pci.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2018-2019 Realtek Corporation
  3. */
  4. #include <linux/module.h>
  5. #include <linux/pci.h>
  6. #include "main.h"
  7. #include "pci.h"
  8. #include "reg.h"
  9. #include "tx.h"
  10. #include "rx.h"
  11. #include "fw.h"
  12. #include "ps.h"
  13. #include "debug.h"
  14. static bool rtw_disable_msi;
  15. static bool rtw_pci_disable_aspm;
  16. module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
  17. module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
  18. MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
  19. MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
  20. static u32 rtw_pci_tx_queue_idx_addr[] = {
  21. [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
  22. [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
  23. [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
  24. [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
  25. [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
  26. [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
  27. [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
  28. };
  29. static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
  30. {
  31. switch (queue) {
  32. case RTW_TX_QUEUE_BCN:
  33. return TX_DESC_QSEL_BEACON;
  34. case RTW_TX_QUEUE_H2C:
  35. return TX_DESC_QSEL_H2C;
  36. case RTW_TX_QUEUE_MGMT:
  37. return TX_DESC_QSEL_MGMT;
  38. case RTW_TX_QUEUE_HI0:
  39. return TX_DESC_QSEL_HIGH;
  40. default:
  41. return skb->priority;
  42. }
  43. };
  44. static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
  45. {
  46. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  47. return readb(rtwpci->mmap + addr);
  48. }
  49. static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
  50. {
  51. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  52. return readw(rtwpci->mmap + addr);
  53. }
  54. static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
  55. {
  56. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  57. return readl(rtwpci->mmap + addr);
  58. }
  59. static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
  60. {
  61. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  62. writeb(val, rtwpci->mmap + addr);
  63. }
  64. static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
  65. {
  66. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  67. writew(val, rtwpci->mmap + addr);
  68. }
  69. static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
  70. {
  71. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  72. writel(val, rtwpci->mmap + addr);
  73. }
  74. static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
  75. {
  76. int offset = tx_ring->r.desc_size * idx;
  77. return tx_ring->r.head + offset;
  78. }
  79. static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
  80. struct rtw_pci_tx_ring *tx_ring)
  81. {
  82. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  83. struct rtw_pci_tx_data *tx_data;
  84. struct sk_buff *skb, *tmp;
  85. dma_addr_t dma;
  86. /* free every skb remained in tx list */
  87. skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
  88. __skb_unlink(skb, &tx_ring->queue);
  89. tx_data = rtw_pci_get_tx_data(skb);
  90. dma = tx_data->dma;
  91. dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
  92. dev_kfree_skb_any(skb);
  93. }
  94. }
  95. static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
  96. struct rtw_pci_tx_ring *tx_ring)
  97. {
  98. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  99. u8 *head = tx_ring->r.head;
  100. u32 len = tx_ring->r.len;
  101. int ring_sz = len * tx_ring->r.desc_size;
  102. rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
  103. /* free the ring itself */
  104. dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
  105. tx_ring->r.head = NULL;
  106. }
  107. static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
  108. struct rtw_pci_rx_ring *rx_ring)
  109. {
  110. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  111. struct sk_buff *skb;
  112. int buf_sz = RTK_PCI_RX_BUF_SIZE;
  113. dma_addr_t dma;
  114. int i;
  115. for (i = 0; i < rx_ring->r.len; i++) {
  116. skb = rx_ring->buf[i];
  117. if (!skb)
  118. continue;
  119. dma = *((dma_addr_t *)skb->cb);
  120. dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
  121. dev_kfree_skb(skb);
  122. rx_ring->buf[i] = NULL;
  123. }
  124. }
  125. static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
  126. struct rtw_pci_rx_ring *rx_ring)
  127. {
  128. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  129. u8 *head = rx_ring->r.head;
  130. int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
  131. rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
  132. dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
  133. }
  134. static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
  135. {
  136. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  137. struct rtw_pci_tx_ring *tx_ring;
  138. struct rtw_pci_rx_ring *rx_ring;
  139. int i;
  140. for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
  141. tx_ring = &rtwpci->tx_rings[i];
  142. rtw_pci_free_tx_ring(rtwdev, tx_ring);
  143. }
  144. for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
  145. rx_ring = &rtwpci->rx_rings[i];
  146. rtw_pci_free_rx_ring(rtwdev, rx_ring);
  147. }
  148. }
  149. static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
  150. struct rtw_pci_tx_ring *tx_ring,
  151. u8 desc_size, u32 len)
  152. {
  153. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  154. int ring_sz = desc_size * len;
  155. dma_addr_t dma;
  156. u8 *head;
  157. if (len > TRX_BD_IDX_MASK) {
  158. rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
  159. return -EINVAL;
  160. }
  161. head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
  162. if (!head) {
  163. rtw_err(rtwdev, "failed to allocate tx ring\n");
  164. return -ENOMEM;
  165. }
  166. skb_queue_head_init(&tx_ring->queue);
  167. tx_ring->r.head = head;
  168. tx_ring->r.dma = dma;
  169. tx_ring->r.len = len;
  170. tx_ring->r.desc_size = desc_size;
  171. tx_ring->r.wp = 0;
  172. tx_ring->r.rp = 0;
  173. return 0;
  174. }
  175. static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
  176. struct rtw_pci_rx_ring *rx_ring,
  177. u32 idx, u32 desc_sz)
  178. {
  179. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  180. struct rtw_pci_rx_buffer_desc *buf_desc;
  181. int buf_sz = RTK_PCI_RX_BUF_SIZE;
  182. dma_addr_t dma;
  183. if (!skb)
  184. return -EINVAL;
  185. dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
  186. if (dma_mapping_error(&pdev->dev, dma))
  187. return -EBUSY;
  188. *((dma_addr_t *)skb->cb) = dma;
  189. buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
  190. idx * desc_sz);
  191. memset(buf_desc, 0, sizeof(*buf_desc));
  192. buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
  193. buf_desc->dma = cpu_to_le32(dma);
  194. return 0;
  195. }
  196. static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
  197. struct rtw_pci_rx_ring *rx_ring,
  198. u32 idx, u32 desc_sz)
  199. {
  200. struct device *dev = rtwdev->dev;
  201. struct rtw_pci_rx_buffer_desc *buf_desc;
  202. int buf_sz = RTK_PCI_RX_BUF_SIZE;
  203. dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
  204. buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
  205. idx * desc_sz);
  206. memset(buf_desc, 0, sizeof(*buf_desc));
  207. buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
  208. buf_desc->dma = cpu_to_le32(dma);
  209. }
  210. static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
  211. struct rtw_pci_rx_ring *rx_ring,
  212. u8 desc_size, u32 len)
  213. {
  214. struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
  215. struct sk_buff *skb = NULL;
  216. dma_addr_t dma;
  217. u8 *head;
  218. int ring_sz = desc_size * len;
  219. int buf_sz = RTK_PCI_RX_BUF_SIZE;
  220. int i, allocated;
  221. int ret = 0;
  222. head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
  223. if (!head) {
  224. rtw_err(rtwdev, "failed to allocate rx ring\n");
  225. return -ENOMEM;
  226. }
  227. rx_ring->r.head = head;
  228. for (i = 0; i < len; i++) {
  229. skb = dev_alloc_skb(buf_sz);
  230. if (!skb) {
  231. allocated = i;
  232. ret = -ENOMEM;
  233. goto err_out;
  234. }
  235. memset(skb->data, 0, buf_sz);
  236. rx_ring->buf[i] = skb;
  237. ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
  238. if (ret) {
  239. allocated = i;
  240. dev_kfree_skb_any(skb);
  241. goto err_out;
  242. }
  243. }
  244. rx_ring->r.dma = dma;
  245. rx_ring->r.len = len;
  246. rx_ring->r.desc_size = desc_size;
  247. rx_ring->r.wp = 0;
  248. rx_ring->r.rp = 0;
  249. return 0;
  250. err_out:
  251. for (i = 0; i < allocated; i++) {
  252. skb = rx_ring->buf[i];
  253. if (!skb)
  254. continue;
  255. dma = *((dma_addr_t *)skb->cb);
  256. dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
  257. dev_kfree_skb_any(skb);
  258. rx_ring->buf[i] = NULL;
  259. }
  260. dma_free_coherent(&pdev->dev, ring_sz, head, dma);
  261. rtw_err(rtwdev, "failed to init rx buffer\n");
  262. return ret;
  263. }
  264. static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
  265. {
  266. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  267. struct rtw_pci_tx_ring *tx_ring;
  268. struct rtw_pci_rx_ring *rx_ring;
  269. const struct rtw_chip_info *chip = rtwdev->chip;
  270. int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
  271. int tx_desc_size, rx_desc_size;
  272. u32 len;
  273. int ret;
  274. tx_desc_size = chip->tx_buf_desc_sz;
  275. for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
  276. tx_ring = &rtwpci->tx_rings[i];
  277. len = max_num_of_tx_queue(i);
  278. ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
  279. if (ret)
  280. goto out;
  281. }
  282. rx_desc_size = chip->rx_buf_desc_sz;
  283. for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
  284. rx_ring = &rtwpci->rx_rings[j];
  285. ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
  286. RTK_MAX_RX_DESC_NUM);
  287. if (ret)
  288. goto out;
  289. }
  290. return 0;
  291. out:
  292. tx_alloced = i;
  293. for (i = 0; i < tx_alloced; i++) {
  294. tx_ring = &rtwpci->tx_rings[i];
  295. rtw_pci_free_tx_ring(rtwdev, tx_ring);
  296. }
  297. rx_alloced = j;
  298. for (j = 0; j < rx_alloced; j++) {
  299. rx_ring = &rtwpci->rx_rings[j];
  300. rtw_pci_free_rx_ring(rtwdev, rx_ring);
  301. }
  302. return ret;
  303. }
  304. static void rtw_pci_deinit(struct rtw_dev *rtwdev)
  305. {
  306. rtw_pci_free_trx_ring(rtwdev);
  307. }
  308. static int rtw_pci_init(struct rtw_dev *rtwdev)
  309. {
  310. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  311. int ret = 0;
  312. rtwpci->irq_mask[0] = IMR_HIGHDOK |
  313. IMR_MGNTDOK |
  314. IMR_BKDOK |
  315. IMR_BEDOK |
  316. IMR_VIDOK |
  317. IMR_VODOK |
  318. IMR_ROK |
  319. IMR_BCNDMAINT_E |
  320. IMR_C2HCMD |
  321. 0;
  322. rtwpci->irq_mask[1] = IMR_TXFOVW |
  323. 0;
  324. rtwpci->irq_mask[3] = IMR_H2CDOK |
  325. 0;
  326. spin_lock_init(&rtwpci->irq_lock);
  327. spin_lock_init(&rtwpci->hwirq_lock);
  328. ret = rtw_pci_init_trx_ring(rtwdev);
  329. return ret;
  330. }
  331. static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
  332. {
  333. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  334. u32 len;
  335. u8 tmp;
  336. dma_addr_t dma;
  337. tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
  338. rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
  339. dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
  340. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
  341. if (!rtw_chip_wcpu_11n(rtwdev)) {
  342. len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
  343. dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
  344. rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
  345. rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
  346. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
  347. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
  348. }
  349. len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
  350. dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
  351. rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
  352. rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
  353. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
  354. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
  355. len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
  356. dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
  357. rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
  358. rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
  359. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
  360. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
  361. len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
  362. dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
  363. rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
  364. rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
  365. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
  366. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
  367. len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
  368. dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
  369. rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
  370. rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
  371. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
  372. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
  373. len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
  374. dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
  375. rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
  376. rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
  377. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
  378. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
  379. len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
  380. dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
  381. rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
  382. rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
  383. rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
  384. rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
  385. len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
  386. dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
  387. rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
  388. rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
  389. rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
  390. rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
  391. /* reset read/write point */
  392. rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
  393. /* reset H2C Queue index in a single write */
  394. if (rtw_chip_wcpu_11ac(rtwdev))
  395. rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
  396. BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
  397. }
  398. static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
  399. {
  400. rtw_pci_reset_buf_desc(rtwdev);
  401. }
  402. static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
  403. struct rtw_pci *rtwpci, bool exclude_rx)
  404. {
  405. unsigned long flags;
  406. u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
  407. spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
  408. rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
  409. rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
  410. if (rtw_chip_wcpu_11ac(rtwdev))
  411. rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
  412. rtwpci->irq_enabled = true;
  413. spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
  414. }
  415. static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
  416. struct rtw_pci *rtwpci)
  417. {
  418. unsigned long flags;
  419. spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
  420. if (!rtwpci->irq_enabled)
  421. goto out;
  422. rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
  423. rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
  424. if (rtw_chip_wcpu_11ac(rtwdev))
  425. rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
  426. rtwpci->irq_enabled = false;
  427. out:
  428. spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
  429. }
  430. static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
  431. {
  432. /* reset dma and rx tag */
  433. rtw_write32_set(rtwdev, RTK_PCI_CTRL,
  434. BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
  435. rtwpci->rx_tag = 0;
  436. }
  437. static int rtw_pci_setup(struct rtw_dev *rtwdev)
  438. {
  439. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  440. rtw_pci_reset_trx_ring(rtwdev);
  441. rtw_pci_dma_reset(rtwdev, rtwpci);
  442. return 0;
  443. }
  444. static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
  445. {
  446. struct rtw_pci_tx_ring *tx_ring;
  447. u8 queue;
  448. rtw_pci_reset_trx_ring(rtwdev);
  449. for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
  450. tx_ring = &rtwpci->tx_rings[queue];
  451. rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
  452. }
  453. }
  454. static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
  455. {
  456. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  457. if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
  458. return;
  459. napi_enable(&rtwpci->napi);
  460. }
  461. static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
  462. {
  463. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  464. if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
  465. return;
  466. napi_synchronize(&rtwpci->napi);
  467. napi_disable(&rtwpci->napi);
  468. }
  469. static int rtw_pci_start(struct rtw_dev *rtwdev)
  470. {
  471. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  472. rtw_pci_napi_start(rtwdev);
  473. spin_lock_bh(&rtwpci->irq_lock);
  474. rtwpci->running = true;
  475. rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
  476. spin_unlock_bh(&rtwpci->irq_lock);
  477. return 0;
  478. }
  479. static void rtw_pci_stop(struct rtw_dev *rtwdev)
  480. {
  481. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  482. struct pci_dev *pdev = rtwpci->pdev;
  483. spin_lock_bh(&rtwpci->irq_lock);
  484. rtwpci->running = false;
  485. rtw_pci_disable_interrupt(rtwdev, rtwpci);
  486. spin_unlock_bh(&rtwpci->irq_lock);
  487. synchronize_irq(pdev->irq);
  488. rtw_pci_napi_stop(rtwdev);
  489. spin_lock_bh(&rtwpci->irq_lock);
  490. rtw_pci_dma_release(rtwdev, rtwpci);
  491. spin_unlock_bh(&rtwpci->irq_lock);
  492. }
  493. static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
  494. {
  495. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  496. struct rtw_pci_tx_ring *tx_ring;
  497. bool tx_empty = true;
  498. u8 queue;
  499. if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
  500. goto enter_deep_ps;
  501. lockdep_assert_held(&rtwpci->irq_lock);
  502. /* Deep PS state is not allowed to TX-DMA */
  503. for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
  504. /* BCN queue is rsvd page, does not have DMA interrupt
  505. * H2C queue is managed by firmware
  506. */
  507. if (queue == RTW_TX_QUEUE_BCN ||
  508. queue == RTW_TX_QUEUE_H2C)
  509. continue;
  510. tx_ring = &rtwpci->tx_rings[queue];
  511. /* check if there is any skb DMAing */
  512. if (skb_queue_len(&tx_ring->queue)) {
  513. tx_empty = false;
  514. break;
  515. }
  516. }
  517. if (!tx_empty) {
  518. rtw_dbg(rtwdev, RTW_DBG_PS,
  519. "TX path not empty, cannot enter deep power save state\n");
  520. return;
  521. }
  522. enter_deep_ps:
  523. set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
  524. rtw_power_mode_change(rtwdev, true);
  525. }
  526. static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
  527. {
  528. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  529. lockdep_assert_held(&rtwpci->irq_lock);
  530. if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
  531. rtw_power_mode_change(rtwdev, false);
  532. }
  533. static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
  534. {
  535. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  536. spin_lock_bh(&rtwpci->irq_lock);
  537. if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
  538. rtw_pci_deep_ps_enter(rtwdev);
  539. if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
  540. rtw_pci_deep_ps_leave(rtwdev);
  541. spin_unlock_bh(&rtwpci->irq_lock);
  542. }
  543. static u8 ac_to_hwq[] = {
  544. [IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
  545. [IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
  546. [IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
  547. [IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
  548. };
  549. static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
  550. static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
  551. {
  552. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  553. __le16 fc = hdr->frame_control;
  554. u8 q_mapping = skb_get_queue_mapping(skb);
  555. u8 queue;
  556. if (unlikely(ieee80211_is_beacon(fc)))
  557. queue = RTW_TX_QUEUE_BCN;
  558. else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
  559. queue = RTW_TX_QUEUE_MGMT;
  560. else if (is_broadcast_ether_addr(hdr->addr1) ||
  561. is_multicast_ether_addr(hdr->addr1))
  562. queue = RTW_TX_QUEUE_HI0;
  563. else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
  564. queue = ac_to_hwq[IEEE80211_AC_BE];
  565. else
  566. queue = ac_to_hwq[q_mapping];
  567. return queue;
  568. }
  569. static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
  570. struct rtw_pci_tx_ring *ring)
  571. {
  572. struct sk_buff *prev = skb_dequeue(&ring->queue);
  573. struct rtw_pci_tx_data *tx_data;
  574. dma_addr_t dma;
  575. if (!prev)
  576. return;
  577. tx_data = rtw_pci_get_tx_data(prev);
  578. dma = tx_data->dma;
  579. dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
  580. dev_kfree_skb_any(prev);
  581. }
  582. static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
  583. struct rtw_pci_rx_ring *rx_ring,
  584. u32 idx)
  585. {
  586. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  587. const struct rtw_chip_info *chip = rtwdev->chip;
  588. struct rtw_pci_rx_buffer_desc *buf_desc;
  589. u32 desc_sz = chip->rx_buf_desc_sz;
  590. u16 total_pkt_size;
  591. buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
  592. idx * desc_sz);
  593. total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
  594. /* rx tag mismatch, throw a warning */
  595. if (total_pkt_size != rtwpci->rx_tag)
  596. rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
  597. rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
  598. }
  599. static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
  600. {
  601. u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
  602. u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
  603. return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
  604. }
  605. static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
  606. {
  607. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  608. struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
  609. u32 cur_rp;
  610. u8 i;
  611. /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
  612. * bit dynamic, it's hard to define a reasonable fixed total timeout to
  613. * use read_poll_timeout* helper. Instead, we can ensure a reasonable
  614. * polling times, so we just use for loop with udelay here.
  615. */
  616. for (i = 0; i < 30; i++) {
  617. cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
  618. if (cur_rp == ring->r.wp)
  619. return;
  620. udelay(1);
  621. }
  622. if (!drop)
  623. rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
  624. }
  625. static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
  626. bool drop)
  627. {
  628. u8 q;
  629. for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
  630. /* It may be not necessary to flush BCN and H2C tx queues. */
  631. if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
  632. continue;
  633. if (pci_queues & BIT(q))
  634. __pci_flush_queue(rtwdev, q, drop);
  635. }
  636. }
  637. static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
  638. {
  639. u32 pci_queues = 0;
  640. u8 i;
  641. /* If all of the hardware queues are requested to flush,
  642. * flush all of the pci queues.
  643. */
  644. if (queues == BIT(rtwdev->hw->queues) - 1) {
  645. pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
  646. } else {
  647. for (i = 0; i < rtwdev->hw->queues; i++)
  648. if (queues & BIT(i))
  649. pci_queues |= BIT(ac_to_hwq[i]);
  650. }
  651. __rtw_pci_flush_queues(rtwdev, pci_queues, drop);
  652. }
  653. static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
  654. {
  655. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  656. struct rtw_pci_tx_ring *ring;
  657. u32 bd_idx;
  658. ring = &rtwpci->tx_rings[queue];
  659. bd_idx = rtw_pci_tx_queue_idx_addr[queue];
  660. spin_lock_bh(&rtwpci->irq_lock);
  661. if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
  662. rtw_pci_deep_ps_leave(rtwdev);
  663. rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
  664. spin_unlock_bh(&rtwpci->irq_lock);
  665. }
  666. static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
  667. {
  668. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  669. u8 queue;
  670. for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
  671. if (test_and_clear_bit(queue, rtwpci->tx_queued))
  672. rtw_pci_tx_kick_off_queue(rtwdev, queue);
  673. }
  674. static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
  675. struct rtw_tx_pkt_info *pkt_info,
  676. struct sk_buff *skb, u8 queue)
  677. {
  678. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  679. const struct rtw_chip_info *chip = rtwdev->chip;
  680. struct rtw_pci_tx_ring *ring;
  681. struct rtw_pci_tx_data *tx_data;
  682. dma_addr_t dma;
  683. u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
  684. u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
  685. u32 size;
  686. u32 psb_len;
  687. u8 *pkt_desc;
  688. struct rtw_pci_tx_buffer_desc *buf_desc;
  689. ring = &rtwpci->tx_rings[queue];
  690. size = skb->len;
  691. if (queue == RTW_TX_QUEUE_BCN)
  692. rtw_pci_release_rsvd_page(rtwpci, ring);
  693. else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
  694. return -ENOSPC;
  695. pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
  696. memset(pkt_desc, 0, tx_pkt_desc_sz);
  697. pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
  698. rtw_tx_fill_tx_desc(pkt_info, skb);
  699. dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
  700. DMA_TO_DEVICE);
  701. if (dma_mapping_error(&rtwpci->pdev->dev, dma))
  702. return -EBUSY;
  703. /* after this we got dma mapped, there is no way back */
  704. buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
  705. memset(buf_desc, 0, tx_buf_desc_sz);
  706. psb_len = (skb->len - 1) / 128 + 1;
  707. if (queue == RTW_TX_QUEUE_BCN)
  708. psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
  709. buf_desc[0].psb_len = cpu_to_le16(psb_len);
  710. buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
  711. buf_desc[0].dma = cpu_to_le32(dma);
  712. buf_desc[1].buf_size = cpu_to_le16(size);
  713. buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
  714. tx_data = rtw_pci_get_tx_data(skb);
  715. tx_data->dma = dma;
  716. tx_data->sn = pkt_info->sn;
  717. spin_lock_bh(&rtwpci->irq_lock);
  718. skb_queue_tail(&ring->queue, skb);
  719. if (queue == RTW_TX_QUEUE_BCN)
  720. goto out_unlock;
  721. /* update write-index, and kick it off later */
  722. set_bit(queue, rtwpci->tx_queued);
  723. if (++ring->r.wp >= ring->r.len)
  724. ring->r.wp = 0;
  725. out_unlock:
  726. spin_unlock_bh(&rtwpci->irq_lock);
  727. return 0;
  728. }
  729. static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
  730. u32 size)
  731. {
  732. struct sk_buff *skb;
  733. struct rtw_tx_pkt_info pkt_info = {0};
  734. u8 reg_bcn_work;
  735. int ret;
  736. skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
  737. if (!skb)
  738. return -ENOMEM;
  739. ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
  740. if (ret) {
  741. rtw_err(rtwdev, "failed to write rsvd page data\n");
  742. return ret;
  743. }
  744. /* reserved pages go through beacon queue */
  745. reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
  746. reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
  747. rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
  748. return 0;
  749. }
  750. static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
  751. {
  752. struct sk_buff *skb;
  753. struct rtw_tx_pkt_info pkt_info = {0};
  754. int ret;
  755. skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
  756. if (!skb)
  757. return -ENOMEM;
  758. ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
  759. if (ret) {
  760. rtw_err(rtwdev, "failed to write h2c data\n");
  761. return ret;
  762. }
  763. rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
  764. return 0;
  765. }
  766. static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
  767. struct rtw_tx_pkt_info *pkt_info,
  768. struct sk_buff *skb)
  769. {
  770. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  771. struct rtw_pci_tx_ring *ring;
  772. u8 queue = rtw_hw_queue_mapping(skb);
  773. int ret;
  774. ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
  775. if (ret)
  776. return ret;
  777. ring = &rtwpci->tx_rings[queue];
  778. spin_lock_bh(&rtwpci->irq_lock);
  779. if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
  780. ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
  781. ring->queue_stopped = true;
  782. }
  783. spin_unlock_bh(&rtwpci->irq_lock);
  784. return 0;
  785. }
  786. static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
  787. u8 hw_queue)
  788. {
  789. struct ieee80211_hw *hw = rtwdev->hw;
  790. struct ieee80211_tx_info *info;
  791. struct rtw_pci_tx_ring *ring;
  792. struct rtw_pci_tx_data *tx_data;
  793. struct sk_buff *skb;
  794. u32 count;
  795. u32 bd_idx_addr;
  796. u32 bd_idx, cur_rp, rp_idx;
  797. u16 q_map;
  798. ring = &rtwpci->tx_rings[hw_queue];
  799. bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
  800. bd_idx = rtw_read32(rtwdev, bd_idx_addr);
  801. cur_rp = bd_idx >> 16;
  802. cur_rp &= TRX_BD_IDX_MASK;
  803. rp_idx = ring->r.rp;
  804. if (cur_rp >= ring->r.rp)
  805. count = cur_rp - ring->r.rp;
  806. else
  807. count = ring->r.len - (ring->r.rp - cur_rp);
  808. while (count--) {
  809. skb = skb_dequeue(&ring->queue);
  810. if (!skb) {
  811. rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
  812. count, hw_queue, bd_idx, ring->r.rp, cur_rp);
  813. break;
  814. }
  815. tx_data = rtw_pci_get_tx_data(skb);
  816. dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
  817. DMA_TO_DEVICE);
  818. /* just free command packets from host to card */
  819. if (hw_queue == RTW_TX_QUEUE_H2C) {
  820. dev_kfree_skb_irq(skb);
  821. continue;
  822. }
  823. if (ring->queue_stopped &&
  824. avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
  825. q_map = skb_get_queue_mapping(skb);
  826. ieee80211_wake_queue(hw, q_map);
  827. ring->queue_stopped = false;
  828. }
  829. if (++rp_idx >= ring->r.len)
  830. rp_idx = 0;
  831. skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
  832. info = IEEE80211_SKB_CB(skb);
  833. /* enqueue to wait for tx report */
  834. if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
  835. rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
  836. continue;
  837. }
  838. /* always ACK for others, then they won't be marked as drop */
  839. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  840. info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
  841. else
  842. info->flags |= IEEE80211_TX_STAT_ACK;
  843. ieee80211_tx_info_clear_status(info);
  844. ieee80211_tx_status_irqsafe(hw, skb);
  845. }
  846. ring->r.rp = cur_rp;
  847. }
  848. static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
  849. {
  850. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  851. struct napi_struct *napi = &rtwpci->napi;
  852. napi_schedule(napi);
  853. }
  854. static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
  855. struct rtw_pci *rtwpci)
  856. {
  857. struct rtw_pci_rx_ring *ring;
  858. int count = 0;
  859. u32 tmp, cur_wp;
  860. ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
  861. tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
  862. cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
  863. if (cur_wp >= ring->r.wp)
  864. count = cur_wp - ring->r.wp;
  865. else
  866. count = ring->r.len - (ring->r.wp - cur_wp);
  867. return count;
  868. }
  869. static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
  870. u8 hw_queue, u32 limit)
  871. {
  872. const struct rtw_chip_info *chip = rtwdev->chip;
  873. struct napi_struct *napi = &rtwpci->napi;
  874. struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
  875. struct rtw_rx_pkt_stat pkt_stat;
  876. struct ieee80211_rx_status rx_status;
  877. struct sk_buff *skb, *new;
  878. u32 cur_rp = ring->r.rp;
  879. u32 count, rx_done = 0;
  880. u32 pkt_offset;
  881. u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
  882. u32 buf_desc_sz = chip->rx_buf_desc_sz;
  883. u32 new_len;
  884. u8 *rx_desc;
  885. dma_addr_t dma;
  886. count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
  887. count = min(count, limit);
  888. while (count--) {
  889. rtw_pci_dma_check(rtwdev, ring, cur_rp);
  890. skb = ring->buf[cur_rp];
  891. dma = *((dma_addr_t *)skb->cb);
  892. dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
  893. DMA_FROM_DEVICE);
  894. rx_desc = skb->data;
  895. chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
  896. /* offset from rx_desc to payload */
  897. pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
  898. pkt_stat.shift;
  899. /* allocate a new skb for this frame,
  900. * discard the frame if none available
  901. */
  902. new_len = pkt_stat.pkt_len + pkt_offset;
  903. new = dev_alloc_skb(new_len);
  904. if (WARN_ONCE(!new, "rx routine starvation\n"))
  905. goto next_rp;
  906. /* put the DMA data including rx_desc from phy to new skb */
  907. skb_put_data(new, skb->data, new_len);
  908. if (pkt_stat.is_c2h) {
  909. rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
  910. } else {
  911. /* remove rx_desc */
  912. skb_pull(new, pkt_offset);
  913. rtw_rx_stats(rtwdev, pkt_stat.vif, new);
  914. memcpy(new->cb, &rx_status, sizeof(rx_status));
  915. ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
  916. rx_done++;
  917. }
  918. next_rp:
  919. /* new skb delivered to mac80211, re-enable original skb DMA */
  920. rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
  921. buf_desc_sz);
  922. /* host read next element in ring */
  923. if (++cur_rp >= ring->r.len)
  924. cur_rp = 0;
  925. }
  926. ring->r.rp = cur_rp;
  927. /* 'rp', the last position we have read, is seen as previous posistion
  928. * of 'wp' that is used to calculate 'count' next time.
  929. */
  930. ring->r.wp = cur_rp;
  931. rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
  932. return rx_done;
  933. }
  934. static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
  935. struct rtw_pci *rtwpci, u32 *irq_status)
  936. {
  937. unsigned long flags;
  938. spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
  939. irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
  940. irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
  941. if (rtw_chip_wcpu_11ac(rtwdev))
  942. irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
  943. else
  944. irq_status[3] = 0;
  945. irq_status[0] &= rtwpci->irq_mask[0];
  946. irq_status[1] &= rtwpci->irq_mask[1];
  947. irq_status[3] &= rtwpci->irq_mask[3];
  948. rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
  949. rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
  950. if (rtw_chip_wcpu_11ac(rtwdev))
  951. rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
  952. spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
  953. }
  954. static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
  955. {
  956. struct rtw_dev *rtwdev = dev;
  957. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  958. /* disable RTW PCI interrupt to avoid more interrupts before the end of
  959. * thread function
  960. *
  961. * disable HIMR here to also avoid new HISR flag being raised before
  962. * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
  963. * are cleared, the edge-triggered interrupt will not be generated when
  964. * a new HISR flag is set.
  965. */
  966. rtw_pci_disable_interrupt(rtwdev, rtwpci);
  967. return IRQ_WAKE_THREAD;
  968. }
  969. static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
  970. {
  971. struct rtw_dev *rtwdev = dev;
  972. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  973. u32 irq_status[4];
  974. bool rx = false;
  975. spin_lock_bh(&rtwpci->irq_lock);
  976. rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
  977. if (irq_status[0] & IMR_MGNTDOK)
  978. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
  979. if (irq_status[0] & IMR_HIGHDOK)
  980. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
  981. if (irq_status[0] & IMR_BEDOK)
  982. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
  983. if (irq_status[0] & IMR_BKDOK)
  984. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
  985. if (irq_status[0] & IMR_VODOK)
  986. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
  987. if (irq_status[0] & IMR_VIDOK)
  988. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
  989. if (irq_status[3] & IMR_H2CDOK)
  990. rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
  991. if (irq_status[0] & IMR_ROK) {
  992. rtw_pci_rx_isr(rtwdev);
  993. rx = true;
  994. }
  995. if (unlikely(irq_status[0] & IMR_C2HCMD))
  996. rtw_fw_c2h_cmd_isr(rtwdev);
  997. /* all of the jobs for this interrupt have been done */
  998. if (rtwpci->running)
  999. rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
  1000. spin_unlock_bh(&rtwpci->irq_lock);
  1001. return IRQ_HANDLED;
  1002. }
  1003. static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
  1004. struct pci_dev *pdev)
  1005. {
  1006. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1007. unsigned long len;
  1008. u8 bar_id = 2;
  1009. int ret;
  1010. ret = pci_request_regions(pdev, KBUILD_MODNAME);
  1011. if (ret) {
  1012. rtw_err(rtwdev, "failed to request pci regions\n");
  1013. return ret;
  1014. }
  1015. len = pci_resource_len(pdev, bar_id);
  1016. rtwpci->mmap = pci_iomap(pdev, bar_id, len);
  1017. if (!rtwpci->mmap) {
  1018. pci_release_regions(pdev);
  1019. rtw_err(rtwdev, "failed to map pci memory\n");
  1020. return -ENOMEM;
  1021. }
  1022. return 0;
  1023. }
  1024. static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
  1025. struct pci_dev *pdev)
  1026. {
  1027. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1028. if (rtwpci->mmap) {
  1029. pci_iounmap(pdev, rtwpci->mmap);
  1030. pci_release_regions(pdev);
  1031. }
  1032. }
  1033. static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
  1034. {
  1035. u16 write_addr;
  1036. u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
  1037. u8 flag;
  1038. u8 cnt;
  1039. write_addr = addr & BITS_DBI_ADDR_MASK;
  1040. write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
  1041. rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
  1042. rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
  1043. rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
  1044. for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
  1045. flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
  1046. if (flag == 0)
  1047. return;
  1048. udelay(10);
  1049. }
  1050. WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
  1051. }
  1052. static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
  1053. {
  1054. u16 read_addr = addr & BITS_DBI_ADDR_MASK;
  1055. u8 flag;
  1056. u8 cnt;
  1057. rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
  1058. rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
  1059. for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
  1060. flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
  1061. if (flag == 0) {
  1062. read_addr = REG_DBI_RDATA_V1 + (addr & 3);
  1063. *value = rtw_read8(rtwdev, read_addr);
  1064. return 0;
  1065. }
  1066. udelay(10);
  1067. }
  1068. WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
  1069. return -EIO;
  1070. }
  1071. static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
  1072. {
  1073. u8 page;
  1074. u8 wflag;
  1075. u8 cnt;
  1076. rtw_write16(rtwdev, REG_MDIO_V1, data);
  1077. page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
  1078. page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
  1079. rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
  1080. rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
  1081. rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
  1082. for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
  1083. wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
  1084. BIT_MDIO_WFLAG_V1);
  1085. if (wflag == 0)
  1086. return;
  1087. udelay(10);
  1088. }
  1089. WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
  1090. }
  1091. static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
  1092. {
  1093. u8 value;
  1094. int ret;
  1095. if (rtw_pci_disable_aspm)
  1096. return;
  1097. ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
  1098. if (ret) {
  1099. rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
  1100. return;
  1101. }
  1102. if (enable)
  1103. value |= BIT_CLKREQ_SW_EN;
  1104. else
  1105. value &= ~BIT_CLKREQ_SW_EN;
  1106. rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
  1107. }
  1108. static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
  1109. {
  1110. u8 value;
  1111. int ret;
  1112. ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
  1113. if (ret) {
  1114. rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
  1115. return;
  1116. }
  1117. if (enable)
  1118. value &= ~BIT_CLKREQ_N_PAD;
  1119. else
  1120. value |= BIT_CLKREQ_N_PAD;
  1121. rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
  1122. }
  1123. static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
  1124. {
  1125. u8 value;
  1126. int ret;
  1127. if (rtw_pci_disable_aspm)
  1128. return;
  1129. ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
  1130. if (ret) {
  1131. rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
  1132. return;
  1133. }
  1134. if (enable)
  1135. value |= BIT_L1_SW_EN;
  1136. else
  1137. value &= ~BIT_L1_SW_EN;
  1138. rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
  1139. }
  1140. static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
  1141. {
  1142. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1143. /* Like CLKREQ, ASPM is also implemented by two HW modules, and can
  1144. * only be enabled when host supports it.
  1145. *
  1146. * And ASPM mechanism should be enabled when driver/firmware enters
  1147. * power save mode, without having heavy traffic. Because we've
  1148. * experienced some inter-operability issues that the link tends
  1149. * to enter L1 state on the fly even when driver is having high
  1150. * throughput. This is probably because the ASPM behavior slightly
  1151. * varies from different SOC.
  1152. */
  1153. if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
  1154. return;
  1155. if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
  1156. (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
  1157. rtw_pci_aspm_set(rtwdev, enter);
  1158. }
  1159. static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
  1160. {
  1161. const struct rtw_chip_info *chip = rtwdev->chip;
  1162. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1163. struct pci_dev *pdev = rtwpci->pdev;
  1164. u16 link_ctrl;
  1165. int ret;
  1166. /* RTL8822CE has enabled REFCLK auto calibration, it does not need
  1167. * to add clock delay to cover the REFCLK timing gap.
  1168. */
  1169. if (chip->id == RTW_CHIP_TYPE_8822C)
  1170. rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
  1171. /* Though there is standard PCIE configuration space to set the
  1172. * link control register, but by Realtek's design, driver should
  1173. * check if host supports CLKREQ/ASPM to enable the HW module.
  1174. *
  1175. * These functions are implemented by two HW modules associated,
  1176. * one is responsible to access PCIE configuration space to
  1177. * follow the host settings, and another is in charge of doing
  1178. * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
  1179. * the host does not support it, and due to some reasons or wrong
  1180. * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
  1181. * loss if HW misbehaves on the link.
  1182. *
  1183. * Hence it's designed that driver should first check the PCIE
  1184. * configuration space is sync'ed and enabled, then driver can turn
  1185. * on the other module that is actually working on the mechanism.
  1186. */
  1187. ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
  1188. if (ret) {
  1189. rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
  1190. return;
  1191. }
  1192. if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
  1193. rtw_pci_clkreq_set(rtwdev, true);
  1194. rtwpci->link_ctrl = link_ctrl;
  1195. }
  1196. static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
  1197. {
  1198. const struct rtw_chip_info *chip = rtwdev->chip;
  1199. switch (chip->id) {
  1200. case RTW_CHIP_TYPE_8822C:
  1201. if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
  1202. rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
  1203. BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
  1204. break;
  1205. default:
  1206. break;
  1207. }
  1208. }
  1209. static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
  1210. {
  1211. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1212. const struct rtw_chip_info *chip = rtwdev->chip;
  1213. struct pci_dev *pdev = rtwpci->pdev;
  1214. const struct rtw_intf_phy_para *para;
  1215. u16 cut;
  1216. u16 value;
  1217. u16 offset;
  1218. int i;
  1219. int ret;
  1220. cut = BIT(0) << rtwdev->hal.cut_version;
  1221. for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
  1222. para = &chip->intf_table->gen1_para[i];
  1223. if (!(para->cut_mask & cut))
  1224. continue;
  1225. if (para->offset == 0xffff)
  1226. break;
  1227. offset = para->offset;
  1228. value = para->value;
  1229. if (para->ip_sel == RTW_IP_SEL_PHY)
  1230. rtw_mdio_write(rtwdev, offset, value, true);
  1231. else
  1232. rtw_dbi_write8(rtwdev, offset, value);
  1233. }
  1234. for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
  1235. para = &chip->intf_table->gen2_para[i];
  1236. if (!(para->cut_mask & cut))
  1237. continue;
  1238. if (para->offset == 0xffff)
  1239. break;
  1240. offset = para->offset;
  1241. value = para->value;
  1242. if (para->ip_sel == RTW_IP_SEL_PHY)
  1243. rtw_mdio_write(rtwdev, offset, value, false);
  1244. else
  1245. rtw_dbi_write8(rtwdev, offset, value);
  1246. }
  1247. rtw_pci_link_cfg(rtwdev);
  1248. /* Disable 8821ce completion timeout by default */
  1249. if (chip->id == RTW_CHIP_TYPE_8821C) {
  1250. ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
  1251. PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
  1252. if (ret)
  1253. rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
  1254. ret);
  1255. }
  1256. }
  1257. static int __maybe_unused rtw_pci_suspend(struct device *dev)
  1258. {
  1259. struct ieee80211_hw *hw = dev_get_drvdata(dev);
  1260. struct rtw_dev *rtwdev = hw->priv;
  1261. const struct rtw_chip_info *chip = rtwdev->chip;
  1262. struct rtw_efuse *efuse = &rtwdev->efuse;
  1263. if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
  1264. rtw_pci_clkreq_pad_low(rtwdev, true);
  1265. return 0;
  1266. }
  1267. static int __maybe_unused rtw_pci_resume(struct device *dev)
  1268. {
  1269. struct ieee80211_hw *hw = dev_get_drvdata(dev);
  1270. struct rtw_dev *rtwdev = hw->priv;
  1271. const struct rtw_chip_info *chip = rtwdev->chip;
  1272. struct rtw_efuse *efuse = &rtwdev->efuse;
  1273. if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
  1274. rtw_pci_clkreq_pad_low(rtwdev, false);
  1275. return 0;
  1276. }
  1277. SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
  1278. EXPORT_SYMBOL(rtw_pm_ops);
  1279. static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1280. {
  1281. int ret;
  1282. ret = pci_enable_device(pdev);
  1283. if (ret) {
  1284. rtw_err(rtwdev, "failed to enable pci device\n");
  1285. return ret;
  1286. }
  1287. pci_set_master(pdev);
  1288. pci_set_drvdata(pdev, rtwdev->hw);
  1289. SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
  1290. return 0;
  1291. }
  1292. static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1293. {
  1294. pci_clear_master(pdev);
  1295. pci_disable_device(pdev);
  1296. }
  1297. static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1298. {
  1299. struct rtw_pci *rtwpci;
  1300. int ret;
  1301. rtwpci = (struct rtw_pci *)rtwdev->priv;
  1302. rtwpci->pdev = pdev;
  1303. /* after this driver can access to hw registers */
  1304. ret = rtw_pci_io_mapping(rtwdev, pdev);
  1305. if (ret) {
  1306. rtw_err(rtwdev, "failed to request pci io region\n");
  1307. goto err_out;
  1308. }
  1309. ret = rtw_pci_init(rtwdev);
  1310. if (ret) {
  1311. rtw_err(rtwdev, "failed to allocate pci resources\n");
  1312. goto err_io_unmap;
  1313. }
  1314. return 0;
  1315. err_io_unmap:
  1316. rtw_pci_io_unmapping(rtwdev, pdev);
  1317. err_out:
  1318. return ret;
  1319. }
  1320. static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1321. {
  1322. rtw_pci_deinit(rtwdev);
  1323. rtw_pci_io_unmapping(rtwdev, pdev);
  1324. }
  1325. static struct rtw_hci_ops rtw_pci_ops = {
  1326. .tx_write = rtw_pci_tx_write,
  1327. .tx_kick_off = rtw_pci_tx_kick_off,
  1328. .flush_queues = rtw_pci_flush_queues,
  1329. .setup = rtw_pci_setup,
  1330. .start = rtw_pci_start,
  1331. .stop = rtw_pci_stop,
  1332. .deep_ps = rtw_pci_deep_ps,
  1333. .link_ps = rtw_pci_link_ps,
  1334. .interface_cfg = rtw_pci_interface_cfg,
  1335. .read8 = rtw_pci_read8,
  1336. .read16 = rtw_pci_read16,
  1337. .read32 = rtw_pci_read32,
  1338. .write8 = rtw_pci_write8,
  1339. .write16 = rtw_pci_write16,
  1340. .write32 = rtw_pci_write32,
  1341. .write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
  1342. .write_data_h2c = rtw_pci_write_data_h2c,
  1343. };
  1344. static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1345. {
  1346. unsigned int flags = PCI_IRQ_LEGACY;
  1347. int ret;
  1348. if (!rtw_disable_msi)
  1349. flags |= PCI_IRQ_MSI;
  1350. ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
  1351. if (ret < 0) {
  1352. rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
  1353. return ret;
  1354. }
  1355. ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
  1356. rtw_pci_interrupt_handler,
  1357. rtw_pci_interrupt_threadfn,
  1358. IRQF_SHARED, KBUILD_MODNAME, rtwdev);
  1359. if (ret) {
  1360. rtw_err(rtwdev, "failed to request irq %d\n", ret);
  1361. pci_free_irq_vectors(pdev);
  1362. }
  1363. return ret;
  1364. }
  1365. static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
  1366. {
  1367. devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
  1368. pci_free_irq_vectors(pdev);
  1369. }
  1370. static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
  1371. {
  1372. struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
  1373. struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
  1374. priv);
  1375. int work_done = 0;
  1376. if (rtwpci->rx_no_aspm)
  1377. rtw_pci_link_ps(rtwdev, false);
  1378. while (work_done < budget) {
  1379. u32 work_done_once;
  1380. work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
  1381. budget - work_done);
  1382. if (work_done_once == 0)
  1383. break;
  1384. work_done += work_done_once;
  1385. }
  1386. if (work_done < budget) {
  1387. napi_complete_done(napi, work_done);
  1388. spin_lock_bh(&rtwpci->irq_lock);
  1389. if (rtwpci->running)
  1390. rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
  1391. spin_unlock_bh(&rtwpci->irq_lock);
  1392. /* When ISR happens during polling and before napi_complete
  1393. * while no further data is received. Data on the dma_ring will
  1394. * not be processed immediately. Check whether dma ring is
  1395. * empty and perform napi_schedule accordingly.
  1396. */
  1397. if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
  1398. napi_schedule(napi);
  1399. }
  1400. if (rtwpci->rx_no_aspm)
  1401. rtw_pci_link_ps(rtwdev, true);
  1402. return work_done;
  1403. }
  1404. static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
  1405. {
  1406. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1407. init_dummy_netdev(&rtwpci->netdev);
  1408. netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
  1409. }
  1410. static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
  1411. {
  1412. struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
  1413. rtw_pci_napi_stop(rtwdev);
  1414. netif_napi_del(&rtwpci->napi);
  1415. }
  1416. int rtw_pci_probe(struct pci_dev *pdev,
  1417. const struct pci_device_id *id)
  1418. {
  1419. struct pci_dev *bridge = pci_upstream_bridge(pdev);
  1420. struct ieee80211_hw *hw;
  1421. struct rtw_dev *rtwdev;
  1422. struct rtw_pci *rtwpci;
  1423. int drv_data_size;
  1424. int ret;
  1425. drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
  1426. hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
  1427. if (!hw) {
  1428. dev_err(&pdev->dev, "failed to allocate hw\n");
  1429. return -ENOMEM;
  1430. }
  1431. rtwdev = hw->priv;
  1432. rtwdev->hw = hw;
  1433. rtwdev->dev = &pdev->dev;
  1434. rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
  1435. rtwdev->hci.ops = &rtw_pci_ops;
  1436. rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
  1437. rtwpci = (struct rtw_pci *)rtwdev->priv;
  1438. atomic_set(&rtwpci->link_usage, 1);
  1439. ret = rtw_core_init(rtwdev);
  1440. if (ret)
  1441. goto err_release_hw;
  1442. rtw_dbg(rtwdev, RTW_DBG_PCI,
  1443. "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
  1444. pdev->vendor, pdev->device, pdev->revision);
  1445. ret = rtw_pci_claim(rtwdev, pdev);
  1446. if (ret) {
  1447. rtw_err(rtwdev, "failed to claim pci device\n");
  1448. goto err_deinit_core;
  1449. }
  1450. ret = rtw_pci_setup_resource(rtwdev, pdev);
  1451. if (ret) {
  1452. rtw_err(rtwdev, "failed to setup pci resources\n");
  1453. goto err_pci_declaim;
  1454. }
  1455. rtw_pci_napi_init(rtwdev);
  1456. ret = rtw_chip_info_setup(rtwdev);
  1457. if (ret) {
  1458. rtw_err(rtwdev, "failed to setup chip information\n");
  1459. goto err_destroy_pci;
  1460. }
  1461. /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
  1462. if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
  1463. rtwpci->rx_no_aspm = true;
  1464. rtw_pci_phy_cfg(rtwdev);
  1465. ret = rtw_register_hw(rtwdev, hw);
  1466. if (ret) {
  1467. rtw_err(rtwdev, "failed to register hw\n");
  1468. goto err_destroy_pci;
  1469. }
  1470. ret = rtw_pci_request_irq(rtwdev, pdev);
  1471. if (ret) {
  1472. ieee80211_unregister_hw(hw);
  1473. goto err_destroy_pci;
  1474. }
  1475. return 0;
  1476. err_destroy_pci:
  1477. rtw_pci_napi_deinit(rtwdev);
  1478. rtw_pci_destroy(rtwdev, pdev);
  1479. err_pci_declaim:
  1480. rtw_pci_declaim(rtwdev, pdev);
  1481. err_deinit_core:
  1482. rtw_core_deinit(rtwdev);
  1483. err_release_hw:
  1484. ieee80211_free_hw(hw);
  1485. return ret;
  1486. }
  1487. EXPORT_SYMBOL(rtw_pci_probe);
  1488. void rtw_pci_remove(struct pci_dev *pdev)
  1489. {
  1490. struct ieee80211_hw *hw = pci_get_drvdata(pdev);
  1491. struct rtw_dev *rtwdev;
  1492. struct rtw_pci *rtwpci;
  1493. if (!hw)
  1494. return;
  1495. rtwdev = hw->priv;
  1496. rtwpci = (struct rtw_pci *)rtwdev->priv;
  1497. rtw_unregister_hw(rtwdev, hw);
  1498. rtw_pci_disable_interrupt(rtwdev, rtwpci);
  1499. rtw_pci_napi_deinit(rtwdev);
  1500. rtw_pci_destroy(rtwdev, pdev);
  1501. rtw_pci_declaim(rtwdev, pdev);
  1502. rtw_pci_free_irq(rtwdev, pdev);
  1503. rtw_core_deinit(rtwdev);
  1504. ieee80211_free_hw(hw);
  1505. }
  1506. EXPORT_SYMBOL(rtw_pci_remove);
  1507. void rtw_pci_shutdown(struct pci_dev *pdev)
  1508. {
  1509. struct ieee80211_hw *hw = pci_get_drvdata(pdev);
  1510. struct rtw_dev *rtwdev;
  1511. const struct rtw_chip_info *chip;
  1512. if (!hw)
  1513. return;
  1514. rtwdev = hw->priv;
  1515. chip = rtwdev->chip;
  1516. if (chip->ops->shutdown)
  1517. chip->ops->shutdown(rtwdev);
  1518. pci_set_power_state(pdev, PCI_D3hot);
  1519. }
  1520. EXPORT_SYMBOL(rtw_pci_shutdown);
  1521. MODULE_AUTHOR("Realtek Corporation");
  1522. MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
  1523. MODULE_LICENSE("Dual BSD/GPL");