvme_enable_ctrl(ctrl);
  1651. if (error)
  1652. goto out_stop_queue;
  1653. nvme_start_admin_queue(ctrl);
  1654. error = nvme_init_ctrl_finish(ctrl);
  1655. if (error)
  1656. goto out_quiesce_queue;
  1657. return 0;
  1658. out_quiesce_queue:
  1659. nvme_stop_admin_queue(ctrl);
  1660. blk_sync_queue(ctrl->admin_q);
  1661. out_stop_queue:
  1662. nvme_tcp_stop_queue(ctrl, 0);
  1663. nvme_cancel_admin_tagset(ctrl);
  1664. out_cleanup_tagset:
  1665. if (new)
  1666. nvme_remove_admin_tag_set(ctrl);
  1667. out_free_queue:
  1668. nvme_tcp_free_admin_queue(ctrl);
  1669. return error;
  1670. }
  1671. static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
  1672. bool remove)
  1673. {
  1674. nvme_stop_admin_queue(ctrl);
  1675. blk_sync_queue(ctrl->admin_q);
  1676. nvme_tcp_stop_queue(ctrl, 0);
  1677. nvme_cancel_admin_tagset(ctrl);
  1678. if (remove)
  1679. nvme_start_admin_queue(ctrl);
  1680. nvme_tcp_destroy_admin_queue(ctrl, remove);
  1681. }
  1682. static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
  1683. bool remove)
  1684. {
  1685. if (ctrl->queue_count <= 1)
  1686. return;
  1687. nvme_stop_admin_queue(ctrl);
  1688. nvme_stop_queues(ctrl);
  1689. nvme_sync_io_queues(ctrl);
  1690. nvme_tcp_stop_io_queues(ctrl);
  1691. nvme_cancel_tagset(ctrl);
  1692. if (remove)
  1693. nvme_start_queues(ctrl);
  1694. nvme_tcp_destroy_io_queues(ctrl, remove);
  1695. }
  1696. static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
  1697. {
  1698. /* If we are resetting/deleting then do nothing */
  1699. if (ctrl->state != NVME_CTRL_CONNECTING) {
  1700. WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
  1701. ctrl->state == NVME_CTRL_LIVE);
  1702. return;
  1703. }
  1704. if (nvmf_should_reconnect(ctrl)) {
  1705. dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
  1706. ctrl->opts->reconnect_delay);
  1707. queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
  1708. ctrl->opts->reconnect_delay * HZ);
  1709. } else {
  1710. dev_info(ctrl->device, "Removing controller...\n");
  1711. nvme_delete_ctrl(ctrl);
  1712. }
  1713. }
  1714. static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
  1715. {
  1716. struct nvmf_ctrl_options *opts = ctrl->opts;
  1717. int ret;
  1718. ret = nvme_tcp_configure_admin_queue(ctrl, new);
  1719. if (ret)
  1720. return ret;
  1721. if (ctrl->icdoff) {
  1722. ret = -EOPNOTSUPP;
  1723. dev_err(ctrl->device, "icdoff is not supported!\n");
  1724. goto destroy_admin;
  1725. }
  1726. if (!nvme_ctrl_sgl_supported(ctrl)) {
  1727. ret = -EOPNOTSUPP;
  1728. dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
  1729. goto destroy_admin;
  1730. }
  1731. if (opts->queue_size > ctrl->sqsize + 1)
  1732. dev_warn(ctrl->device,
  1733. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  1734. opts->queue_size, ctrl->sqsize + 1);
  1735. if (ctrl->sqsize + 1 > ctrl->maxcmd) {
  1736. dev_warn(ctrl->device,
  1737. "sqsize %u > ctrl maxcmd %u, clamping down\n",
  1738. ctrl->sqsize + 1, ctrl->maxcmd);
  1739. ctrl->sqsize = ctrl->maxcmd - 1;
  1740. }
  1741. if (ctrl->queue_count > 1) {
  1742. ret = nvme_tcp_configure_io_queues(ctrl, new);
  1743. if (ret)
  1744. goto destroy_admin;
  1745. }
  1746. if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
  1747. /*
  1748. * state change failure is ok if we started ctrl delete,
  1749. * unless we're during creation of a new controller to
  1750. * avoid races with teardown flow.
  1751. */
  1752. WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
  1753. ctrl->state != NVME_CTRL_DELETING_NOIO);
  1754. WARN_ON_ONCE(new);
  1755. ret = -EINVAL;
  1756. goto destroy_io;
  1757. }
  1758. nvme_start_ctrl(ctrl);
  1759. return 0;
  1760. destroy_io:
  1761. if (ctrl->queue_count > 1) {
  1762. nvme_stop_queues(ctrl);
  1763. nvme_sync_io_queues(ctrl);
  1764. nvme_tcp_stop_io_queues(ctrl);
  1765. nvme_cancel_tagset(ctrl);
  1766. nvme_tcp_destroy_io_queues(ctrl, new);
  1767. }
  1768. destroy_admin:
  1769. nvme_stop_admin_queue(ctrl);
  1770. blk_sync_queue(ctrl->admin_q);
  1771. nvme_tcp_stop_queue(ctrl, 0);
  1772. nvme_cancel_admin_tagset(ctrl);
  1773. nvme_tcp_destroy_admin_queue(ctrl, new);
  1774. return ret;
  1775. }
  1776. static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
  1777. {
  1778. struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
  1779. struct nvme_tcp_ctrl, connect_work);
  1780. struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
  1781. ++ctrl->nr_reconnects;
  1782. if (nvme_tcp_setup_ctrl(ctrl, false))
  1783. goto requeue;
  1784. dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
  1785. ctrl->nr_reconnects);
  1786. ctrl->nr_reconnects = 0;
  1787. return;
  1788. requeue:
  1789. dev_info(ctrl->device, "Failed reconnect attempt %d\n",
  1790. ctrl->nr_reconnects);
  1791. nvme_tcp_reconnect_or_remove(ctrl);
  1792. }
  1793. static void nvme_tcp_error_recovery_work(struct work_struct *work)
  1794. {
  1795. struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
  1796. struct nvme_tcp_ctrl, err_work);
  1797. struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
  1798. nvme_stop_keep_alive(ctrl);
  1799. flush_work(&ctrl->async_event_work);
  1800. nvme_tcp_teardown_io_queues(ctrl, false);
  1801. /* unquiesce to fail fast pending requests */
  1802. nvme_start_queues(ctrl);
  1803. nvme_tcp_teardown_admin_queue(ctrl, false);
  1804. nvme_start_admin_queue(ctrl);
  1805. nvme_auth_stop(ctrl);
  1806. if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
  1807. /* state change failure is ok if we started ctrl delete */
  1808. WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
  1809. ctrl->state != NVME_CTRL_DELETING_NOIO);
  1810. return;
  1811. }
  1812. nvme_tcp_reconnect_or_remove(ctrl);
  1813. }
  1814. static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
  1815. {
  1816. nvme_tcp_teardown_io_queues(ctrl, shutdown);
  1817. nvme_stop_admin_queue(ctrl);
  1818. if (shutdown)
  1819. nvme_shutdown_ctrl(ctrl);
  1820. else
  1821. nvme_disable_ctrl(ctrl);
  1822. nvme_tcp_teardown_admin_queue(ctrl, shutdown);
  1823. }
  1824. static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
  1825. {
  1826. nvme_tcp_teardown_ctrl(ctrl, true);
  1827. }
  1828. static void nvme_reset_ctrl_work(struct work_struct *work)
  1829. {
  1830. struct nvme_ctrl *ctrl =
  1831. container_of(work, struct nvme_ctrl, reset_work);
  1832. nvme_stop_ctrl(ctrl);
  1833. nvme_tcp_teardown_ctrl(ctrl, false);
  1834. if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
  1835. /* state change failure is ok if we started ctrl delete */
  1836. WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
  1837. ctrl->state != NVME_CTRL_DELETING_NOIO);
  1838. return;
  1839. }
  1840. if (nvme_tcp_setup_ctrl(ctrl, false))
  1841. goto out_fail;
  1842. return;
  1843. out_fail:
  1844. ++ctrl->nr_reconnects;
  1845. nvme_tcp_reconnect_or_remove(ctrl);
  1846. }
  1847. static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
  1848. {
  1849. flush_work(&to_tcp_ctrl(ctrl)->err_work);
  1850. cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
  1851. }
  1852. static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
  1853. {
  1854. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
  1855. if (list_empty(&ctrl->list))
  1856. goto free_ctrl;
  1857. mutex_lock(&nvme_tcp_ctrl_mutex);
  1858. list_del(&ctrl->list);
  1859. mutex_unlock(&nvme_tcp_ctrl_mutex);
  1860. nvmf_free_options(nctrl->opts);
  1861. free_ctrl:
  1862. kfree(ctrl->queues);
  1863. kfree(ctrl);
  1864. }
  1865. static void nvme_tcp_set_sg_null(struct nvme_command *c)
  1866. {
  1867. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  1868. sg->addr = 0;
  1869. sg->length = 0;
  1870. sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
  1871. NVME_SGL_FMT_TRANSPORT_A;
  1872. }
  1873. static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
  1874. struct nvme_command *c, u32 data_len)
  1875. {
  1876. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  1877. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  1878. sg->length = cpu_to_le32(data_len);
  1879. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  1880. }
  1881. static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
  1882. u32 data_len)
  1883. {
  1884. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  1885. sg->addr = 0;
  1886. sg->length = cpu_to_le32(data_len);
  1887. sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
  1888. NVME_SGL_FMT_TRANSPORT_A;
  1889. }
  1890. static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
  1891. {
  1892. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
  1893. struct nvme_tcp_queue *queue = &ctrl->queues[0];
  1894. struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
  1895. struct nvme_command *cmd = &pdu->cmd;
  1896. u8 hdgst = nvme_tcp_hdgst_len(queue);
  1897. memset(pdu, 0, sizeof(*pdu));
  1898. pdu->hdr.type = nvme_tcp_cmd;
  1899. if (queue->hdr_digest)
  1900. pdu->hdr.flags |= NVME_TCP_F_HDGST;
  1901. pdu->hdr.hlen = sizeof(*pdu);
  1902. pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
  1903. cmd->common.opcode = nvme_admin_async_event;
  1904. cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  1905. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  1906. nvme_tcp_set_sg_null(cmd);
  1907. ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
  1908. ctrl->async_req.offset = 0;
  1909. ctrl->async_req.curr_bio = NULL;
  1910. ctrl->async_req.data_len = 0;
  1911. nvme_tcp_queue_request(&ctrl->async_req, true, true);
  1912. }
  1913. static void nvme_tcp_complete_timed_out(struct request *rq)
  1914. {
  1915. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  1916. struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
  1917. nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
  1918. nvmf_complete_timed_out_request(rq);
  1919. }
  1920. static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
  1921. {
  1922. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  1923. struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
  1924. struct nvme_tcp_cmd_pdu *pdu = req->pdu;
  1925. dev_warn(ctrl->device,
  1926. "queue %d: timeout request %#x type %d\n",
  1927. nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
  1928. if (ctrl->state != NVME_CTRL_LIVE) {
  1929. /*
  1930. * If we are resetting, connecting or deleting we should
  1931. * complete immediately because we may block controller
  1932. * teardown or setup sequence
  1933. * - ctrl disable/shutdown fabrics requests
  1934. * - connect requests
  1935. * - initialization admin requests
  1936. * - I/O requests that entered after unquiescing and
  1937. * the controller stopped responding
  1938. *
  1939. * All other requests should be cancelled by the error
  1940. * recovery work, so it's fine that we fail it here.
  1941. */
  1942. nvme_tcp_complete_timed_out(rq);
  1943. return BLK_EH_DONE;
  1944. }
  1945. /*
  1946. * LIVE state should trigger the normal error recovery which will
  1947. * handle completing this request.
  1948. */
  1949. nvme_tcp_error_recovery(ctrl);
  1950. return BLK_EH_RESET_TIMER;
  1951. }
  1952. static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
  1953. struct request *rq)
  1954. {
  1955. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  1956. struct nvme_tcp_cmd_pdu *pdu = req->pdu;
  1957. struct nvme_command *c = &pdu->cmd;
  1958. c->common.flags |= NVME_CMD_SGL_METABUF;
  1959. if (!blk_rq_nr_phys_segments(rq))
  1960. nvme_tcp_set_sg_null(c);
  1961. else if (rq_data_dir(rq) == WRITE &&
  1962. req->data_len <= nvme_tcp_inline_data_size(req))
  1963. nvme_tcp_set_sg_inline(queue, c, req->data_len);
  1964. else
  1965. nvme_tcp_set_sg_host_data(c, req->data_len);
  1966. return 0;
  1967. }
  1968. static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
  1969. struct request *rq)
  1970. {
  1971. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  1972. struct nvme_tcp_cmd_pdu *pdu = req->pdu;
  1973. struct nvme_tcp_queue *queue = req->queue;
  1974. u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
  1975. blk_status_t ret;
  1976. ret = nvme_setup_cmd(ns, rq);
  1977. if (ret)
  1978. return ret;
  1979. req->state = NVME_TCP_SEND_CMD_PDU;
  1980. req->status = cpu_to_le16(NVME_SC_SUCCESS);
  1981. req->offset = 0;
  1982. req->data_sent = 0;
  1983. req->pdu_len = 0;
  1984. req->pdu_sent = 0;
  1985. req->h2cdata_left = 0;
  1986. req->data_len = blk_rq_nr_phys_segments(rq) ?
  1987. blk_rq_payload_bytes(rq) : 0;
  1988. req->curr_bio = rq->bio;
  1989. if (req->curr_bio && req->data_len)
  1990. nvme_tcp_init_iter(req, rq_data_dir(rq));
  1991. if (rq_data_dir(rq) == WRITE &&
  1992. req->data_len <= nvme_tcp_inline_data_size(req))
  1993. req->pdu_len = req->data_len;
  1994. pdu->hdr.type = nvme_tcp_cmd;
  1995. pdu->hdr.flags = 0;
  1996. if (queue->hdr_digest)
  1997. pdu->hdr.flags |= NVME_TCP_F_HDGST;
  1998. if (queue->data_digest && req->pdu_len) {
  1999. pdu->hdr.flags |= NVME_TCP_F_DDGST;
  2000. ddgst = nvme_tcp_ddgst_len(queue);
  2001. }
  2002. pdu->hdr.hlen = sizeof(*pdu);
  2003. pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
  2004. pdu->hdr.plen =
  2005. cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
  2006. ret = nvme_tcp_map_data(queue, rq);
  2007. if (unlikely(ret)) {
  2008. nvme_cleanup_cmd(rq);
  2009. dev_err(queue->ctrl->ctrl.device,
  2010. "Failed to map data (%d)\n", ret);
  2011. return ret;
  2012. }
  2013. return 0;
  2014. }
  2015. static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
  2016. {
  2017. struct nvme_tcp_queue *queue = hctx->driver_data;
  2018. if (!llist_empty(&queue->req_list))
  2019. queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
  2020. }
  2021. static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
  2022. const struct blk_mq_queue_data *bd)
  2023. {
  2024. struct nvme_ns *ns = hctx->queue->queuedata;
  2025. struct nvme_tcp_queue *queue = hctx->driver_data;
  2026. struct request *rq = bd->rq;
  2027. struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
  2028. bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
  2029. blk_status_t ret;
  2030. if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
  2031. return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
  2032. ret = nvme_tcp_setup_cmd_pdu(ns, rq);
  2033. if (unlikely(ret))
  2034. return ret;
  2035. blk_mq_start_request(rq);
  2036. nvme_tcp_queue_request(req, true, bd->last);
  2037. return BLK_STS_OK;
  2038. }
  2039. static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
  2040. {
  2041. struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
  2042. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  2043. if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
  2044. /* separate read/write queues */
  2045. set->map[HCTX_TYPE_DEFAULT].nr_queues =
  2046. ctrl->io_queues[HCTX_TYPE_DEFAULT];
  2047. set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
  2048. set->map[HCTX_TYPE_READ].nr_queues =
  2049. ctrl->io_queues[HCTX_TYPE_READ];
  2050. set->map[HCTX_TYPE_READ].queue_offset =
  2051. ctrl->io_queues[HCTX_TYPE_DEFAULT];
  2052. } else {
  2053. /* shared read/write queues */
  2054. set->map[HCTX_TYPE_DEFAULT].nr_queues =
  2055. ctrl->io_queues[HCTX_TYPE_DEFAULT];
  2056. set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
  2057. set->map[HCTX_TYPE_READ].nr_queues =
  2058. ctrl->io_queues[HCTX_TYPE_DEFAULT];
  2059. set->map[HCTX_TYPE_READ].queue_offset = 0;
  2060. }
  2061. blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
  2062. blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
  2063. if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
  2064. /* map dedicated poll queues only if we have queues left */
  2065. set->map[HCTX_TYPE_POLL].nr_queues =
  2066. ctrl->io_queues[HCTX_TYPE_POLL];
  2067. set->map[HCTX_TYPE_POLL].queue_offset =
  2068. ctrl->io_queues[HCTX_TYPE_DEFAULT] +
  2069. ctrl->io_queues[HCTX_TYPE_READ];
  2070. blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
  2071. }
  2072. dev_info(ctrl->ctrl.device,
  2073. "mapped %d/%d/%d default/read/poll queues.\n",
  2074. ctrl->io_queues[HCTX_TYPE_DEFAULT],
  2075. ctrl->io_queues[HCTX_TYPE_READ],
  2076. ctrl->io_queues[HCTX_TYPE_POLL]);
  2077. }
  2078. static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
  2079. {
  2080. struct nvme_tcp_queue *queue = hctx->driver_data;
  2081. struct sock *sk = queue->sock->sk;
  2082. if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
  2083. return 0;
  2084. set_bit(NVME_TCP_Q_POLLING, &queue->flags);
  2085. if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
  2086. sk_busy_loop(sk, true);
  2087. nvme_tcp_try_recv(queue);
  2088. clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
  2089. return queue->nr_cqe;
  2090. }
  2091. static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
  2092. {
  2093. struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
  2094. struct sockaddr_storage src_addr;
  2095. int ret, len;
  2096. len = nvmf_get_address(ctrl, buf, size);
  2097. mutex_lock(&queue->queue_lock);
  2098. if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
  2099. goto done;
  2100. ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
  2101. if (ret > 0) {
  2102. if (len > 0)
  2103. len--; /* strip trailing newline */
  2104. len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
  2105. (len) ? "," : "", &src_addr);
  2106. }
  2107. done:
  2108. mutex_unlock(&queue->queue_lock);
  2109. return len;
  2110. }
  2111. static const struct blk_mq_ops nvme_tcp_mq_ops = {
  2112. .queue_rq = nvme_tcp_queue_rq,
  2113. .commit_rqs = nvme_tcp_commit_rqs,
  2114. .complete = nvme_complete_rq,
  2115. .init_request = nvme_tcp_init_request,
  2116. .exit_request = nvme_tcp_exit_request,
  2117. .init_hctx = nvme_tcp_init_hctx,
  2118. .timeout = nvme_tcp_timeout,
  2119. .map_queues = nvme_tcp_map_queues,
  2120. .poll = nvme_tcp_poll,
  2121. };
  2122. static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
  2123. .queue_rq = nvme_tcp_queue_rq,
  2124. .complete = nvme_complete_rq,
  2125. .init_request = nvme_tcp_init_request,
  2126. .exit_request = nvme_tcp_exit_request,
  2127. .init_hctx = nvme_tcp_init_admin_hctx,
  2128. .timeout = nvme_tcp_timeout,
  2129. };
  2130. static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
  2131. .name = "tcp",
  2132. .module = THIS_MODULE,
  2133. .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
  2134. .reg_read32 = nvmf_reg_read32,
  2135. .reg_read64 = nvmf_reg_read64,
  2136. .reg_write32 = nvmf_reg_write32,
  2137. .free_ctrl = nvme_tcp_free_ctrl,
  2138. .submit_async_event = nvme_tcp_submit_async_event,
  2139. .delete_ctrl = nvme_tcp_delete_ctrl,
  2140. .get_address = nvme_tcp_get_address,
  2141. .stop_ctrl = nvme_tcp_stop_ctrl,
  2142. };
  2143. static bool
  2144. nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
  2145. {
  2146. struct nvme_tcp_ctrl *ctrl;
  2147. bool found = false;
  2148. mutex_lock(&nvme_tcp_ctrl_mutex);
  2149. list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
  2150. found = nvmf_ip_options_match(&ctrl->ctrl, opts);
  2151. if (found)
  2152. break;
  2153. }
  2154. mutex_unlock(&nvme_tcp_ctrl_mutex);
  2155. return found;
  2156. }
  2157. static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
  2158. struct nvmf_ctrl_options *opts)
  2159. {
  2160. struct nvme_tcp_ctrl *ctrl;
  2161. int ret;
  2162. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  2163. if (!ctrl)
  2164. return ERR_PTR(-ENOMEM);
  2165. INIT_LIST_HEAD(&ctrl->list);
  2166. ctrl->ctrl.opts = opts;
  2167. ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
  2168. opts->nr_poll_queues + 1;
  2169. ctrl->ctrl.sqsize = opts->queue_size - 1;
  2170. ctrl->ctrl.kato = opts->kato;
  2171. INIT_DELAYED_WORK(&ctrl->connect_work,
  2172. nvme_tcp_reconnect_ctrl_work);
  2173. INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
  2174. INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
  2175. if (!(opts->mask & NVMF_OPT_TRSVCID)) {
  2176. opts->trsvcid =
  2177. kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
  2178. if (!opts->trsvcid) {
  2179. ret = -ENOMEM;
  2180. goto out_free_ctrl;
  2181. }
  2182. opts->mask |= NVMF_OPT_TRSVCID;
  2183. }
  2184. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  2185. opts->traddr, opts->trsvcid, &ctrl->addr);
  2186. if (ret) {
  2187. pr_err("malformed address passed: %s:%s\n",
  2188. opts->traddr, opts->trsvcid);
  2189. goto out_free_ctrl;
  2190. }
  2191. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  2192. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  2193. opts->host_traddr, NULL, &ctrl->src_addr);
  2194. if (ret) {
  2195. pr_err("malformed src address passed: %s\n",
  2196. opts->host_traddr);
  2197. goto out_free_ctrl;
  2198. }
  2199. }
  2200. if (opts->mask & NVMF_OPT_HOST_IFACE) {
  2201. if (!__dev_get_by_name(&init_net, opts->host_iface)) {
  2202. pr_err("invalid interface passed: %s\n",
  2203. opts->host_iface);
  2204. ret = -ENODEV;
  2205. goto out_free_ctrl;
  2206. }
  2207. }
  2208. if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
  2209. ret = -EALREADY;
  2210. goto out_free_ctrl;
  2211. }
  2212. ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
  2213. GFP_KERNEL);
  2214. if (!ctrl->queues) {
  2215. ret = -ENOMEM;
  2216. goto out_free_ctrl;
  2217. }
  2218. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
  2219. if (ret)
  2220. goto out_kfree_queues;
  2221. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  2222. WARN_ON_ONCE(1);
  2223. ret = -EINTR;
  2224. goto out_uninit_ctrl;
  2225. }
  2226. ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
  2227. if (ret)
  2228. goto out_uninit_ctrl;
  2229. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
  2230. nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
  2231. mutex_lock(&nvme_tcp_ctrl_mutex);
  2232. list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
  2233. mutex_unlock(&nvme_tcp_ctrl_mutex);
  2234. return &ctrl->ctrl;
  2235. out_uninit_ctrl:
  2236. nvme_uninit_ctrl(&ctrl->ctrl);
  2237. nvme_put_ctrl(&ctrl->ctrl);
  2238. if (ret > 0)
  2239. ret = -EIO;
  2240. return ERR_PTR(ret);
  2241. out_kfree_queues:
  2242. kfree(ctrl->queues);
  2243. out_free_ctrl:
  2244. kfree(ctrl);
  2245. return ERR_PTR(ret);
  2246. }
  2247. static struct nvmf_transport_ops nvme_tcp_transport = {
  2248. .name = "tcp",
  2249. .module = THIS_MODULE,
  2250. .required_opts = NVMF_OPT_TRADDR,
  2251. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  2252. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
  2253. NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
  2254. NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
  2255. NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
  2256. .create_ctrl = nvme_tcp_create_ctrl,
  2257. };
  2258. static int __init nvme_tcp_init_module(void)
  2259. {
  2260. nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
  2261. WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
  2262. if (!nvme_tcp_wq)
  2263. return -ENOMEM;
  2264. nvmf_register_transport(&nvme_tcp_transport);
  2265. return 0;
  2266. }
  2267. static void __exit nvme_tcp_cleanup_module(void)
  2268. {
  2269. struct nvme_tcp_ctrl *ctrl;
  2270. nvmf_unregister_transport(&nvme_tcp_transport);
  2271. mutex_lock(&nvme_tcp_ctrl_mutex);
  2272. list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
  2273. nvme_delete_ctrl(&ctrl->ctrl);
  2274. mutex_unlock(&nvme_tcp_ctrl_mutex);
  2275. flush_workqueue(nvme_delete_wq);
  2276. destroy_workqueue(nvme_tcp_wq);
  2277. }
  2278. module_init(nvme_tcp_init_module);
  2279. module_exit(nvme_tcp_cleanup_module);
  2280. MODULE_LICENSE("GPL v2");