ioctl.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. * Copyright (c) 2017-2021 Christoph Hellwig.
  5. */
  6. #include <linux/ptrace.h> /* for force_successful_syscall_return */
  7. #include <linux/nvme_ioctl.h>
  8. #include <linux/io_uring.h>
  9. #include "nvme.h"
  10. /*
  11. * Convert integer values from ioctl structures to user pointers, silently
  12. * ignoring the upper bits in the compat case to match behaviour of 32-bit
  13. * kernels.
  14. */
  15. static void __user *nvme_to_user_ptr(uintptr_t ptrval)
  16. {
  17. if (in_compat_syscall())
  18. ptrval = (compat_uptr_t)ptrval;
  19. return (void __user *)ptrval;
  20. }
  21. static void *nvme_add_user_metadata(struct request *req, void __user *ubuf,
  22. unsigned len, u32 seed)
  23. {
  24. struct bio_integrity_payload *bip;
  25. int ret = -ENOMEM;
  26. void *buf;
  27. struct bio *bio = req->bio;
  28. buf = kmalloc(len, GFP_KERNEL);
  29. if (!buf)
  30. goto out;
  31. if (req_op(req) == REQ_OP_DRV_OUT) {
  32. ret = -EFAULT;
  33. if (copy_from_user(buf, ubuf, len))
  34. goto out_free_meta;
  35. } else {
  36. memset(buf, 0, len);
  37. }
  38. bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
  39. if (IS_ERR(bip)) {
  40. ret = PTR_ERR(bip);
  41. goto out_free_meta;
  42. }
  43. bip->bip_iter.bi_size = len;
  44. bip->bip_iter.bi_sector = seed;
  45. ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
  46. offset_in_page(buf));
  47. if (ret != len) {
  48. ret = -ENOMEM;
  49. goto out_free_meta;
  50. }
  51. req->cmd_flags |= REQ_INTEGRITY;
  52. return buf;
  53. out_free_meta:
  54. kfree(buf);
  55. out:
  56. return ERR_PTR(ret);
  57. }
  58. static int nvme_finish_user_metadata(struct request *req, void __user *ubuf,
  59. void *meta, unsigned len, int ret)
  60. {
  61. if (!ret && req_op(req) == REQ_OP_DRV_IN &&
  62. copy_to_user(ubuf, meta, len))
  63. ret = -EFAULT;
  64. kfree(meta);
  65. return ret;
  66. }
  67. static struct request *nvme_alloc_user_request(struct request_queue *q,
  68. struct nvme_command *cmd, blk_opf_t rq_flags,
  69. blk_mq_req_flags_t blk_flags)
  70. {
  71. struct request *req;
  72. req = blk_mq_alloc_request(q, nvme_req_op(cmd) | rq_flags, blk_flags);
  73. if (IS_ERR(req))
  74. return req;
  75. nvme_init_request(req, cmd);
  76. nvme_req(req)->flags |= NVME_REQ_USERCMD;
  77. return req;
  78. }
  79. static int nvme_map_user_request(struct request *req, u64 ubuffer,
  80. unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
  81. u32 meta_seed, void **metap, struct io_uring_cmd *ioucmd,
  82. bool vec)
  83. {
  84. struct request_queue *q = req->q;
  85. struct nvme_ns *ns = q->queuedata;
  86. struct block_device *bdev = ns ? ns->disk->part0 : NULL;
  87. struct bio *bio = NULL;
  88. void *meta = NULL;
  89. int ret;
  90. if (ioucmd && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
  91. struct iov_iter iter;
  92. /* fixedbufs is only for non-vectored io */
  93. if (WARN_ON_ONCE(vec))
  94. return -EINVAL;
  95. ret = io_uring_cmd_import_fixed(ubuffer, bufflen,
  96. rq_data_dir(req), &iter, ioucmd);
  97. if (ret < 0)
  98. goto out;
  99. ret = blk_rq_map_user_iov(q, req, NULL, &iter, GFP_KERNEL);
  100. } else {
  101. ret = blk_rq_map_user_io(req, NULL, nvme_to_user_ptr(ubuffer),
  102. bufflen, GFP_KERNEL, vec, 0, 0,
  103. rq_data_dir(req));
  104. }
  105. if (ret)
  106. goto out;
  107. bio = req->bio;
  108. if (bdev)
  109. bio_set_dev(bio, bdev);
  110. if (bdev && meta_buffer && meta_len) {
  111. meta = nvme_add_user_metadata(req, meta_buffer, meta_len,
  112. meta_seed);
  113. if (IS_ERR(meta)) {
  114. ret = PTR_ERR(meta);
  115. goto out_unmap;
  116. }
  117. *metap = meta;
  118. }
  119. return ret;
  120. out_unmap:
  121. if (bio)
  122. blk_rq_unmap_user(bio);
  123. out:
  124. blk_mq_free_request(req);
  125. return ret;
  126. }
  127. static int nvme_submit_user_cmd(struct request_queue *q,
  128. struct nvme_command *cmd, u64 ubuffer,
  129. unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
  130. u32 meta_seed, u64 *result, unsigned timeout, bool vec)
  131. {
  132. struct nvme_ctrl *ctrl;
  133. struct request *req;
  134. void *meta = NULL;
  135. struct bio *bio;
  136. u32 effects;
  137. int ret;
  138. req = nvme_alloc_user_request(q, cmd, 0, 0);
  139. if (IS_ERR(req))
  140. return PTR_ERR(req);
  141. req->timeout = timeout;
  142. if (ubuffer && bufflen) {
  143. ret = nvme_map_user_request(req, ubuffer, bufflen, meta_buffer,
  144. meta_len, meta_seed, &meta, NULL, vec);
  145. if (ret)
  146. return ret;
  147. }
  148. bio = req->bio;
  149. ctrl = nvme_req(req)->ctrl;
  150. ret = nvme_execute_passthru_rq(req, &effects);
  151. if (result)
  152. *result = le64_to_cpu(nvme_req(req)->result.u64);
  153. if (meta)
  154. ret = nvme_finish_user_metadata(req, meta_buffer, meta,
  155. meta_len, ret);
  156. if (bio)
  157. blk_rq_unmap_user(bio);
  158. blk_mq_free_request(req);
  159. if (effects)
  160. nvme_passthru_end(ctrl, effects, cmd, ret);
  161. return ret;
  162. }
  163. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  164. {
  165. struct nvme_user_io io;
  166. struct nvme_command c;
  167. unsigned length, meta_len;
  168. void __user *metadata;
  169. if (copy_from_user(&io, uio, sizeof(io)))
  170. return -EFAULT;
  171. if (io.flags)
  172. return -EINVAL;
  173. switch (io.opcode) {
  174. case nvme_cmd_write:
  175. case nvme_cmd_read:
  176. case nvme_cmd_compare:
  177. break;
  178. default:
  179. return -EINVAL;
  180. }
  181. length = (io.nblocks + 1) << ns->lba_shift;
  182. if ((io.control & NVME_RW_PRINFO_PRACT) &&
  183. ns->ms == sizeof(struct t10_pi_tuple)) {
  184. /*
  185. * Protection information is stripped/inserted by the
  186. * controller.
  187. */
  188. if (nvme_to_user_ptr(io.metadata))
  189. return -EINVAL;
  190. meta_len = 0;
  191. metadata = NULL;
  192. } else {
  193. meta_len = (io.nblocks + 1) * ns->ms;
  194. metadata = nvme_to_user_ptr(io.metadata);
  195. }
  196. if (ns->features & NVME_NS_EXT_LBAS) {
  197. length += meta_len;
  198. meta_len = 0;
  199. } else if (meta_len) {
  200. if ((io.metadata & 3) || !io.metadata)
  201. return -EINVAL;
  202. }
  203. memset(&c, 0, sizeof(c));
  204. c.rw.opcode = io.opcode;
  205. c.rw.flags = io.flags;
  206. c.rw.nsid = cpu_to_le32(ns->head->ns_id);
  207. c.rw.slba = cpu_to_le64(io.slba);
  208. c.rw.length = cpu_to_le16(io.nblocks);
  209. c.rw.control = cpu_to_le16(io.control);
  210. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  211. c.rw.reftag = cpu_to_le32(io.reftag);
  212. c.rw.apptag = cpu_to_le16(io.apptag);
  213. c.rw.appmask = cpu_to_le16(io.appmask);
  214. return nvme_submit_user_cmd(ns->queue, &c,
  215. io.addr, length,
  216. metadata, meta_len, lower_32_bits(io.slba), NULL, 0,
  217. false);
  218. }
  219. static bool nvme_validate_passthru_nsid(struct nvme_ctrl *ctrl,
  220. struct nvme_ns *ns, __u32 nsid)
  221. {
  222. if (ns && nsid != ns->head->ns_id) {
  223. dev_err(ctrl->device,
  224. "%s: nsid (%u) in cmd does not match nsid (%u)"
  225. "of namespace\n",
  226. current->comm, nsid, ns->head->ns_id);
  227. return false;
  228. }
  229. return true;
  230. }
  231. static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
  232. struct nvme_passthru_cmd __user *ucmd)
  233. {
  234. struct nvme_passthru_cmd cmd;
  235. struct nvme_command c;
  236. unsigned timeout = 0;
  237. u64 result;
  238. int status;
  239. if (!capable(CAP_SYS_ADMIN))
  240. return -EACCES;
  241. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  242. return -EFAULT;
  243. if (cmd.flags)
  244. return -EINVAL;
  245. if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
  246. return -EINVAL;
  247. memset(&c, 0, sizeof(c));
  248. c.common.opcode = cmd.opcode;
  249. c.common.flags = cmd.flags;
  250. c.common.nsid = cpu_to_le32(cmd.nsid);
  251. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  252. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  253. c.common.cdw10 = cpu_to_le32(cmd.cdw10);
  254. c.common.cdw11 = cpu_to_le32(cmd.cdw11);
  255. c.common.cdw12 = cpu_to_le32(cmd.cdw12);
  256. c.common.cdw13 = cpu_to_le32(cmd.cdw13);
  257. c.common.cdw14 = cpu_to_le32(cmd.cdw14);
  258. c.common.cdw15 = cpu_to_le32(cmd.cdw15);
  259. if (cmd.timeout_ms)
  260. timeout = msecs_to_jiffies(cmd.timeout_ms);
  261. status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
  262. cmd.addr, cmd.data_len,
  263. nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
  264. 0, &result, timeout, false);
  265. if (status >= 0) {
  266. if (put_user(result, &ucmd->result))
  267. return -EFAULT;
  268. }
  269. return status;
  270. }
  271. static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
  272. struct nvme_passthru_cmd64 __user *ucmd, bool vec)
  273. {
  274. struct nvme_passthru_cmd64 cmd;
  275. struct nvme_command c;
  276. unsigned timeout = 0;
  277. int status;
  278. if (!capable(CAP_SYS_ADMIN))
  279. return -EACCES;
  280. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  281. return -EFAULT;
  282. if (cmd.flags)
  283. return -EINVAL;
  284. if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
  285. return -EINVAL;
  286. memset(&c, 0, sizeof(c));
  287. c.common.opcode = cmd.opcode;
  288. c.common.flags = cmd.flags;
  289. c.common.nsid = cpu_to_le32(cmd.nsid);
  290. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  291. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  292. c.common.cdw10 = cpu_to_le32(cmd.cdw10);
  293. c.common.cdw11 = cpu_to_le32(cmd.cdw11);
  294. c.common.cdw12 = cpu_to_le32(cmd.cdw12);
  295. c.common.cdw13 = cpu_to_le32(cmd.cdw13);
  296. c.common.cdw14 = cpu_to_le32(cmd.cdw14);
  297. c.common.cdw15 = cpu_to_le32(cmd.cdw15);
  298. if (cmd.timeout_ms)
  299. timeout = msecs_to_jiffies(cmd.timeout_ms);
  300. status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
  301. cmd.addr, cmd.data_len,
  302. nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
  303. 0, &cmd.result, timeout, vec);
  304. if (status >= 0) {
  305. if (put_user(cmd.result, &ucmd->result))
  306. return -EFAULT;
  307. }
  308. return status;
  309. }
  310. struct nvme_uring_data {
  311. __u64 metadata;
  312. __u64 addr;
  313. __u32 data_len;
  314. __u32 metadata_len;
  315. __u32 timeout_ms;
  316. };
  317. /*
  318. * This overlays struct io_uring_cmd pdu.
  319. * Expect build errors if this grows larger than that.
  320. */
  321. struct nvme_uring_cmd_pdu {
  322. union {
  323. struct bio *bio;
  324. struct request *req;
  325. };
  326. u32 meta_len;
  327. u32 nvme_status;
  328. union {
  329. struct {
  330. void *meta; /* kernel-resident buffer */
  331. void __user *meta_buffer;
  332. };
  333. u64 result;
  334. } u;
  335. };
  336. static inline struct nvme_uring_cmd_pdu *nvme_uring_cmd_pdu(
  337. struct io_uring_cmd *ioucmd)
  338. {
  339. return (struct nvme_uring_cmd_pdu *)&ioucmd->pdu;
  340. }
  341. static void nvme_uring_task_meta_cb(struct io_uring_cmd *ioucmd,
  342. unsigned issue_flags)
  343. {
  344. struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
  345. struct request *req = pdu->req;
  346. int status;
  347. u64 result;
  348. if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
  349. status = -EINTR;
  350. else
  351. status = nvme_req(req)->status;
  352. result = le64_to_cpu(nvme_req(req)->result.u64);
  353. if (pdu->meta_len)
  354. status = nvme_finish_user_metadata(req, pdu->u.meta_buffer,
  355. pdu->u.meta, pdu->meta_len, status);
  356. if (req->bio)
  357. blk_rq_unmap_user(req->bio);
  358. blk_mq_free_request(req);
  359. io_uring_cmd_done(ioucmd, status, result, issue_flags);
  360. }
  361. static void nvme_uring_task_cb(struct io_uring_cmd *ioucmd,
  362. unsigned issue_flags)
  363. {
  364. struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
  365. if (pdu->bio)
  366. blk_rq_unmap_user(pdu->bio);
  367. io_uring_cmd_done(ioucmd, pdu->nvme_status, pdu->u.result, issue_flags);
  368. }
  369. static enum rq_end_io_ret nvme_uring_cmd_end_io(struct request *req,
  370. blk_status_t err)
  371. {
  372. struct io_uring_cmd *ioucmd = req->end_io_data;
  373. struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
  374. void *cookie = READ_ONCE(ioucmd->cookie);
  375. req->bio = pdu->bio;
  376. if (nvme_req(req)->flags & NVME_REQ_CANCELLED) {
  377. pdu->nvme_status = -EINTR;
  378. } else {
  379. pdu->nvme_status = nvme_req(req)->status;
  380. if (!pdu->nvme_status)
  381. pdu->nvme_status = blk_status_to_errno(err);
  382. }
  383. pdu->u.result = le64_to_cpu(nvme_req(req)->result.u64);
  384. /*
  385. * For iopoll, complete it directly.
  386. * Otherwise, move the completion to task work.
  387. */
  388. if (cookie != NULL && blk_rq_is_poll(req))
  389. nvme_uring_task_cb(ioucmd, IO_URING_F_UNLOCKED);
  390. else
  391. io_uring_cmd_complete_in_task(ioucmd, nvme_uring_task_cb);
  392. return RQ_END_IO_FREE;
  393. }
  394. static enum rq_end_io_ret nvme_uring_cmd_end_io_meta(struct request *req,
  395. blk_status_t err)
  396. {
  397. struct io_uring_cmd *ioucmd = req->end_io_data;
  398. struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
  399. void *cookie = READ_ONCE(ioucmd->cookie);
  400. req->bio = pdu->bio;
  401. pdu->req = req;
  402. /*
  403. * For iopoll, complete it directly.
  404. * Otherwise, move the completion to task work.
  405. */
  406. if (cookie != NULL && blk_rq_is_poll(req))
  407. nvme_uring_task_meta_cb(ioucmd, IO_URING_F_UNLOCKED);
  408. else
  409. io_uring_cmd_complete_in_task(ioucmd, nvme_uring_task_meta_cb);
  410. return RQ_END_IO_NONE;
  411. }
  412. static int nvme_uring_cmd_io(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
  413. struct io_uring_cmd *ioucmd, unsigned int issue_flags, bool vec)
  414. {
  415. struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
  416. const struct nvme_uring_cmd *cmd = ioucmd->cmd;
  417. struct request_queue *q = ns ? ns->queue : ctrl->admin_q;
  418. struct nvme_uring_data d;
  419. struct nvme_command c;
  420. struct request *req;
  421. blk_opf_t rq_flags = 0;
  422. blk_mq_req_flags_t blk_flags = 0;
  423. void *meta = NULL;
  424. int ret;
  425. if (!capable(CAP_SYS_ADMIN))
  426. return -EACCES;
  427. c.common.opcode = READ_ONCE(cmd->opcode);
  428. c.common.flags = READ_ONCE(cmd->flags);
  429. if (c.common.flags)
  430. return -EINVAL;
  431. c.common.command_id = 0;
  432. c.common.nsid = cpu_to_le32(cmd->nsid);
  433. if (!nvme_validate_passthru_nsid(ctrl, ns, le32_to_cpu(c.common.nsid)))
  434. return -EINVAL;
  435. c.common.cdw2[0] = cpu_to_le32(READ_ONCE(cmd->cdw2));
  436. c.common.cdw2[1] = cpu_to_le32(READ_ONCE(cmd->cdw3));
  437. c.common.metadata = 0;
  438. c.common.dptr.prp1 = c.common.dptr.prp2 = 0;
  439. c.common.cdw10 = cpu_to_le32(READ_ONCE(cmd->cdw10));
  440. c.common.cdw11 = cpu_to_le32(READ_ONCE(cmd->cdw11));
  441. c.common.cdw12 = cpu_to_le32(READ_ONCE(cmd->cdw12));
  442. c.common.cdw13 = cpu_to_le32(READ_ONCE(cmd->cdw13));
  443. c.common.cdw14 = cpu_to_le32(READ_ONCE(cmd->cdw14));
  444. c.common.cdw15 = cpu_to_le32(READ_ONCE(cmd->cdw15));
  445. d.metadata = READ_ONCE(cmd->metadata);
  446. d.addr = READ_ONCE(cmd->addr);
  447. d.data_len = READ_ONCE(cmd->data_len);
  448. d.metadata_len = READ_ONCE(cmd->metadata_len);
  449. d.timeout_ms = READ_ONCE(cmd->timeout_ms);
  450. if (issue_flags & IO_URING_F_NONBLOCK) {
  451. rq_flags = REQ_NOWAIT;
  452. blk_flags = BLK_MQ_REQ_NOWAIT;
  453. }
  454. if (issue_flags & IO_URING_F_IOPOLL)
  455. rq_flags |= REQ_POLLED;
  456. retry:
  457. req = nvme_alloc_user_request(q, &c, rq_flags, blk_flags);
  458. if (IS_ERR(req))
  459. return PTR_ERR(req);
  460. req->timeout = d.timeout_ms ? msecs_to_jiffies(d.timeout_ms) : 0;
  461. if (d.addr && d.data_len) {
  462. ret = nvme_map_user_request(req, d.addr,
  463. d.data_len, nvme_to_user_ptr(d.metadata),
  464. d.metadata_len, 0, &meta, ioucmd, vec);
  465. if (ret)
  466. return ret;
  467. }
  468. if (issue_flags & IO_URING_F_IOPOLL && rq_flags & REQ_POLLED) {
  469. if (unlikely(!req->bio)) {
  470. /* we can't poll this, so alloc regular req instead */
  471. blk_mq_free_request(req);
  472. rq_flags &= ~REQ_POLLED;
  473. goto retry;
  474. } else {
  475. WRITE_ONCE(ioucmd->cookie, req->bio);
  476. req->bio->bi_opf |= REQ_POLLED;
  477. }
  478. }
  479. /* to free bio on completion, as req->bio will be null at that time */
  480. pdu->bio = req->bio;
  481. pdu->meta_len = d.metadata_len;
  482. req->end_io_data = ioucmd;
  483. if (pdu->meta_len) {
  484. pdu->u.meta = meta;
  485. pdu->u.meta_buffer = nvme_to_user_ptr(d.metadata);
  486. req->end_io = nvme_uring_cmd_end_io_meta;
  487. } else {
  488. req->end_io = nvme_uring_cmd_end_io;
  489. }
  490. blk_execute_rq_nowait(req, false);
  491. return -EIOCBQUEUED;
  492. }
  493. static bool is_ctrl_ioctl(unsigned int cmd)
  494. {
  495. if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
  496. return true;
  497. if (is_sed_ioctl(cmd))
  498. return true;
  499. return false;
  500. }
  501. static int nvme_ctrl_ioctl(struct nvme_ctrl *ctrl, unsigned int cmd,
  502. void __user *argp)
  503. {
  504. switch (cmd) {
  505. case NVME_IOCTL_ADMIN_CMD:
  506. return nvme_user_cmd(ctrl, NULL, argp);
  507. case NVME_IOCTL_ADMIN64_CMD:
  508. return nvme_user_cmd64(ctrl, NULL, argp, false);
  509. default:
  510. return sed_ioctl(ctrl->opal_dev, cmd, argp);
  511. }
  512. }
  513. #ifdef COMPAT_FOR_U64_ALIGNMENT
  514. struct nvme_user_io32 {
  515. __u8 opcode;
  516. __u8 flags;
  517. __u16 control;
  518. __u16 nblocks;
  519. __u16 rsvd;
  520. __u64 metadata;
  521. __u64 addr;
  522. __u64 slba;
  523. __u32 dsmgmt;
  524. __u32 reftag;
  525. __u16 apptag;
  526. __u16 appmask;
  527. } __attribute__((__packed__));
  528. #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
  529. #endif /* COMPAT_FOR_U64_ALIGNMENT */
  530. static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned int cmd,
  531. void __user *argp)
  532. {
  533. switch (cmd) {
  534. case NVME_IOCTL_ID:
  535. force_successful_syscall_return();
  536. return ns->head->ns_id;
  537. case NVME_IOCTL_IO_CMD:
  538. return nvme_user_cmd(ns->ctrl, ns, argp);
  539. /*
  540. * struct nvme_user_io can have different padding on some 32-bit ABIs.
  541. * Just accept the compat version as all fields that are used are the
  542. * same size and at the same offset.
  543. */
  544. #ifdef COMPAT_FOR_U64_ALIGNMENT
  545. case NVME_IOCTL_SUBMIT_IO32:
  546. #endif
  547. case NVME_IOCTL_SUBMIT_IO:
  548. return nvme_submit_io(ns, argp);
  549. case NVME_IOCTL_IO64_CMD:
  550. return nvme_user_cmd64(ns->ctrl, ns, argp, false);
  551. case NVME_IOCTL_IO64_CMD_VEC:
  552. return nvme_user_cmd64(ns->ctrl, ns, argp, true);
  553. default:
  554. return -ENOTTY;
  555. }
  556. }
  557. static int __nvme_ioctl(struct nvme_ns *ns, unsigned int cmd, void __user *arg)
  558. {
  559. if (is_ctrl_ioctl(cmd))
  560. return nvme_ctrl_ioctl(ns->ctrl, cmd, arg);
  561. return nvme_ns_ioctl(ns, cmd, arg);
  562. }
  563. int nvme_ioctl(struct block_device *bdev, fmode_t mode,
  564. unsigned int cmd, unsigned long arg)
  565. {
  566. struct nvme_ns *ns = bdev->bd_disk->private_data;
  567. return __nvme_ioctl(ns, cmd, (void __user *)arg);
  568. }
  569. long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  570. {
  571. struct nvme_ns *ns =
  572. container_of(file_inode(file)->i_cdev, struct nvme_ns, cdev);
  573. return __nvme_ioctl(ns, cmd, (void __user *)arg);
  574. }
  575. static int nvme_uring_cmd_checks(unsigned int issue_flags)
  576. {
  577. /* NVMe passthrough requires big SQE/CQE support */
  578. if ((issue_flags & (IO_URING_F_SQE128|IO_URING_F_CQE32)) !=
  579. (IO_URING_F_SQE128|IO_URING_F_CQE32))
  580. return -EOPNOTSUPP;
  581. return 0;
  582. }
  583. static int nvme_ns_uring_cmd(struct nvme_ns *ns, struct io_uring_cmd *ioucmd,
  584. unsigned int issue_flags)
  585. {
  586. struct nvme_ctrl *ctrl = ns->ctrl;
  587. int ret;
  588. BUILD_BUG_ON(sizeof(struct nvme_uring_cmd_pdu) > sizeof(ioucmd->pdu));
  589. ret = nvme_uring_cmd_checks(issue_flags);
  590. if (ret)
  591. return ret;
  592. switch (ioucmd->cmd_op) {
  593. case NVME_URING_CMD_IO:
  594. ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, false);
  595. break;
  596. case NVME_URING_CMD_IO_VEC:
  597. ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, true);
  598. break;
  599. default:
  600. ret = -ENOTTY;
  601. }
  602. return ret;
  603. }
  604. int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
  605. {
  606. struct nvme_ns *ns = container_of(file_inode(ioucmd->file)->i_cdev,
  607. struct nvme_ns, cdev);
  608. return nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
  609. }
  610. int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
  611. struct io_comp_batch *iob,
  612. unsigned int poll_flags)
  613. {
  614. struct bio *bio;
  615. int ret = 0;
  616. struct nvme_ns *ns;
  617. struct request_queue *q;
  618. rcu_read_lock();
  619. bio = READ_ONCE(ioucmd->cookie);
  620. ns = container_of(file_inode(ioucmd->file)->i_cdev,
  621. struct nvme_ns, cdev);
  622. q = ns->queue;
  623. if (test_bit(QUEUE_FLAG_POLL, &q->queue_flags) && bio && bio->bi_bdev)
  624. ret = bio_poll(bio, iob, poll_flags);
  625. rcu_read_unlock();
  626. return ret;
  627. }
  628. #ifdef CONFIG_NVME_MULTIPATH
  629. static int nvme_ns_head_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
  630. void __user *argp, struct nvme_ns_head *head, int srcu_idx)
  631. __releases(&head->srcu)
  632. {
  633. struct nvme_ctrl *ctrl = ns->ctrl;
  634. int ret;
  635. nvme_get_ctrl(ns->ctrl);
  636. srcu_read_unlock(&head->srcu, srcu_idx);
  637. ret = nvme_ctrl_ioctl(ns->ctrl, cmd, argp);
  638. nvme_put_ctrl(ctrl);
  639. return ret;
  640. }
  641. int nvme_ns_head_ioctl(struct block_device *bdev, fmode_t mode,
  642. unsigned int cmd, unsigned long arg)
  643. {
  644. struct nvme_ns_head *head = bdev->bd_disk->private_data;
  645. void __user *argp = (void __user *)arg;
  646. struct nvme_ns *ns;
  647. int srcu_idx, ret = -EWOULDBLOCK;
  648. srcu_idx = srcu_read_lock(&head->srcu);
  649. ns = nvme_find_path(head);
  650. if (!ns)
  651. goto out_unlock;
  652. /*
  653. * Handle ioctls that apply to the controller instead of the namespace
  654. * seperately and drop the ns SRCU reference early. This avoids a
  655. * deadlock when deleting namespaces using the passthrough interface.
  656. */
  657. if (is_ctrl_ioctl(cmd))
  658. return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
  659. ret = nvme_ns_ioctl(ns, cmd, argp);
  660. out_unlock:
  661. srcu_read_unlock(&head->srcu, srcu_idx);
  662. return ret;
  663. }
  664. long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
  665. unsigned long arg)
  666. {
  667. struct cdev *cdev = file_inode(file)->i_cdev;
  668. struct nvme_ns_head *head =
  669. container_of(cdev, struct nvme_ns_head, cdev);
  670. void __user *argp = (void __user *)arg;
  671. struct nvme_ns *ns;
  672. int srcu_idx, ret = -EWOULDBLOCK;
  673. srcu_idx = srcu_read_lock(&head->srcu);
  674. ns = nvme_find_path(head);
  675. if (!ns)
  676. goto out_unlock;
  677. if (is_ctrl_ioctl(cmd))
  678. return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
  679. ret = nvme_ns_ioctl(ns, cmd, argp);
  680. out_unlock:
  681. srcu_read_unlock(&head->srcu, srcu_idx);
  682. return ret;
  683. }
  684. int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
  685. unsigned int issue_flags)
  686. {
  687. struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
  688. struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
  689. int srcu_idx = srcu_read_lock(&head->srcu);
  690. struct nvme_ns *ns = nvme_find_path(head);
  691. int ret = -EINVAL;
  692. if (ns)
  693. ret = nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
  694. srcu_read_unlock(&head->srcu, srcu_idx);
  695. return ret;
  696. }
  697. int nvme_ns_head_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
  698. struct io_comp_batch *iob,
  699. unsigned int poll_flags)
  700. {
  701. struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
  702. struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
  703. int srcu_idx = srcu_read_lock(&head->srcu);
  704. struct nvme_ns *ns = nvme_find_path(head);
  705. struct bio *bio;
  706. int ret = 0;
  707. struct request_queue *q;
  708. if (ns) {
  709. rcu_read_lock();
  710. bio = READ_ONCE(ioucmd->cookie);
  711. q = ns->queue;
  712. if (test_bit(QUEUE_FLAG_POLL, &q->queue_flags) && bio
  713. && bio->bi_bdev)
  714. ret = bio_poll(bio, iob, poll_flags);
  715. rcu_read_unlock();
  716. }
  717. srcu_read_unlock(&head->srcu, srcu_idx);
  718. return ret;
  719. }
  720. #endif /* CONFIG_NVME_MULTIPATH */
  721. int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
  722. {
  723. struct nvme_ctrl *ctrl = ioucmd->file->private_data;
  724. int ret;
  725. /* IOPOLL not supported yet */
  726. if (issue_flags & IO_URING_F_IOPOLL)
  727. return -EOPNOTSUPP;
  728. ret = nvme_uring_cmd_checks(issue_flags);
  729. if (ret)
  730. return ret;
  731. switch (ioucmd->cmd_op) {
  732. case NVME_URING_CMD_ADMIN:
  733. ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, false);
  734. break;
  735. case NVME_URING_CMD_ADMIN_VEC:
  736. ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, true);
  737. break;
  738. default:
  739. ret = -ENOTTY;
  740. }
  741. return ret;
  742. }
  743. static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
  744. {
  745. struct nvme_ns *ns;
  746. int ret;
  747. down_read(&ctrl->namespaces_rwsem);
  748. if (list_empty(&ctrl->namespaces)) {
  749. ret = -ENOTTY;
  750. goto out_unlock;
  751. }
  752. ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
  753. if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
  754. dev_warn(ctrl->device,
  755. "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
  756. ret = -EINVAL;
  757. goto out_unlock;
  758. }
  759. dev_warn(ctrl->device,
  760. "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
  761. kref_get(&ns->kref);
  762. up_read(&ctrl->namespaces_rwsem);
  763. ret = nvme_user_cmd(ctrl, ns, argp);
  764. nvme_put_ns(ns);
  765. return ret;
  766. out_unlock:
  767. up_read(&ctrl->namespaces_rwsem);
  768. return ret;
  769. }
  770. long nvme_dev_ioctl(struct file *file, unsigned int cmd,
  771. unsigned long arg)
  772. {
  773. struct nvme_ctrl *ctrl = file->private_data;
  774. void __user *argp = (void __user *)arg;
  775. switch (cmd) {
  776. case NVME_IOCTL_ADMIN_CMD:
  777. return nvme_user_cmd(ctrl, NULL, argp);
  778. case NVME_IOCTL_ADMIN64_CMD:
  779. return nvme_user_cmd64(ctrl, NULL, argp, false);
  780. case NVME_IOCTL_IO_CMD:
  781. return nvme_dev_user_cmd(ctrl, argp);
  782. case NVME_IOCTL_RESET:
  783. if (!capable(CAP_SYS_ADMIN))
  784. return -EACCES;
  785. dev_warn(ctrl->device, "resetting controller\n");
  786. return nvme_reset_ctrl_sync(ctrl);
  787. case NVME_IOCTL_SUBSYS_RESET:
  788. if (!capable(CAP_SYS_ADMIN))
  789. return -EACCES;
  790. return nvme_reset_subsystem(ctrl);
  791. case NVME_IOCTL_RESCAN:
  792. if (!capable(CAP_SYS_ADMIN))
  793. return -EACCES;
  794. nvme_queue_scan(ctrl);
  795. return 0;
  796. default:
  797. return -ENOTTY;
  798. }
  799. }