efuse.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2019-2020 Realtek Corporation
  3. */
  4. #include "debug.h"
  5. #include "efuse.h"
  6. #include "mac.h"
  7. #include "reg.h"
  8. enum rtw89_efuse_bank {
  9. RTW89_EFUSE_BANK_WIFI,
  10. RTW89_EFUSE_BANK_BT,
  11. };
  12. static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev,
  13. enum rtw89_efuse_bank bank)
  14. {
  15. u8 val;
  16. if (rtwdev->chip->chip_id != RTL8852A)
  17. return 0;
  18. val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
  19. B_AX_EF_CELL_SEL_MASK);
  20. if (bank == val)
  21. return 0;
  22. rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK,
  23. bank);
  24. val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
  25. B_AX_EF_CELL_SEL_MASK);
  26. if (bank == val)
  27. return 0;
  28. return -EBUSY;
  29. }
  30. static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en)
  31. {
  32. if (en)
  33. rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
  34. else
  35. rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
  36. }
  37. static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
  38. {
  39. enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
  40. struct rtw89_hal *hal = &rtwdev->hal;
  41. if (chip_id == RTL8852A)
  42. return;
  43. rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
  44. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
  45. fsleep(1000);
  46. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
  47. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
  48. if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
  49. rtw89_enable_otp_burst_mode(rtwdev, true);
  50. }
  51. static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
  52. {
  53. enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
  54. struct rtw89_hal *hal = &rtwdev->hal;
  55. if (chip_id == RTL8852A)
  56. return;
  57. if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
  58. rtw89_enable_otp_burst_mode(rtwdev, false);
  59. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
  60. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
  61. fsleep(1000);
  62. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
  63. rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
  64. }
  65. static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map,
  66. u32 dump_addr, u32 dump_size)
  67. {
  68. u32 efuse_ctl;
  69. u32 addr;
  70. int ret;
  71. rtw89_enable_efuse_pwr_cut_ddv(rtwdev);
  72. for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
  73. efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK);
  74. rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY);
  75. ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
  76. efuse_ctl & B_AX_EF_RDY, 1, 1000000,
  77. true, rtwdev, R_AX_EFUSE_CTRL);
  78. if (ret)
  79. return -EBUSY;
  80. *map++ = (u8)(efuse_ctl & 0xff);
  81. }
  82. rtw89_disable_efuse_pwr_cut_ddv(rtwdev);
  83. return 0;
  84. }
  85. static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map,
  86. u32 dump_addr, u32 dump_size)
  87. {
  88. u32 addr;
  89. u8 val8;
  90. int err;
  91. int ret;
  92. for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
  93. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK);
  94. if (ret)
  95. return ret;
  96. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR,
  97. addr & 0xff, XTAL_SI_LOW_ADDR_MASK);
  98. if (ret)
  99. return ret;
  100. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
  101. XTAL_SI_HIGH_ADDR_MASK);
  102. if (ret)
  103. return ret;
  104. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
  105. XTAL_SI_MODE_SEL_MASK);
  106. if (ret)
  107. return ret;
  108. ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
  109. !err && (val8 & XTAL_SI_RDY),
  110. 1, 10000, false,
  111. rtwdev, XTAL_SI_CTRL, &val8);
  112. if (ret) {
  113. rtw89_warn(rtwdev, "failed to read dav efuse\n");
  114. return ret;
  115. }
  116. ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
  117. if (ret)
  118. return ret;
  119. *map++ = val8;
  120. }
  121. return 0;
  122. }
  123. static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map,
  124. u32 dump_addr, u32 dump_size, bool dav)
  125. {
  126. int ret;
  127. if (!map || dump_size == 0)
  128. return 0;
  129. rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI);
  130. if (dav) {
  131. ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size);
  132. if (ret)
  133. return ret;
  134. } else {
  135. ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size);
  136. if (ret)
  137. return ret;
  138. }
  139. return 0;
  140. }
  141. #define invalid_efuse_header(hdr1, hdr2) \
  142. ((hdr1) == 0xff || (hdr2) == 0xff)
  143. #define invalid_efuse_content(word_en, i) \
  144. (((word_en) & BIT(i)) != 0x0)
  145. #define get_efuse_blk_idx(hdr1, hdr2) \
  146. ((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4))
  147. #define block_idx_to_logical_idx(blk_idx, i) \
  148. (((blk_idx) << 3) + ((i) << 1))
  149. static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map,
  150. u8 *log_map)
  151. {
  152. u32 physical_size = rtwdev->chip->physical_efuse_size;
  153. u32 logical_size = rtwdev->chip->logical_efuse_size;
  154. u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size;
  155. u32 phy_idx = sec_ctrl_size;
  156. u32 log_idx;
  157. u8 hdr1, hdr2;
  158. u8 blk_idx;
  159. u8 word_en;
  160. int i;
  161. if (!phy_map)
  162. return 0;
  163. while (phy_idx < physical_size - sec_ctrl_size) {
  164. hdr1 = phy_map[phy_idx];
  165. hdr2 = phy_map[phy_idx + 1];
  166. if (invalid_efuse_header(hdr1, hdr2))
  167. break;
  168. blk_idx = get_efuse_blk_idx(hdr1, hdr2);
  169. word_en = hdr2 & 0xf;
  170. phy_idx += 2;
  171. for (i = 0; i < 4; i++) {
  172. if (invalid_efuse_content(word_en, i))
  173. continue;
  174. log_idx = block_idx_to_logical_idx(blk_idx, i);
  175. if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 ||
  176. log_idx + 1 > logical_size)
  177. return -EINVAL;
  178. log_map[log_idx] = phy_map[phy_idx];
  179. log_map[log_idx + 1] = phy_map[phy_idx + 1];
  180. phy_idx += 2;
  181. }
  182. }
  183. return 0;
  184. }
  185. int rtw89_parse_efuse_map(struct rtw89_dev *rtwdev)
  186. {
  187. u32 phy_size = rtwdev->chip->physical_efuse_size;
  188. u32 log_size = rtwdev->chip->logical_efuse_size;
  189. u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
  190. u32 dav_log_size = rtwdev->chip->dav_log_efuse_size;
  191. u32 full_log_size = log_size + dav_log_size;
  192. u8 *phy_map = NULL;
  193. u8 *log_map = NULL;
  194. u8 *dav_phy_map = NULL;
  195. u8 *dav_log_map = NULL;
  196. int ret;
  197. if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS)
  198. rtwdev->efuse.valid = true;
  199. else
  200. rtw89_warn(rtwdev, "failed to check efuse autoload\n");
  201. phy_map = kmalloc(phy_size, GFP_KERNEL);
  202. log_map = kmalloc(full_log_size, GFP_KERNEL);
  203. if (dav_phy_size && dav_log_size) {
  204. dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
  205. dav_log_map = log_map + log_size;
  206. }
  207. if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) {
  208. ret = -ENOMEM;
  209. goto out_free;
  210. }
  211. ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false);
  212. if (ret) {
  213. rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
  214. goto out_free;
  215. }
  216. ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true);
  217. if (ret) {
  218. rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
  219. goto out_free;
  220. }
  221. memset(log_map, 0xff, full_log_size);
  222. ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map);
  223. if (ret) {
  224. rtw89_warn(rtwdev, "failed to dump efuse logical map\n");
  225. goto out_free;
  226. }
  227. ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map);
  228. if (ret) {
  229. rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n");
  230. goto out_free;
  231. }
  232. rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size);
  233. ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map);
  234. if (ret) {
  235. rtw89_warn(rtwdev, "failed to read efuse map\n");
  236. goto out_free;
  237. }
  238. out_free:
  239. kfree(dav_phy_map);
  240. kfree(log_map);
  241. kfree(phy_map);
  242. return ret;
  243. }
  244. int rtw89_parse_phycap_map(struct rtw89_dev *rtwdev)
  245. {
  246. u32 phycap_addr = rtwdev->chip->phycap_addr;
  247. u32 phycap_size = rtwdev->chip->phycap_size;
  248. u8 *phycap_map = NULL;
  249. int ret = 0;
  250. if (!phycap_size)
  251. return 0;
  252. phycap_map = kmalloc(phycap_size, GFP_KERNEL);
  253. if (!phycap_map)
  254. return -ENOMEM;
  255. ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map,
  256. phycap_addr, phycap_size, false);
  257. if (ret) {
  258. rtw89_warn(rtwdev, "failed to dump phycap map\n");
  259. goto out_free;
  260. }
  261. ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
  262. if (ret) {
  263. rtw89_warn(rtwdev, "failed to read phycap map\n");
  264. goto out_free;
  265. }
  266. out_free:
  267. kfree(phycap_map);
  268. return ret;
  269. }