pci.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 2009-2012 Realtek Corporation.*/
  3. #include "wifi.h"
  4. #include "core.h"
  5. #include "pci.h"
  6. #include "base.h"
  7. #include "ps.h"
  8. #include "efuse.h"
  9. #include <linux/interrupt.h>
  10. #include <linux/export.h>
  11. #include <linux/module.h>
  12. MODULE_AUTHOR("lizhaoming <[email protected]>");
  13. MODULE_AUTHOR("Realtek WlanFAE <[email protected]>");
  14. MODULE_AUTHOR("Larry Finger <[email protected]>");
  15. MODULE_LICENSE("GPL");
  16. MODULE_DESCRIPTION("PCI basic driver for rtlwifi");
  17. static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = {
  18. INTEL_VENDOR_ID,
  19. ATI_VENDOR_ID,
  20. AMD_VENDOR_ID,
  21. SIS_VENDOR_ID
  22. };
  23. static const u8 ac_to_hwq[] = {
  24. VO_QUEUE,
  25. VI_QUEUE,
  26. BE_QUEUE,
  27. BK_QUEUE
  28. };
  29. static u8 _rtl_mac_to_hwqueue(struct ieee80211_hw *hw, struct sk_buff *skb)
  30. {
  31. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  32. __le16 fc = rtl_get_fc(skb);
  33. u8 queue_index = skb_get_queue_mapping(skb);
  34. struct ieee80211_hdr *hdr;
  35. if (unlikely(ieee80211_is_beacon(fc)))
  36. return BEACON_QUEUE;
  37. if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc))
  38. return MGNT_QUEUE;
  39. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE)
  40. if (ieee80211_is_nullfunc(fc))
  41. return HIGH_QUEUE;
  42. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) {
  43. hdr = rtl_get_hdr(skb);
  44. if (is_multicast_ether_addr(hdr->addr1) ||
  45. is_broadcast_ether_addr(hdr->addr1))
  46. return HIGH_QUEUE;
  47. }
  48. return ac_to_hwq[queue_index];
  49. }
  50. /* Update PCI dependent default settings*/
  51. static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw)
  52. {
  53. struct rtl_priv *rtlpriv = rtl_priv(hw);
  54. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  55. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  56. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  57. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  58. u8 init_aspm;
  59. ppsc->reg_rfps_level = 0;
  60. ppsc->support_aspm = false;
  61. /*Update PCI ASPM setting */
  62. ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm;
  63. switch (rtlpci->const_pci_aspm) {
  64. case 0:
  65. /*No ASPM */
  66. break;
  67. case 1:
  68. /*ASPM dynamically enabled/disable. */
  69. ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM;
  70. break;
  71. case 2:
  72. /*ASPM with Clock Req dynamically enabled/disable. */
  73. ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM |
  74. RT_RF_OFF_LEVL_CLK_REQ);
  75. break;
  76. case 3:
  77. /* Always enable ASPM and Clock Req
  78. * from initialization to halt.
  79. */
  80. ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM);
  81. ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM |
  82. RT_RF_OFF_LEVL_CLK_REQ);
  83. break;
  84. case 4:
  85. /* Always enable ASPM without Clock Req
  86. * from initialization to halt.
  87. */
  88. ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM |
  89. RT_RF_OFF_LEVL_CLK_REQ);
  90. ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM;
  91. break;
  92. }
  93. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
  94. /*Update Radio OFF setting */
  95. switch (rtlpci->const_hwsw_rfoff_d3) {
  96. case 1:
  97. if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
  98. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
  99. break;
  100. case 2:
  101. if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
  102. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
  103. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
  104. break;
  105. case 3:
  106. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3;
  107. break;
  108. }
  109. /*Set HW definition to determine if it supports ASPM. */
  110. switch (rtlpci->const_support_pciaspm) {
  111. case 0:
  112. /*Not support ASPM. */
  113. ppsc->support_aspm = false;
  114. break;
  115. case 1:
  116. /*Support ASPM. */
  117. ppsc->support_aspm = true;
  118. ppsc->support_backdoor = true;
  119. break;
  120. case 2:
  121. /*ASPM value set by chipset. */
  122. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
  123. ppsc->support_aspm = true;
  124. break;
  125. default:
  126. pr_err("switch case %#x not processed\n",
  127. rtlpci->const_support_pciaspm);
  128. break;
  129. }
  130. /* toshiba aspm issue, toshiba will set aspm selfly
  131. * so we should not set aspm in driver
  132. */
  133. pci_read_config_byte(rtlpci->pdev, 0x80, &init_aspm);
  134. if (rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8192SE &&
  135. init_aspm == 0x43)
  136. ppsc->support_aspm = false;
  137. }
  138. static bool _rtl_pci_platform_switch_device_pci_aspm(
  139. struct ieee80211_hw *hw,
  140. u8 value)
  141. {
  142. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  143. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  144. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)
  145. value |= 0x40;
  146. pci_write_config_byte(rtlpci->pdev, 0x80, value);
  147. return false;
  148. }
  149. /*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/
  150. static void _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value)
  151. {
  152. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  153. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  154. pci_write_config_byte(rtlpci->pdev, 0x81, value);
  155. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE)
  156. udelay(100);
  157. }
  158. /*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/
  159. static void rtl_pci_disable_aspm(struct ieee80211_hw *hw)
  160. {
  161. struct rtl_priv *rtlpriv = rtl_priv(hw);
  162. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  163. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  164. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  165. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  166. u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
  167. /*Retrieve original configuration settings. */
  168. u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg;
  169. u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter.
  170. pcibridge_linkctrlreg;
  171. u16 aspmlevel = 0;
  172. u8 tmp_u1b = 0;
  173. if (!ppsc->support_aspm)
  174. return;
  175. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
  176. rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE,
  177. "PCI(Bridge) UNKNOWN\n");
  178. return;
  179. }
  180. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
  181. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
  182. _rtl_pci_switch_clk_req(hw, 0x0);
  183. }
  184. /*for promising device will in L0 state after an I/O. */
  185. pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b);
  186. /*Set corresponding value. */
  187. aspmlevel |= BIT(0) | BIT(1);
  188. linkctrl_reg &= ~aspmlevel;
  189. pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1));
  190. _rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg);
  191. udelay(50);
  192. /*4 Disable Pci Bridge ASPM */
  193. pci_write_config_byte(rtlpci->pdev, (num4bytes << 2),
  194. pcibridge_linkctrlreg);
  195. udelay(50);
  196. }
  197. /*Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for
  198. *power saving We should follow the sequence to enable
  199. *RTL8192SE first then enable Pci Bridge ASPM
  200. *or the system will show bluescreen.
  201. */
  202. static void rtl_pci_enable_aspm(struct ieee80211_hw *hw)
  203. {
  204. struct rtl_priv *rtlpriv = rtl_priv(hw);
  205. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  206. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  207. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  208. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  209. u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
  210. u16 aspmlevel;
  211. u8 u_pcibridge_aspmsetting;
  212. u8 u_device_aspmsetting;
  213. if (!ppsc->support_aspm)
  214. return;
  215. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
  216. rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE,
  217. "PCI(Bridge) UNKNOWN\n");
  218. return;
  219. }
  220. /*4 Enable Pci Bridge ASPM */
  221. u_pcibridge_aspmsetting =
  222. pcipriv->ndis_adapter.pcibridge_linkctrlreg |
  223. rtlpci->const_hostpci_aspm_setting;
  224. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
  225. u_pcibridge_aspmsetting &= ~BIT(0);
  226. pci_write_config_byte(rtlpci->pdev, (num4bytes << 2),
  227. u_pcibridge_aspmsetting);
  228. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  229. "PlatformEnableASPM(): Write reg[%x] = %x\n",
  230. (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10),
  231. u_pcibridge_aspmsetting);
  232. udelay(50);
  233. /*Get ASPM level (with/without Clock Req) */
  234. aspmlevel = rtlpci->const_devicepci_aspm_setting;
  235. u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg;
  236. /*_rtl_pci_platform_switch_device_pci_aspm(dev,*/
  237. /*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */
  238. u_device_aspmsetting |= aspmlevel;
  239. _rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting);
  240. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
  241. _rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level &
  242. RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0);
  243. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
  244. }
  245. udelay(100);
  246. }
  247. static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw)
  248. {
  249. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  250. bool status = false;
  251. u8 offset_e0;
  252. unsigned int offset_e4;
  253. pci_write_config_byte(rtlpci->pdev, 0xe0, 0xa0);
  254. pci_read_config_byte(rtlpci->pdev, 0xe0, &offset_e0);
  255. if (offset_e0 == 0xA0) {
  256. pci_read_config_dword(rtlpci->pdev, 0xe4, &offset_e4);
  257. if (offset_e4 & BIT(23))
  258. status = true;
  259. }
  260. return status;
  261. }
  262. static bool rtl_pci_check_buddy_priv(struct ieee80211_hw *hw,
  263. struct rtl_priv **buddy_priv)
  264. {
  265. struct rtl_priv *rtlpriv = rtl_priv(hw);
  266. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  267. struct rtl_priv *tpriv = NULL, *iter;
  268. struct rtl_pci_priv *tpcipriv = NULL;
  269. if (!list_empty(&rtlpriv->glb_var->glb_priv_list)) {
  270. list_for_each_entry(iter, &rtlpriv->glb_var->glb_priv_list,
  271. list) {
  272. tpcipriv = (struct rtl_pci_priv *)iter->priv;
  273. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  274. "pcipriv->ndis_adapter.funcnumber %x\n",
  275. pcipriv->ndis_adapter.funcnumber);
  276. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  277. "tpcipriv->ndis_adapter.funcnumber %x\n",
  278. tpcipriv->ndis_adapter.funcnumber);
  279. if (pcipriv->ndis_adapter.busnumber ==
  280. tpcipriv->ndis_adapter.busnumber &&
  281. pcipriv->ndis_adapter.devnumber ==
  282. tpcipriv->ndis_adapter.devnumber &&
  283. pcipriv->ndis_adapter.funcnumber !=
  284. tpcipriv->ndis_adapter.funcnumber) {
  285. tpriv = iter;
  286. break;
  287. }
  288. }
  289. }
  290. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  291. "find_buddy_priv %d\n", tpriv != NULL);
  292. if (tpriv)
  293. *buddy_priv = tpriv;
  294. return tpriv != NULL;
  295. }
  296. static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw)
  297. {
  298. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  299. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  300. u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset;
  301. u8 linkctrl_reg;
  302. u8 num4bbytes;
  303. num4bbytes = (capabilityoffset + 0x10) / 4;
  304. /*Read Link Control Register */
  305. pci_read_config_byte(rtlpci->pdev, (num4bbytes << 2), &linkctrl_reg);
  306. pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg;
  307. }
  308. static void rtl_pci_parse_configuration(struct pci_dev *pdev,
  309. struct ieee80211_hw *hw)
  310. {
  311. struct rtl_priv *rtlpriv = rtl_priv(hw);
  312. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  313. u8 tmp;
  314. u16 linkctrl_reg;
  315. /*Link Control Register */
  316. pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &linkctrl_reg);
  317. pcipriv->ndis_adapter.linkctrl_reg = (u8)linkctrl_reg;
  318. rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Link Control Register =%x\n",
  319. pcipriv->ndis_adapter.linkctrl_reg);
  320. pci_read_config_byte(pdev, 0x98, &tmp);
  321. tmp |= BIT(4);
  322. pci_write_config_byte(pdev, 0x98, tmp);
  323. tmp = 0x17;
  324. pci_write_config_byte(pdev, 0x70f, tmp);
  325. }
  326. static void rtl_pci_init_aspm(struct ieee80211_hw *hw)
  327. {
  328. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  329. _rtl_pci_update_default_setting(hw);
  330. if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) {
  331. /*Always enable ASPM & Clock Req. */
  332. rtl_pci_enable_aspm(hw);
  333. RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM);
  334. }
  335. }
  336. static void _rtl_pci_io_handler_init(struct device *dev,
  337. struct ieee80211_hw *hw)
  338. {
  339. struct rtl_priv *rtlpriv = rtl_priv(hw);
  340. rtlpriv->io.dev = dev;
  341. rtlpriv->io.write8_async = pci_write8_async;
  342. rtlpriv->io.write16_async = pci_write16_async;
  343. rtlpriv->io.write32_async = pci_write32_async;
  344. rtlpriv->io.read8_sync = pci_read8_sync;
  345. rtlpriv->io.read16_sync = pci_read16_sync;
  346. rtlpriv->io.read32_sync = pci_read32_sync;
  347. }
  348. static bool _rtl_update_earlymode_info(struct ieee80211_hw *hw,
  349. struct sk_buff *skb,
  350. struct rtl_tcb_desc *tcb_desc, u8 tid)
  351. {
  352. struct rtl_priv *rtlpriv = rtl_priv(hw);
  353. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  354. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  355. struct sk_buff *next_skb;
  356. u8 additionlen = FCS_LEN;
  357. /* here open is 4, wep/tkip is 8, aes is 12*/
  358. if (info->control.hw_key)
  359. additionlen += info->control.hw_key->icv_len;
  360. /* The most skb num is 6 */
  361. tcb_desc->empkt_num = 0;
  362. spin_lock_bh(&rtlpriv->locks.waitq_lock);
  363. skb_queue_walk(&rtlpriv->mac80211.skb_waitq[tid], next_skb) {
  364. struct ieee80211_tx_info *next_info;
  365. next_info = IEEE80211_SKB_CB(next_skb);
  366. if (next_info->flags & IEEE80211_TX_CTL_AMPDU) {
  367. tcb_desc->empkt_len[tcb_desc->empkt_num] =
  368. next_skb->len + additionlen;
  369. tcb_desc->empkt_num++;
  370. } else {
  371. break;
  372. }
  373. if (skb_queue_is_last(&rtlpriv->mac80211.skb_waitq[tid],
  374. next_skb))
  375. break;
  376. if (tcb_desc->empkt_num >= rtlhal->max_earlymode_num)
  377. break;
  378. }
  379. spin_unlock_bh(&rtlpriv->locks.waitq_lock);
  380. return true;
  381. }
  382. /* just for early mode now */
  383. static void _rtl_pci_tx_chk_waitq(struct ieee80211_hw *hw)
  384. {
  385. struct rtl_priv *rtlpriv = rtl_priv(hw);
  386. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  387. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  388. struct sk_buff *skb = NULL;
  389. struct ieee80211_tx_info *info = NULL;
  390. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  391. int tid;
  392. if (!rtlpriv->rtlhal.earlymode_enable)
  393. return;
  394. if (rtlpriv->dm.supp_phymode_switch &&
  395. (rtlpriv->easy_concurrent_ctl.switch_in_process ||
  396. (rtlpriv->buddy_priv &&
  397. rtlpriv->buddy_priv->easy_concurrent_ctl.switch_in_process)))
  398. return;
  399. /* we just use em for BE/BK/VI/VO */
  400. for (tid = 7; tid >= 0; tid--) {
  401. u8 hw_queue = ac_to_hwq[rtl_tid_to_ac(tid)];
  402. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[hw_queue];
  403. while (!mac->act_scanning &&
  404. rtlpriv->psc.rfpwr_state == ERFON) {
  405. struct rtl_tcb_desc tcb_desc;
  406. memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
  407. spin_lock(&rtlpriv->locks.waitq_lock);
  408. if (!skb_queue_empty(&mac->skb_waitq[tid]) &&
  409. (ring->entries - skb_queue_len(&ring->queue) >
  410. rtlhal->max_earlymode_num)) {
  411. skb = skb_dequeue(&mac->skb_waitq[tid]);
  412. } else {
  413. spin_unlock(&rtlpriv->locks.waitq_lock);
  414. break;
  415. }
  416. spin_unlock(&rtlpriv->locks.waitq_lock);
  417. /* Some macaddr can't do early mode. like
  418. * multicast/broadcast/no_qos data
  419. */
  420. info = IEEE80211_SKB_CB(skb);
  421. if (info->flags & IEEE80211_TX_CTL_AMPDU)
  422. _rtl_update_earlymode_info(hw, skb,
  423. &tcb_desc, tid);
  424. rtlpriv->intf_ops->adapter_tx(hw, NULL, skb, &tcb_desc);
  425. }
  426. }
  427. }
  428. static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio)
  429. {
  430. struct rtl_priv *rtlpriv = rtl_priv(hw);
  431. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  432. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
  433. while (skb_queue_len(&ring->queue)) {
  434. struct sk_buff *skb;
  435. struct ieee80211_tx_info *info;
  436. __le16 fc;
  437. u8 tid;
  438. u8 *entry;
  439. if (rtlpriv->use_new_trx_flow)
  440. entry = (u8 *)(&ring->buffer_desc[ring->idx]);
  441. else
  442. entry = (u8 *)(&ring->desc[ring->idx]);
  443. if (!rtlpriv->cfg->ops->is_tx_desc_closed(hw, prio, ring->idx))
  444. return;
  445. ring->idx = (ring->idx + 1) % ring->entries;
  446. skb = __skb_dequeue(&ring->queue);
  447. dma_unmap_single(&rtlpci->pdev->dev,
  448. rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
  449. true, HW_DESC_TXBUFF_ADDR),
  450. skb->len, DMA_TO_DEVICE);
  451. /* remove early mode header */
  452. if (rtlpriv->rtlhal.earlymode_enable)
  453. skb_pull(skb, EM_HDR_LEN);
  454. rtl_dbg(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE,
  455. "new ring->idx:%d, free: skb_queue_len:%d, free: seq:%x\n",
  456. ring->idx,
  457. skb_queue_len(&ring->queue),
  458. *(u16 *)(skb->data + 22));
  459. if (prio == TXCMD_QUEUE) {
  460. dev_kfree_skb(skb);
  461. goto tx_status_ok;
  462. }
  463. /* for sw LPS, just after NULL skb send out, we can
  464. * sure AP knows we are sleeping, we should not let
  465. * rf sleep
  466. */
  467. fc = rtl_get_fc(skb);
  468. if (ieee80211_is_nullfunc(fc)) {
  469. if (ieee80211_has_pm(fc)) {
  470. rtlpriv->mac80211.offchan_delay = true;
  471. rtlpriv->psc.state_inap = true;
  472. } else {
  473. rtlpriv->psc.state_inap = false;
  474. }
  475. }
  476. if (ieee80211_is_action(fc)) {
  477. struct ieee80211_mgmt *action_frame =
  478. (struct ieee80211_mgmt *)skb->data;
  479. if (action_frame->u.action.u.ht_smps.action ==
  480. WLAN_HT_ACTION_SMPS) {
  481. dev_kfree_skb(skb);
  482. goto tx_status_ok;
  483. }
  484. }
  485. /* update tid tx pkt num */
  486. tid = rtl_get_tid(skb);
  487. if (tid <= 7)
  488. rtlpriv->link_info.tidtx_inperiod[tid]++;
  489. info = IEEE80211_SKB_CB(skb);
  490. if (likely(!ieee80211_is_nullfunc(fc))) {
  491. ieee80211_tx_info_clear_status(info);
  492. info->flags |= IEEE80211_TX_STAT_ACK;
  493. /*info->status.rates[0].count = 1; */
  494. ieee80211_tx_status_irqsafe(hw, skb);
  495. } else {
  496. rtl_tx_ackqueue(hw, skb);
  497. }
  498. if ((ring->entries - skb_queue_len(&ring->queue)) <= 4) {
  499. rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG,
  500. "more desc left, wake skb_queue@%d, ring->idx = %d, skb_queue_len = 0x%x\n",
  501. prio, ring->idx,
  502. skb_queue_len(&ring->queue));
  503. ieee80211_wake_queue(hw, skb_get_queue_mapping(skb));
  504. }
  505. tx_status_ok:
  506. skb = NULL;
  507. }
  508. if (((rtlpriv->link_info.num_rx_inperiod +
  509. rtlpriv->link_info.num_tx_inperiod) > 8) ||
  510. rtlpriv->link_info.num_rx_inperiod > 2)
  511. rtl_lps_leave(hw, false);
  512. }
  513. static int _rtl_pci_init_one_rxdesc(struct ieee80211_hw *hw,
  514. struct sk_buff *new_skb, u8 *entry,
  515. int rxring_idx, int desc_idx)
  516. {
  517. struct rtl_priv *rtlpriv = rtl_priv(hw);
  518. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  519. u32 bufferaddress;
  520. u8 tmp_one = 1;
  521. struct sk_buff *skb;
  522. if (likely(new_skb)) {
  523. skb = new_skb;
  524. goto remap;
  525. }
  526. skb = dev_alloc_skb(rtlpci->rxbuffersize);
  527. if (!skb)
  528. return 0;
  529. remap:
  530. /* just set skb->cb to mapping addr for pci_unmap_single use */
  531. *((dma_addr_t *)skb->cb) =
  532. dma_map_single(&rtlpci->pdev->dev, skb_tail_pointer(skb),
  533. rtlpci->rxbuffersize, DMA_FROM_DEVICE);
  534. bufferaddress = *((dma_addr_t *)skb->cb);
  535. if (dma_mapping_error(&rtlpci->pdev->dev, bufferaddress))
  536. return 0;
  537. rtlpci->rx_ring[rxring_idx].rx_buf[desc_idx] = skb;
  538. if (rtlpriv->use_new_trx_flow) {
  539. /* skb->cb may be 64 bit address */
  540. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  541. HW_DESC_RX_PREPARE,
  542. (u8 *)(dma_addr_t *)skb->cb);
  543. } else {
  544. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  545. HW_DESC_RXBUFF_ADDR,
  546. (u8 *)&bufferaddress);
  547. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  548. HW_DESC_RXPKT_LEN,
  549. (u8 *)&rtlpci->rxbuffersize);
  550. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  551. HW_DESC_RXOWN,
  552. (u8 *)&tmp_one);
  553. }
  554. return 1;
  555. }
  556. /* inorder to receive 8K AMSDU we have set skb to
  557. * 9100bytes in init rx ring, but if this packet is
  558. * not a AMSDU, this large packet will be sent to
  559. * TCP/IP directly, this cause big packet ping fail
  560. * like: "ping -s 65507", so here we will realloc skb
  561. * based on the true size of packet, Mac80211
  562. * Probably will do it better, but does not yet.
  563. *
  564. * Some platform will fail when alloc skb sometimes.
  565. * in this condition, we will send the old skb to
  566. * mac80211 directly, this will not cause any other
  567. * issues, but only this packet will be lost by TCP/IP
  568. */
  569. static void _rtl_pci_rx_to_mac80211(struct ieee80211_hw *hw,
  570. struct sk_buff *skb,
  571. struct ieee80211_rx_status rx_status)
  572. {
  573. if (unlikely(!rtl_action_proc(hw, skb, false))) {
  574. dev_kfree_skb_any(skb);
  575. } else {
  576. struct sk_buff *uskb = NULL;
  577. uskb = dev_alloc_skb(skb->len + 128);
  578. if (likely(uskb)) {
  579. memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status,
  580. sizeof(rx_status));
  581. skb_put_data(uskb, skb->data, skb->len);
  582. dev_kfree_skb_any(skb);
  583. ieee80211_rx_irqsafe(hw, uskb);
  584. } else {
  585. ieee80211_rx_irqsafe(hw, skb);
  586. }
  587. }
  588. }
  589. /*hsisr interrupt handler*/
  590. static void _rtl_pci_hs_interrupt(struct ieee80211_hw *hw)
  591. {
  592. struct rtl_priv *rtlpriv = rtl_priv(hw);
  593. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  594. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR],
  595. rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR]) |
  596. rtlpci->sys_irq_mask);
  597. }
  598. static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw)
  599. {
  600. struct rtl_priv *rtlpriv = rtl_priv(hw);
  601. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  602. int rxring_idx = RTL_PCI_RX_MPDU_QUEUE;
  603. struct ieee80211_rx_status rx_status = { 0 };
  604. unsigned int count = rtlpci->rxringcount;
  605. u8 own;
  606. u8 tmp_one;
  607. bool unicast = false;
  608. u8 hw_queue = 0;
  609. unsigned int rx_remained_cnt = 0;
  610. struct rtl_stats stats = {
  611. .signal = 0,
  612. .rate = 0,
  613. };
  614. /*RX NORMAL PKT */
  615. while (count--) {
  616. struct ieee80211_hdr *hdr;
  617. __le16 fc;
  618. u16 len;
  619. /*rx buffer descriptor */
  620. struct rtl_rx_buffer_desc *buffer_desc = NULL;
  621. /*if use new trx flow, it means wifi info */
  622. struct rtl_rx_desc *pdesc = NULL;
  623. /*rx pkt */
  624. struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[
  625. rtlpci->rx_ring[rxring_idx].idx];
  626. struct sk_buff *new_skb;
  627. if (rtlpriv->use_new_trx_flow) {
  628. if (rx_remained_cnt == 0)
  629. rx_remained_cnt =
  630. rtlpriv->cfg->ops->rx_desc_buff_remained_cnt(hw,
  631. hw_queue);
  632. if (rx_remained_cnt == 0)
  633. return;
  634. buffer_desc = &rtlpci->rx_ring[rxring_idx].buffer_desc[
  635. rtlpci->rx_ring[rxring_idx].idx];
  636. pdesc = (struct rtl_rx_desc *)skb->data;
  637. } else { /* rx descriptor */
  638. pdesc = &rtlpci->rx_ring[rxring_idx].desc[
  639. rtlpci->rx_ring[rxring_idx].idx];
  640. own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc,
  641. false,
  642. HW_DESC_OWN);
  643. if (own) /* wait data to be filled by hardware */
  644. return;
  645. }
  646. /* Reaching this point means: data is filled already
  647. * AAAAAAttention !!!
  648. * We can NOT access 'skb' before 'pci_unmap_single'
  649. */
  650. dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb),
  651. rtlpci->rxbuffersize, DMA_FROM_DEVICE);
  652. /* get a new skb - if fail, old one will be reused */
  653. new_skb = dev_alloc_skb(rtlpci->rxbuffersize);
  654. if (unlikely(!new_skb))
  655. goto no_new;
  656. memset(&rx_status, 0, sizeof(rx_status));
  657. rtlpriv->cfg->ops->query_rx_desc(hw, &stats,
  658. &rx_status, (u8 *)pdesc, skb);
  659. if (rtlpriv->use_new_trx_flow)
  660. rtlpriv->cfg->ops->rx_check_dma_ok(hw,
  661. (u8 *)buffer_desc,
  662. hw_queue);
  663. len = rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc, false,
  664. HW_DESC_RXPKT_LEN);
  665. if (skb->end - skb->tail > len) {
  666. skb_put(skb, len);
  667. if (rtlpriv->use_new_trx_flow)
  668. skb_reserve(skb, stats.rx_drvinfo_size +
  669. stats.rx_bufshift + 24);
  670. else
  671. skb_reserve(skb, stats.rx_drvinfo_size +
  672. stats.rx_bufshift);
  673. } else {
  674. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  675. "skb->end - skb->tail = %d, len is %d\n",
  676. skb->end - skb->tail, len);
  677. dev_kfree_skb_any(skb);
  678. goto new_trx_end;
  679. }
  680. /* handle command packet here */
  681. if (stats.packet_report_type == C2H_PACKET) {
  682. rtl_c2hcmd_enqueue(hw, skb);
  683. goto new_trx_end;
  684. }
  685. /* NOTICE This can not be use for mac80211,
  686. * this is done in mac80211 code,
  687. * if done here sec DHCP will fail
  688. * skb_trim(skb, skb->len - 4);
  689. */
  690. hdr = rtl_get_hdr(skb);
  691. fc = rtl_get_fc(skb);
  692. if (!stats.crc && !stats.hwerror && (skb->len > FCS_LEN)) {
  693. memcpy(IEEE80211_SKB_RXCB(skb), &rx_status,
  694. sizeof(rx_status));
  695. if (is_broadcast_ether_addr(hdr->addr1)) {
  696. ;/*TODO*/
  697. } else if (is_multicast_ether_addr(hdr->addr1)) {
  698. ;/*TODO*/
  699. } else {
  700. unicast = true;
  701. rtlpriv->stats.rxbytesunicast += skb->len;
  702. }
  703. rtl_is_special_data(hw, skb, false, true);
  704. if (ieee80211_is_data(fc)) {
  705. rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX);
  706. if (unicast)
  707. rtlpriv->link_info.num_rx_inperiod++;
  708. }
  709. rtl_collect_scan_list(hw, skb);
  710. /* static bcn for roaming */
  711. rtl_beacon_statistic(hw, skb);
  712. rtl_p2p_info(hw, (void *)skb->data, skb->len);
  713. /* for sw lps */
  714. rtl_swlps_beacon(hw, (void *)skb->data, skb->len);
  715. rtl_recognize_peer(hw, (void *)skb->data, skb->len);
  716. if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP &&
  717. rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G &&
  718. (ieee80211_is_beacon(fc) ||
  719. ieee80211_is_probe_resp(fc))) {
  720. dev_kfree_skb_any(skb);
  721. } else {
  722. _rtl_pci_rx_to_mac80211(hw, skb, rx_status);
  723. }
  724. } else {
  725. /* drop packets with errors or those too short */
  726. dev_kfree_skb_any(skb);
  727. }
  728. new_trx_end:
  729. if (rtlpriv->use_new_trx_flow) {
  730. rtlpci->rx_ring[hw_queue].next_rx_rp += 1;
  731. rtlpci->rx_ring[hw_queue].next_rx_rp %=
  732. RTL_PCI_MAX_RX_COUNT;
  733. rx_remained_cnt--;
  734. rtl_write_word(rtlpriv, 0x3B4,
  735. rtlpci->rx_ring[hw_queue].next_rx_rp);
  736. }
  737. if (((rtlpriv->link_info.num_rx_inperiod +
  738. rtlpriv->link_info.num_tx_inperiod) > 8) ||
  739. rtlpriv->link_info.num_rx_inperiod > 2)
  740. rtl_lps_leave(hw, false);
  741. skb = new_skb;
  742. no_new:
  743. if (rtlpriv->use_new_trx_flow) {
  744. _rtl_pci_init_one_rxdesc(hw, skb, (u8 *)buffer_desc,
  745. rxring_idx,
  746. rtlpci->rx_ring[rxring_idx].idx);
  747. } else {
  748. _rtl_pci_init_one_rxdesc(hw, skb, (u8 *)pdesc,
  749. rxring_idx,
  750. rtlpci->rx_ring[rxring_idx].idx);
  751. if (rtlpci->rx_ring[rxring_idx].idx ==
  752. rtlpci->rxringcount - 1)
  753. rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc,
  754. false,
  755. HW_DESC_RXERO,
  756. (u8 *)&tmp_one);
  757. }
  758. rtlpci->rx_ring[rxring_idx].idx =
  759. (rtlpci->rx_ring[rxring_idx].idx + 1) %
  760. rtlpci->rxringcount;
  761. }
  762. }
  763. static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id)
  764. {
  765. struct ieee80211_hw *hw = dev_id;
  766. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  767. struct rtl_priv *rtlpriv = rtl_priv(hw);
  768. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  769. unsigned long flags;
  770. struct rtl_int intvec = {0};
  771. irqreturn_t ret = IRQ_HANDLED;
  772. if (rtlpci->irq_enabled == 0)
  773. return ret;
  774. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  775. rtlpriv->cfg->ops->disable_interrupt(hw);
  776. /*read ISR: 4/8bytes */
  777. rtlpriv->cfg->ops->interrupt_recognized(hw, &intvec);
  778. /*Shared IRQ or HW disappeared */
  779. if (!intvec.inta || intvec.inta == 0xffff)
  780. goto done;
  781. /*<1> beacon related */
  782. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK])
  783. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  784. "beacon ok interrupt!\n");
  785. if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDER]))
  786. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  787. "beacon err interrupt!\n");
  788. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BDOK])
  789. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "beacon interrupt!\n");
  790. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BCNINT]) {
  791. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  792. "prepare beacon for interrupt!\n");
  793. tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet);
  794. }
  795. /*<2> Tx related */
  796. if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_TXFOVW]))
  797. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "IMR_TXFOVW!\n");
  798. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) {
  799. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  800. "Manage ok interrupt!\n");
  801. _rtl_pci_tx_isr(hw, MGNT_QUEUE);
  802. }
  803. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) {
  804. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  805. "HIGH_QUEUE ok interrupt!\n");
  806. _rtl_pci_tx_isr(hw, HIGH_QUEUE);
  807. }
  808. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) {
  809. rtlpriv->link_info.num_tx_inperiod++;
  810. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  811. "BK Tx OK interrupt!\n");
  812. _rtl_pci_tx_isr(hw, BK_QUEUE);
  813. }
  814. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) {
  815. rtlpriv->link_info.num_tx_inperiod++;
  816. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  817. "BE TX OK interrupt!\n");
  818. _rtl_pci_tx_isr(hw, BE_QUEUE);
  819. }
  820. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) {
  821. rtlpriv->link_info.num_tx_inperiod++;
  822. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  823. "VI TX OK interrupt!\n");
  824. _rtl_pci_tx_isr(hw, VI_QUEUE);
  825. }
  826. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) {
  827. rtlpriv->link_info.num_tx_inperiod++;
  828. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  829. "Vo TX OK interrupt!\n");
  830. _rtl_pci_tx_isr(hw, VO_QUEUE);
  831. }
  832. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) {
  833. if (intvec.intd & rtlpriv->cfg->maps[RTL_IMR_H2CDOK]) {
  834. rtlpriv->link_info.num_tx_inperiod++;
  835. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  836. "H2C TX OK interrupt!\n");
  837. _rtl_pci_tx_isr(hw, H2C_QUEUE);
  838. }
  839. }
  840. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  841. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_COMDOK]) {
  842. rtlpriv->link_info.num_tx_inperiod++;
  843. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  844. "CMD TX OK interrupt!\n");
  845. _rtl_pci_tx_isr(hw, TXCMD_QUEUE);
  846. }
  847. }
  848. /*<3> Rx related */
  849. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) {
  850. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "Rx ok interrupt!\n");
  851. _rtl_pci_rx_interrupt(hw);
  852. }
  853. if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) {
  854. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  855. "rx descriptor unavailable!\n");
  856. _rtl_pci_rx_interrupt(hw);
  857. }
  858. if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) {
  859. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "rx overflow !\n");
  860. _rtl_pci_rx_interrupt(hw);
  861. }
  862. /*<4> fw related*/
  863. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8723AE) {
  864. if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_C2HCMD]) {
  865. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  866. "firmware interrupt!\n");
  867. queue_delayed_work(rtlpriv->works.rtl_wq,
  868. &rtlpriv->works.fwevt_wq, 0);
  869. }
  870. }
  871. /*<5> hsisr related*/
  872. /* Only 8188EE & 8723BE Supported.
  873. * If Other ICs Come in, System will corrupt,
  874. * because maps[RTL_IMR_HSISR_IND] & maps[MAC_HSISR]
  875. * are not initialized
  876. */
  877. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE ||
  878. rtlhal->hw_type == HARDWARE_TYPE_RTL8723BE) {
  879. if (unlikely(intvec.inta &
  880. rtlpriv->cfg->maps[RTL_IMR_HSISR_IND])) {
  881. rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
  882. "hsisr interrupt!\n");
  883. _rtl_pci_hs_interrupt(hw);
  884. }
  885. }
  886. if (rtlpriv->rtlhal.earlymode_enable)
  887. tasklet_schedule(&rtlpriv->works.irq_tasklet);
  888. done:
  889. rtlpriv->cfg->ops->enable_interrupt(hw);
  890. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  891. return ret;
  892. }
  893. static void _rtl_pci_irq_tasklet(struct tasklet_struct *t)
  894. {
  895. struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t, works.irq_tasklet);
  896. struct ieee80211_hw *hw = rtlpriv->hw;
  897. _rtl_pci_tx_chk_waitq(hw);
  898. }
  899. static void _rtl_pci_prepare_bcn_tasklet(struct tasklet_struct *t)
  900. {
  901. struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t,
  902. works.irq_prepare_bcn_tasklet);
  903. struct ieee80211_hw *hw = rtlpriv->hw;
  904. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  905. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  906. struct rtl8192_tx_ring *ring = NULL;
  907. struct ieee80211_hdr *hdr = NULL;
  908. struct ieee80211_tx_info *info = NULL;
  909. struct sk_buff *pskb = NULL;
  910. struct rtl_tx_desc *pdesc = NULL;
  911. struct rtl_tcb_desc tcb_desc;
  912. /*This is for new trx flow*/
  913. struct rtl_tx_buffer_desc *pbuffer_desc = NULL;
  914. u8 temp_one = 1;
  915. u8 *entry;
  916. memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
  917. ring = &rtlpci->tx_ring[BEACON_QUEUE];
  918. pskb = __skb_dequeue(&ring->queue);
  919. if (rtlpriv->use_new_trx_flow)
  920. entry = (u8 *)(&ring->buffer_desc[ring->idx]);
  921. else
  922. entry = (u8 *)(&ring->desc[ring->idx]);
  923. if (pskb) {
  924. dma_unmap_single(&rtlpci->pdev->dev,
  925. rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
  926. true, HW_DESC_TXBUFF_ADDR),
  927. pskb->len, DMA_TO_DEVICE);
  928. kfree_skb(pskb);
  929. }
  930. /*NB: the beacon data buffer must be 32-bit aligned. */
  931. pskb = ieee80211_beacon_get(hw, mac->vif, 0);
  932. if (!pskb)
  933. return;
  934. hdr = rtl_get_hdr(pskb);
  935. info = IEEE80211_SKB_CB(pskb);
  936. pdesc = &ring->desc[0];
  937. if (rtlpriv->use_new_trx_flow)
  938. pbuffer_desc = &ring->buffer_desc[0];
  939. rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc,
  940. (u8 *)pbuffer_desc, info, NULL, pskb,
  941. BEACON_QUEUE, &tcb_desc);
  942. __skb_queue_tail(&ring->queue, pskb);
  943. if (rtlpriv->use_new_trx_flow) {
  944. temp_one = 4;
  945. rtlpriv->cfg->ops->set_desc(hw, (u8 *)pbuffer_desc, true,
  946. HW_DESC_OWN, (u8 *)&temp_one);
  947. } else {
  948. rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN,
  949. &temp_one);
  950. }
  951. }
  952. static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw)
  953. {
  954. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  955. struct rtl_priv *rtlpriv = rtl_priv(hw);
  956. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  957. u8 i;
  958. u16 desc_num;
  959. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192EE)
  960. desc_num = TX_DESC_NUM_92E;
  961. else if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE)
  962. desc_num = TX_DESC_NUM_8822B;
  963. else
  964. desc_num = RT_TXDESC_NUM;
  965. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  966. rtlpci->txringcount[i] = desc_num;
  967. /*we just alloc 2 desc for beacon queue,
  968. *because we just need first desc in hw beacon.
  969. */
  970. rtlpci->txringcount[BEACON_QUEUE] = 2;
  971. /*BE queue need more descriptor for performance
  972. *consideration or, No more tx desc will happen,
  973. *and may cause mac80211 mem leakage.
  974. */
  975. if (!rtl_priv(hw)->use_new_trx_flow)
  976. rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE;
  977. rtlpci->rxbuffersize = 9100; /*2048/1024; */
  978. rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */
  979. }
  980. static void _rtl_pci_init_struct(struct ieee80211_hw *hw,
  981. struct pci_dev *pdev)
  982. {
  983. struct rtl_priv *rtlpriv = rtl_priv(hw);
  984. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  985. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  986. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  987. rtlpci->up_first_time = true;
  988. rtlpci->being_init_adapter = false;
  989. rtlhal->hw = hw;
  990. rtlpci->pdev = pdev;
  991. /*Tx/Rx related var */
  992. _rtl_pci_init_trx_var(hw);
  993. /*IBSS*/
  994. mac->beacon_interval = 100;
  995. /*AMPDU*/
  996. mac->min_space_cfg = 0;
  997. mac->max_mss_density = 0;
  998. /*set sane AMPDU defaults */
  999. mac->current_ampdu_density = 7;
  1000. mac->current_ampdu_factor = 3;
  1001. /*Retry Limit*/
  1002. mac->retry_short = 7;
  1003. mac->retry_long = 7;
  1004. /*QOS*/
  1005. rtlpci->acm_method = EACMWAY2_SW;
  1006. /*task */
  1007. tasklet_setup(&rtlpriv->works.irq_tasklet, _rtl_pci_irq_tasklet);
  1008. tasklet_setup(&rtlpriv->works.irq_prepare_bcn_tasklet,
  1009. _rtl_pci_prepare_bcn_tasklet);
  1010. INIT_WORK(&rtlpriv->works.lps_change_work,
  1011. rtl_lps_change_work_callback);
  1012. }
  1013. static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw,
  1014. unsigned int prio, unsigned int entries)
  1015. {
  1016. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1017. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1018. struct rtl_tx_buffer_desc *buffer_desc;
  1019. struct rtl_tx_desc *desc;
  1020. dma_addr_t buffer_desc_dma, desc_dma;
  1021. u32 nextdescaddress;
  1022. int i;
  1023. /* alloc tx buffer desc for new trx flow*/
  1024. if (rtlpriv->use_new_trx_flow) {
  1025. buffer_desc =
  1026. dma_alloc_coherent(&rtlpci->pdev->dev,
  1027. sizeof(*buffer_desc) * entries,
  1028. &buffer_desc_dma, GFP_KERNEL);
  1029. if (!buffer_desc || (unsigned long)buffer_desc & 0xFF) {
  1030. pr_err("Cannot allocate TX ring (prio = %d)\n",
  1031. prio);
  1032. return -ENOMEM;
  1033. }
  1034. rtlpci->tx_ring[prio].buffer_desc = buffer_desc;
  1035. rtlpci->tx_ring[prio].buffer_desc_dma = buffer_desc_dma;
  1036. rtlpci->tx_ring[prio].cur_tx_rp = 0;
  1037. rtlpci->tx_ring[prio].cur_tx_wp = 0;
  1038. }
  1039. /* alloc dma for this ring */
  1040. desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*desc) * entries,
  1041. &desc_dma, GFP_KERNEL);
  1042. if (!desc || (unsigned long)desc & 0xFF) {
  1043. pr_err("Cannot allocate TX ring (prio = %d)\n", prio);
  1044. return -ENOMEM;
  1045. }
  1046. rtlpci->tx_ring[prio].desc = desc;
  1047. rtlpci->tx_ring[prio].dma = desc_dma;
  1048. rtlpci->tx_ring[prio].idx = 0;
  1049. rtlpci->tx_ring[prio].entries = entries;
  1050. skb_queue_head_init(&rtlpci->tx_ring[prio].queue);
  1051. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "queue:%d, ring_addr:%p\n",
  1052. prio, desc);
  1053. /* init every desc in this ring */
  1054. if (!rtlpriv->use_new_trx_flow) {
  1055. for (i = 0; i < entries; i++) {
  1056. nextdescaddress = (u32)desc_dma +
  1057. ((i + 1) % entries) *
  1058. sizeof(*desc);
  1059. rtlpriv->cfg->ops->set_desc(hw, (u8 *)&desc[i],
  1060. true,
  1061. HW_DESC_TX_NEXTDESC_ADDR,
  1062. (u8 *)&nextdescaddress);
  1063. }
  1064. }
  1065. return 0;
  1066. }
  1067. static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw, int rxring_idx)
  1068. {
  1069. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1070. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1071. int i;
  1072. if (rtlpriv->use_new_trx_flow) {
  1073. struct rtl_rx_buffer_desc *entry = NULL;
  1074. /* alloc dma for this ring */
  1075. rtlpci->rx_ring[rxring_idx].buffer_desc =
  1076. dma_alloc_coherent(&rtlpci->pdev->dev,
  1077. sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) *
  1078. rtlpci->rxringcount,
  1079. &rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL);
  1080. if (!rtlpci->rx_ring[rxring_idx].buffer_desc ||
  1081. (ulong)rtlpci->rx_ring[rxring_idx].buffer_desc & 0xFF) {
  1082. pr_err("Cannot allocate RX ring\n");
  1083. return -ENOMEM;
  1084. }
  1085. /* init every desc in this ring */
  1086. rtlpci->rx_ring[rxring_idx].idx = 0;
  1087. for (i = 0; i < rtlpci->rxringcount; i++) {
  1088. entry = &rtlpci->rx_ring[rxring_idx].buffer_desc[i];
  1089. if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry,
  1090. rxring_idx, i))
  1091. return -ENOMEM;
  1092. }
  1093. } else {
  1094. struct rtl_rx_desc *entry = NULL;
  1095. u8 tmp_one = 1;
  1096. /* alloc dma for this ring */
  1097. rtlpci->rx_ring[rxring_idx].desc =
  1098. dma_alloc_coherent(&rtlpci->pdev->dev,
  1099. sizeof(*rtlpci->rx_ring[rxring_idx].desc) *
  1100. rtlpci->rxringcount,
  1101. &rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL);
  1102. if (!rtlpci->rx_ring[rxring_idx].desc ||
  1103. (unsigned long)rtlpci->rx_ring[rxring_idx].desc & 0xFF) {
  1104. pr_err("Cannot allocate RX ring\n");
  1105. return -ENOMEM;
  1106. }
  1107. /* init every desc in this ring */
  1108. rtlpci->rx_ring[rxring_idx].idx = 0;
  1109. for (i = 0; i < rtlpci->rxringcount; i++) {
  1110. entry = &rtlpci->rx_ring[rxring_idx].desc[i];
  1111. if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry,
  1112. rxring_idx, i))
  1113. return -ENOMEM;
  1114. }
  1115. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  1116. HW_DESC_RXERO, &tmp_one);
  1117. }
  1118. return 0;
  1119. }
  1120. static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw,
  1121. unsigned int prio)
  1122. {
  1123. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1124. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1125. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
  1126. /* free every desc in this ring */
  1127. while (skb_queue_len(&ring->queue)) {
  1128. u8 *entry;
  1129. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  1130. if (rtlpriv->use_new_trx_flow)
  1131. entry = (u8 *)(&ring->buffer_desc[ring->idx]);
  1132. else
  1133. entry = (u8 *)(&ring->desc[ring->idx]);
  1134. dma_unmap_single(&rtlpci->pdev->dev,
  1135. rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
  1136. true, HW_DESC_TXBUFF_ADDR),
  1137. skb->len, DMA_TO_DEVICE);
  1138. kfree_skb(skb);
  1139. ring->idx = (ring->idx + 1) % ring->entries;
  1140. }
  1141. /* free dma of this ring */
  1142. dma_free_coherent(&rtlpci->pdev->dev,
  1143. sizeof(*ring->desc) * ring->entries, ring->desc,
  1144. ring->dma);
  1145. ring->desc = NULL;
  1146. if (rtlpriv->use_new_trx_flow) {
  1147. dma_free_coherent(&rtlpci->pdev->dev,
  1148. sizeof(*ring->buffer_desc) * ring->entries,
  1149. ring->buffer_desc, ring->buffer_desc_dma);
  1150. ring->buffer_desc = NULL;
  1151. }
  1152. }
  1153. static void _rtl_pci_free_rx_ring(struct ieee80211_hw *hw, int rxring_idx)
  1154. {
  1155. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1156. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1157. int i;
  1158. /* free every desc in this ring */
  1159. for (i = 0; i < rtlpci->rxringcount; i++) {
  1160. struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[i];
  1161. if (!skb)
  1162. continue;
  1163. dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb),
  1164. rtlpci->rxbuffersize, DMA_FROM_DEVICE);
  1165. kfree_skb(skb);
  1166. }
  1167. /* free dma of this ring */
  1168. if (rtlpriv->use_new_trx_flow) {
  1169. dma_free_coherent(&rtlpci->pdev->dev,
  1170. sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) *
  1171. rtlpci->rxringcount,
  1172. rtlpci->rx_ring[rxring_idx].buffer_desc,
  1173. rtlpci->rx_ring[rxring_idx].dma);
  1174. rtlpci->rx_ring[rxring_idx].buffer_desc = NULL;
  1175. } else {
  1176. dma_free_coherent(&rtlpci->pdev->dev,
  1177. sizeof(*rtlpci->rx_ring[rxring_idx].desc) *
  1178. rtlpci->rxringcount,
  1179. rtlpci->rx_ring[rxring_idx].desc,
  1180. rtlpci->rx_ring[rxring_idx].dma);
  1181. rtlpci->rx_ring[rxring_idx].desc = NULL;
  1182. }
  1183. }
  1184. static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw)
  1185. {
  1186. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1187. int ret;
  1188. int i, rxring_idx;
  1189. /* rxring_idx 0:RX_MPDU_QUEUE
  1190. * rxring_idx 1:RX_CMD_QUEUE
  1191. */
  1192. for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) {
  1193. ret = _rtl_pci_init_rx_ring(hw, rxring_idx);
  1194. if (ret)
  1195. return ret;
  1196. }
  1197. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
  1198. ret = _rtl_pci_init_tx_ring(hw, i, rtlpci->txringcount[i]);
  1199. if (ret)
  1200. goto err_free_rings;
  1201. }
  1202. return 0;
  1203. err_free_rings:
  1204. for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++)
  1205. _rtl_pci_free_rx_ring(hw, rxring_idx);
  1206. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  1207. if (rtlpci->tx_ring[i].desc ||
  1208. rtlpci->tx_ring[i].buffer_desc)
  1209. _rtl_pci_free_tx_ring(hw, i);
  1210. return 1;
  1211. }
  1212. static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw)
  1213. {
  1214. u32 i, rxring_idx;
  1215. /*free rx rings */
  1216. for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++)
  1217. _rtl_pci_free_rx_ring(hw, rxring_idx);
  1218. /*free tx rings */
  1219. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  1220. _rtl_pci_free_tx_ring(hw, i);
  1221. return 0;
  1222. }
  1223. int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw)
  1224. {
  1225. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1226. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1227. int i, rxring_idx;
  1228. unsigned long flags;
  1229. u8 tmp_one = 1;
  1230. u32 bufferaddress;
  1231. /* rxring_idx 0:RX_MPDU_QUEUE */
  1232. /* rxring_idx 1:RX_CMD_QUEUE */
  1233. for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) {
  1234. /* force the rx_ring[RX_MPDU_QUEUE/
  1235. * RX_CMD_QUEUE].idx to the first one
  1236. *new trx flow, do nothing
  1237. */
  1238. if (!rtlpriv->use_new_trx_flow &&
  1239. rtlpci->rx_ring[rxring_idx].desc) {
  1240. struct rtl_rx_desc *entry = NULL;
  1241. rtlpci->rx_ring[rxring_idx].idx = 0;
  1242. for (i = 0; i < rtlpci->rxringcount; i++) {
  1243. entry = &rtlpci->rx_ring[rxring_idx].desc[i];
  1244. bufferaddress =
  1245. rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
  1246. false, HW_DESC_RXBUFF_ADDR);
  1247. memset((u8 *)entry, 0,
  1248. sizeof(*rtlpci->rx_ring
  1249. [rxring_idx].desc));/*clear one entry*/
  1250. if (rtlpriv->use_new_trx_flow) {
  1251. rtlpriv->cfg->ops->set_desc(hw,
  1252. (u8 *)entry, false,
  1253. HW_DESC_RX_PREPARE,
  1254. (u8 *)&bufferaddress);
  1255. } else {
  1256. rtlpriv->cfg->ops->set_desc(hw,
  1257. (u8 *)entry, false,
  1258. HW_DESC_RXBUFF_ADDR,
  1259. (u8 *)&bufferaddress);
  1260. rtlpriv->cfg->ops->set_desc(hw,
  1261. (u8 *)entry, false,
  1262. HW_DESC_RXPKT_LEN,
  1263. (u8 *)&rtlpci->rxbuffersize);
  1264. rtlpriv->cfg->ops->set_desc(hw,
  1265. (u8 *)entry, false,
  1266. HW_DESC_RXOWN,
  1267. (u8 *)&tmp_one);
  1268. }
  1269. }
  1270. rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
  1271. HW_DESC_RXERO, (u8 *)&tmp_one);
  1272. }
  1273. rtlpci->rx_ring[rxring_idx].idx = 0;
  1274. }
  1275. /*after reset, release previous pending packet,
  1276. *and force the tx idx to the first one
  1277. */
  1278. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  1279. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
  1280. if (rtlpci->tx_ring[i].desc ||
  1281. rtlpci->tx_ring[i].buffer_desc) {
  1282. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i];
  1283. while (skb_queue_len(&ring->queue)) {
  1284. u8 *entry;
  1285. struct sk_buff *skb =
  1286. __skb_dequeue(&ring->queue);
  1287. if (rtlpriv->use_new_trx_flow)
  1288. entry = (u8 *)(&ring->buffer_desc
  1289. [ring->idx]);
  1290. else
  1291. entry = (u8 *)(&ring->desc[ring->idx]);
  1292. dma_unmap_single(&rtlpci->pdev->dev,
  1293. rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
  1294. true, HW_DESC_TXBUFF_ADDR),
  1295. skb->len, DMA_TO_DEVICE);
  1296. dev_kfree_skb_irq(skb);
  1297. ring->idx = (ring->idx + 1) % ring->entries;
  1298. }
  1299. if (rtlpriv->use_new_trx_flow) {
  1300. rtlpci->tx_ring[i].cur_tx_rp = 0;
  1301. rtlpci->tx_ring[i].cur_tx_wp = 0;
  1302. }
  1303. ring->idx = 0;
  1304. ring->entries = rtlpci->txringcount[i];
  1305. }
  1306. }
  1307. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1308. return 0;
  1309. }
  1310. static bool rtl_pci_tx_chk_waitq_insert(struct ieee80211_hw *hw,
  1311. struct ieee80211_sta *sta,
  1312. struct sk_buff *skb)
  1313. {
  1314. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1315. struct rtl_sta_info *sta_entry = NULL;
  1316. u8 tid = rtl_get_tid(skb);
  1317. __le16 fc = rtl_get_fc(skb);
  1318. if (!sta)
  1319. return false;
  1320. sta_entry = (struct rtl_sta_info *)sta->drv_priv;
  1321. if (!rtlpriv->rtlhal.earlymode_enable)
  1322. return false;
  1323. if (ieee80211_is_nullfunc(fc))
  1324. return false;
  1325. if (ieee80211_is_qos_nullfunc(fc))
  1326. return false;
  1327. if (ieee80211_is_pspoll(fc))
  1328. return false;
  1329. if (sta_entry->tids[tid].agg.agg_state != RTL_AGG_OPERATIONAL)
  1330. return false;
  1331. if (_rtl_mac_to_hwqueue(hw, skb) > VO_QUEUE)
  1332. return false;
  1333. if (tid > 7)
  1334. return false;
  1335. /* maybe every tid should be checked */
  1336. if (!rtlpriv->link_info.higher_busytxtraffic[tid])
  1337. return false;
  1338. spin_lock_bh(&rtlpriv->locks.waitq_lock);
  1339. skb_queue_tail(&rtlpriv->mac80211.skb_waitq[tid], skb);
  1340. spin_unlock_bh(&rtlpriv->locks.waitq_lock);
  1341. return true;
  1342. }
  1343. static int rtl_pci_tx(struct ieee80211_hw *hw,
  1344. struct ieee80211_sta *sta,
  1345. struct sk_buff *skb,
  1346. struct rtl_tcb_desc *ptcb_desc)
  1347. {
  1348. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1349. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1350. struct rtl8192_tx_ring *ring;
  1351. struct rtl_tx_desc *pdesc;
  1352. struct rtl_tx_buffer_desc *ptx_bd_desc = NULL;
  1353. u16 idx;
  1354. u8 hw_queue = _rtl_mac_to_hwqueue(hw, skb);
  1355. unsigned long flags;
  1356. struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
  1357. __le16 fc = rtl_get_fc(skb);
  1358. u8 *pda_addr = hdr->addr1;
  1359. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1360. u8 own;
  1361. u8 temp_one = 1;
  1362. if (ieee80211_is_mgmt(fc))
  1363. rtl_tx_mgmt_proc(hw, skb);
  1364. if (rtlpriv->psc.sw_ps_enabled) {
  1365. if (ieee80211_is_data(fc) && !ieee80211_is_nullfunc(fc) &&
  1366. !ieee80211_has_pm(fc))
  1367. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
  1368. }
  1369. rtl_action_proc(hw, skb, true);
  1370. if (is_multicast_ether_addr(pda_addr))
  1371. rtlpriv->stats.txbytesmulticast += skb->len;
  1372. else if (is_broadcast_ether_addr(pda_addr))
  1373. rtlpriv->stats.txbytesbroadcast += skb->len;
  1374. else
  1375. rtlpriv->stats.txbytesunicast += skb->len;
  1376. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  1377. ring = &rtlpci->tx_ring[hw_queue];
  1378. if (hw_queue != BEACON_QUEUE) {
  1379. if (rtlpriv->use_new_trx_flow)
  1380. idx = ring->cur_tx_wp;
  1381. else
  1382. idx = (ring->idx + skb_queue_len(&ring->queue)) %
  1383. ring->entries;
  1384. } else {
  1385. idx = 0;
  1386. }
  1387. pdesc = &ring->desc[idx];
  1388. if (rtlpriv->use_new_trx_flow) {
  1389. ptx_bd_desc = &ring->buffer_desc[idx];
  1390. } else {
  1391. own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc,
  1392. true, HW_DESC_OWN);
  1393. if (own == 1 && hw_queue != BEACON_QUEUE) {
  1394. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  1395. "No more TX desc@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n",
  1396. hw_queue, ring->idx, idx,
  1397. skb_queue_len(&ring->queue));
  1398. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock,
  1399. flags);
  1400. return skb->len;
  1401. }
  1402. }
  1403. if (rtlpriv->cfg->ops->get_available_desc &&
  1404. rtlpriv->cfg->ops->get_available_desc(hw, hw_queue) == 0) {
  1405. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  1406. "get_available_desc fail\n");
  1407. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1408. return skb->len;
  1409. }
  1410. if (ieee80211_is_data(fc))
  1411. rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX);
  1412. rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc,
  1413. (u8 *)ptx_bd_desc, info, sta, skb, hw_queue, ptcb_desc);
  1414. __skb_queue_tail(&ring->queue, skb);
  1415. if (rtlpriv->use_new_trx_flow) {
  1416. rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true,
  1417. HW_DESC_OWN, &hw_queue);
  1418. } else {
  1419. rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true,
  1420. HW_DESC_OWN, &temp_one);
  1421. }
  1422. if ((ring->entries - skb_queue_len(&ring->queue)) < 2 &&
  1423. hw_queue != BEACON_QUEUE) {
  1424. rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
  1425. "less desc left, stop skb_queue@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n",
  1426. hw_queue, ring->idx, idx,
  1427. skb_queue_len(&ring->queue));
  1428. ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
  1429. }
  1430. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1431. rtlpriv->cfg->ops->tx_polling(hw, hw_queue);
  1432. return 0;
  1433. }
  1434. static void rtl_pci_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
  1435. {
  1436. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1437. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1438. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1439. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1440. u16 i = 0;
  1441. int queue_id;
  1442. struct rtl8192_tx_ring *ring;
  1443. if (mac->skip_scan)
  1444. return;
  1445. for (queue_id = RTL_PCI_MAX_TX_QUEUE_COUNT - 1; queue_id >= 0;) {
  1446. u32 queue_len;
  1447. if (((queues >> queue_id) & 0x1) == 0) {
  1448. queue_id--;
  1449. continue;
  1450. }
  1451. ring = &pcipriv->dev.tx_ring[queue_id];
  1452. queue_len = skb_queue_len(&ring->queue);
  1453. if (queue_len == 0 || queue_id == BEACON_QUEUE ||
  1454. queue_id == TXCMD_QUEUE) {
  1455. queue_id--;
  1456. continue;
  1457. } else {
  1458. msleep(20);
  1459. i++;
  1460. }
  1461. /* we just wait 1s for all queues */
  1462. if (rtlpriv->psc.rfpwr_state == ERFOFF ||
  1463. is_hal_stop(rtlhal) || i >= 200)
  1464. return;
  1465. }
  1466. }
  1467. static void rtl_pci_deinit(struct ieee80211_hw *hw)
  1468. {
  1469. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1470. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1471. _rtl_pci_deinit_trx_ring(hw);
  1472. synchronize_irq(rtlpci->pdev->irq);
  1473. tasklet_kill(&rtlpriv->works.irq_tasklet);
  1474. cancel_work_sync(&rtlpriv->works.lps_change_work);
  1475. destroy_workqueue(rtlpriv->works.rtl_wq);
  1476. }
  1477. static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev)
  1478. {
  1479. int err;
  1480. _rtl_pci_init_struct(hw, pdev);
  1481. err = _rtl_pci_init_trx_ring(hw);
  1482. if (err) {
  1483. pr_err("tx ring initialization failed\n");
  1484. return err;
  1485. }
  1486. return 0;
  1487. }
  1488. static int rtl_pci_start(struct ieee80211_hw *hw)
  1489. {
  1490. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1491. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1492. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1493. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1494. struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
  1495. struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops;
  1496. int err;
  1497. rtl_pci_reset_trx_ring(hw);
  1498. rtlpci->driver_is_goingto_unload = false;
  1499. if (rtlpriv->cfg->ops->get_btc_status &&
  1500. rtlpriv->cfg->ops->get_btc_status()) {
  1501. rtlpriv->btcoexist.btc_info.ap_num = 36;
  1502. btc_ops->btc_init_variables(rtlpriv);
  1503. btc_ops->btc_init_hal_vars(rtlpriv);
  1504. } else if (btc_ops) {
  1505. btc_ops->btc_init_variables_wifi_only(rtlpriv);
  1506. }
  1507. err = rtlpriv->cfg->ops->hw_init(hw);
  1508. if (err) {
  1509. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1510. "Failed to config hardware!\n");
  1511. kfree(rtlpriv->btcoexist.btc_context);
  1512. kfree(rtlpriv->btcoexist.wifi_only_context);
  1513. return err;
  1514. }
  1515. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
  1516. &rtlmac->retry_long);
  1517. rtlpriv->cfg->ops->enable_interrupt(hw);
  1518. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "enable_interrupt OK\n");
  1519. rtl_init_rx_config(hw);
  1520. /*should be after adapter start and interrupt enable. */
  1521. set_hal_start(rtlhal);
  1522. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1523. rtlpci->up_first_time = false;
  1524. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%s OK\n", __func__);
  1525. return 0;
  1526. }
  1527. static void rtl_pci_stop(struct ieee80211_hw *hw)
  1528. {
  1529. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1530. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1531. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1532. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1533. unsigned long flags;
  1534. u8 rf_timeout = 0;
  1535. if (rtlpriv->cfg->ops->get_btc_status())
  1536. rtlpriv->btcoexist.btc_ops->btc_halt_notify(rtlpriv);
  1537. if (rtlpriv->btcoexist.btc_ops)
  1538. rtlpriv->btcoexist.btc_ops->btc_deinit_variables(rtlpriv);
  1539. /*should be before disable interrupt&adapter
  1540. *and will do it immediately.
  1541. */
  1542. set_hal_stop(rtlhal);
  1543. rtlpci->driver_is_goingto_unload = true;
  1544. rtlpriv->cfg->ops->disable_interrupt(hw);
  1545. cancel_work_sync(&rtlpriv->works.lps_change_work);
  1546. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1547. while (ppsc->rfchange_inprogress) {
  1548. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1549. if (rf_timeout > 100) {
  1550. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1551. break;
  1552. }
  1553. mdelay(1);
  1554. rf_timeout++;
  1555. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1556. }
  1557. ppsc->rfchange_inprogress = true;
  1558. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1559. rtlpriv->cfg->ops->hw_disable(hw);
  1560. /* some things are not needed if firmware not available */
  1561. if (!rtlpriv->max_fw_size)
  1562. return;
  1563. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1564. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1565. ppsc->rfchange_inprogress = false;
  1566. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1567. rtl_pci_enable_aspm(hw);
  1568. }
  1569. static bool _rtl_pci_find_adapter(struct pci_dev *pdev,
  1570. struct ieee80211_hw *hw)
  1571. {
  1572. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1573. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1574. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1575. struct pci_dev *bridge_pdev = pdev->bus->self;
  1576. u16 venderid;
  1577. u16 deviceid;
  1578. u8 revisionid;
  1579. u16 irqline;
  1580. u8 tmp;
  1581. pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN;
  1582. venderid = pdev->vendor;
  1583. deviceid = pdev->device;
  1584. pci_read_config_byte(pdev, 0x8, &revisionid);
  1585. pci_read_config_word(pdev, 0x3C, &irqline);
  1586. /* PCI ID 0x10ec:0x8192 occurs for both RTL8192E, which uses
  1587. * r8192e_pci, and RTL8192SE, which uses this driver. If the
  1588. * revision ID is RTL_PCI_REVISION_ID_8192PCIE (0x01), then
  1589. * the correct driver is r8192e_pci, thus this routine should
  1590. * return false.
  1591. */
  1592. if (deviceid == RTL_PCI_8192SE_DID &&
  1593. revisionid == RTL_PCI_REVISION_ID_8192PCIE)
  1594. return false;
  1595. if (deviceid == RTL_PCI_8192_DID ||
  1596. deviceid == RTL_PCI_0044_DID ||
  1597. deviceid == RTL_PCI_0047_DID ||
  1598. deviceid == RTL_PCI_8192SE_DID ||
  1599. deviceid == RTL_PCI_8174_DID ||
  1600. deviceid == RTL_PCI_8173_DID ||
  1601. deviceid == RTL_PCI_8172_DID ||
  1602. deviceid == RTL_PCI_8171_DID) {
  1603. switch (revisionid) {
  1604. case RTL_PCI_REVISION_ID_8192PCIE:
  1605. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1606. "8192 PCI-E is found - vid/did=%x/%x\n",
  1607. venderid, deviceid);
  1608. rtlhal->hw_type = HARDWARE_TYPE_RTL8192E;
  1609. return false;
  1610. case RTL_PCI_REVISION_ID_8192SE:
  1611. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1612. "8192SE is found - vid/did=%x/%x\n",
  1613. venderid, deviceid);
  1614. rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
  1615. break;
  1616. default:
  1617. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  1618. "Err: Unknown device - vid/did=%x/%x\n",
  1619. venderid, deviceid);
  1620. rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
  1621. break;
  1622. }
  1623. } else if (deviceid == RTL_PCI_8723AE_DID) {
  1624. rtlhal->hw_type = HARDWARE_TYPE_RTL8723AE;
  1625. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1626. "8723AE PCI-E is found - vid/did=%x/%x\n",
  1627. venderid, deviceid);
  1628. } else if (deviceid == RTL_PCI_8192CET_DID ||
  1629. deviceid == RTL_PCI_8192CE_DID ||
  1630. deviceid == RTL_PCI_8191CE_DID ||
  1631. deviceid == RTL_PCI_8188CE_DID) {
  1632. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE;
  1633. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1634. "8192C PCI-E is found - vid/did=%x/%x\n",
  1635. venderid, deviceid);
  1636. } else if (deviceid == RTL_PCI_8192DE_DID ||
  1637. deviceid == RTL_PCI_8192DE_DID2) {
  1638. rtlhal->hw_type = HARDWARE_TYPE_RTL8192DE;
  1639. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1640. "8192D PCI-E is found - vid/did=%x/%x\n",
  1641. venderid, deviceid);
  1642. } else if (deviceid == RTL_PCI_8188EE_DID) {
  1643. rtlhal->hw_type = HARDWARE_TYPE_RTL8188EE;
  1644. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1645. "Find adapter, Hardware type is 8188EE\n");
  1646. } else if (deviceid == RTL_PCI_8723BE_DID) {
  1647. rtlhal->hw_type = HARDWARE_TYPE_RTL8723BE;
  1648. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1649. "Find adapter, Hardware type is 8723BE\n");
  1650. } else if (deviceid == RTL_PCI_8192EE_DID) {
  1651. rtlhal->hw_type = HARDWARE_TYPE_RTL8192EE;
  1652. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1653. "Find adapter, Hardware type is 8192EE\n");
  1654. } else if (deviceid == RTL_PCI_8821AE_DID) {
  1655. rtlhal->hw_type = HARDWARE_TYPE_RTL8821AE;
  1656. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1657. "Find adapter, Hardware type is 8821AE\n");
  1658. } else if (deviceid == RTL_PCI_8812AE_DID) {
  1659. rtlhal->hw_type = HARDWARE_TYPE_RTL8812AE;
  1660. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1661. "Find adapter, Hardware type is 8812AE\n");
  1662. } else if (deviceid == RTL_PCI_8822BE_DID) {
  1663. rtlhal->hw_type = HARDWARE_TYPE_RTL8822BE;
  1664. rtlhal->bandset = BAND_ON_BOTH;
  1665. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1666. "Find adapter, Hardware type is 8822BE\n");
  1667. } else {
  1668. rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
  1669. "Err: Unknown device - vid/did=%x/%x\n",
  1670. venderid, deviceid);
  1671. rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE;
  1672. }
  1673. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DE) {
  1674. if (revisionid == 0 || revisionid == 1) {
  1675. if (revisionid == 0) {
  1676. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1677. "Find 92DE MAC0\n");
  1678. rtlhal->interfaceindex = 0;
  1679. } else if (revisionid == 1) {
  1680. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1681. "Find 92DE MAC1\n");
  1682. rtlhal->interfaceindex = 1;
  1683. }
  1684. } else {
  1685. rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
  1686. "Unknown device - VendorID/DeviceID=%x/%x, Revision=%x\n",
  1687. venderid, deviceid, revisionid);
  1688. rtlhal->interfaceindex = 0;
  1689. }
  1690. }
  1691. switch (rtlhal->hw_type) {
  1692. case HARDWARE_TYPE_RTL8192EE:
  1693. case HARDWARE_TYPE_RTL8822BE:
  1694. /* use new trx flow */
  1695. rtlpriv->use_new_trx_flow = true;
  1696. break;
  1697. default:
  1698. rtlpriv->use_new_trx_flow = false;
  1699. break;
  1700. }
  1701. /*find bus info */
  1702. pcipriv->ndis_adapter.busnumber = pdev->bus->number;
  1703. pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn);
  1704. pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn);
  1705. /*find bridge info */
  1706. pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN;
  1707. /* some ARM have no bridge_pdev and will crash here
  1708. * so we should check if bridge_pdev is NULL
  1709. */
  1710. if (bridge_pdev) {
  1711. /*find bridge info if available */
  1712. pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor;
  1713. for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) {
  1714. if (bridge_pdev->vendor == pcibridge_vendors[tmp]) {
  1715. pcipriv->ndis_adapter.pcibridge_vendor = tmp;
  1716. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1717. "Pci Bridge Vendor is found index: %d\n",
  1718. tmp);
  1719. break;
  1720. }
  1721. }
  1722. }
  1723. if (pcipriv->ndis_adapter.pcibridge_vendor !=
  1724. PCI_BRIDGE_VENDOR_UNKNOWN) {
  1725. pcipriv->ndis_adapter.pcibridge_busnum =
  1726. bridge_pdev->bus->number;
  1727. pcipriv->ndis_adapter.pcibridge_devnum =
  1728. PCI_SLOT(bridge_pdev->devfn);
  1729. pcipriv->ndis_adapter.pcibridge_funcnum =
  1730. PCI_FUNC(bridge_pdev->devfn);
  1731. pcipriv->ndis_adapter.pcibridge_pciehdr_offset =
  1732. pci_pcie_cap(bridge_pdev);
  1733. pcipriv->ndis_adapter.num4bytes =
  1734. (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4;
  1735. rtl_pci_get_linkcontrol_field(hw);
  1736. if (pcipriv->ndis_adapter.pcibridge_vendor ==
  1737. PCI_BRIDGE_VENDOR_AMD) {
  1738. pcipriv->ndis_adapter.amd_l1_patch =
  1739. rtl_pci_get_amd_l1_patch(hw);
  1740. }
  1741. }
  1742. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1743. "pcidev busnumber:devnumber:funcnumber:vendor:link_ctl %d:%d:%d:%x:%x\n",
  1744. pcipriv->ndis_adapter.busnumber,
  1745. pcipriv->ndis_adapter.devnumber,
  1746. pcipriv->ndis_adapter.funcnumber,
  1747. pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg);
  1748. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1749. "pci_bridge busnumber:devnumber:funcnumber:vendor:pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n",
  1750. pcipriv->ndis_adapter.pcibridge_busnum,
  1751. pcipriv->ndis_adapter.pcibridge_devnum,
  1752. pcipriv->ndis_adapter.pcibridge_funcnum,
  1753. pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor],
  1754. pcipriv->ndis_adapter.pcibridge_pciehdr_offset,
  1755. pcipriv->ndis_adapter.pcibridge_linkctrlreg,
  1756. pcipriv->ndis_adapter.amd_l1_patch);
  1757. rtl_pci_parse_configuration(pdev, hw);
  1758. list_add_tail(&rtlpriv->list, &rtlpriv->glb_var->glb_priv_list);
  1759. return true;
  1760. }
  1761. static int rtl_pci_intr_mode_msi(struct ieee80211_hw *hw)
  1762. {
  1763. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1764. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1765. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  1766. int ret;
  1767. ret = pci_enable_msi(rtlpci->pdev);
  1768. if (ret < 0)
  1769. return ret;
  1770. ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
  1771. IRQF_SHARED, KBUILD_MODNAME, hw);
  1772. if (ret < 0) {
  1773. pci_disable_msi(rtlpci->pdev);
  1774. return ret;
  1775. }
  1776. rtlpci->using_msi = true;
  1777. rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG,
  1778. "MSI Interrupt Mode!\n");
  1779. return 0;
  1780. }
  1781. static int rtl_pci_intr_mode_legacy(struct ieee80211_hw *hw)
  1782. {
  1783. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1784. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1785. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  1786. int ret;
  1787. ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
  1788. IRQF_SHARED, KBUILD_MODNAME, hw);
  1789. if (ret < 0)
  1790. return ret;
  1791. rtlpci->using_msi = false;
  1792. rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG,
  1793. "Pin-based Interrupt Mode!\n");
  1794. return 0;
  1795. }
  1796. static int rtl_pci_intr_mode_decide(struct ieee80211_hw *hw)
  1797. {
  1798. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1799. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  1800. int ret;
  1801. if (rtlpci->msi_support) {
  1802. ret = rtl_pci_intr_mode_msi(hw);
  1803. if (ret < 0)
  1804. ret = rtl_pci_intr_mode_legacy(hw);
  1805. } else {
  1806. ret = rtl_pci_intr_mode_legacy(hw);
  1807. }
  1808. return ret;
  1809. }
  1810. static void platform_enable_dma64(struct pci_dev *pdev, bool dma64)
  1811. {
  1812. u8 value;
  1813. pci_read_config_byte(pdev, 0x719, &value);
  1814. /* 0x719 Bit5 is DMA64 bit fetch. */
  1815. if (dma64)
  1816. value |= BIT(5);
  1817. else
  1818. value &= ~BIT(5);
  1819. pci_write_config_byte(pdev, 0x719, value);
  1820. }
  1821. int rtl_pci_probe(struct pci_dev *pdev,
  1822. const struct pci_device_id *id)
  1823. {
  1824. struct ieee80211_hw *hw = NULL;
  1825. struct rtl_priv *rtlpriv = NULL;
  1826. struct rtl_pci_priv *pcipriv = NULL;
  1827. struct rtl_pci *rtlpci;
  1828. unsigned long pmem_start, pmem_len, pmem_flags;
  1829. int err;
  1830. err = pci_enable_device(pdev);
  1831. if (err) {
  1832. WARN_ONCE(true, "%s : Cannot enable new PCI device\n",
  1833. pci_name(pdev));
  1834. return err;
  1835. }
  1836. if (((struct rtl_hal_cfg *)id->driver_data)->mod_params->dma64 &&
  1837. !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  1838. if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  1839. WARN_ONCE(true,
  1840. "Unable to obtain 64bit DMA for consistent allocations\n");
  1841. err = -ENOMEM;
  1842. goto fail1;
  1843. }
  1844. platform_enable_dma64(pdev, true);
  1845. } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
  1846. if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) {
  1847. WARN_ONCE(true,
  1848. "rtlwifi: Unable to obtain 32bit DMA for consistent allocations\n");
  1849. err = -ENOMEM;
  1850. goto fail1;
  1851. }
  1852. platform_enable_dma64(pdev, false);
  1853. }
  1854. pci_set_master(pdev);
  1855. hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) +
  1856. sizeof(struct rtl_priv), &rtl_ops);
  1857. if (!hw) {
  1858. WARN_ONCE(true,
  1859. "%s : ieee80211 alloc failed\n", pci_name(pdev));
  1860. err = -ENOMEM;
  1861. goto fail1;
  1862. }
  1863. SET_IEEE80211_DEV(hw, &pdev->dev);
  1864. pci_set_drvdata(pdev, hw);
  1865. rtlpriv = hw->priv;
  1866. rtlpriv->hw = hw;
  1867. pcipriv = (void *)rtlpriv->priv;
  1868. pcipriv->dev.pdev = pdev;
  1869. init_completion(&rtlpriv->firmware_loading_complete);
  1870. /*proximity init here*/
  1871. rtlpriv->proximity.proxim_on = false;
  1872. pcipriv = (void *)rtlpriv->priv;
  1873. pcipriv->dev.pdev = pdev;
  1874. /* init cfg & intf_ops */
  1875. rtlpriv->rtlhal.interface = INTF_PCI;
  1876. rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data);
  1877. rtlpriv->intf_ops = &rtl_pci_ops;
  1878. rtlpriv->glb_var = &rtl_global_var;
  1879. rtl_efuse_ops_init(hw);
  1880. /* MEM map */
  1881. err = pci_request_regions(pdev, KBUILD_MODNAME);
  1882. if (err) {
  1883. WARN_ONCE(true, "rtlwifi: Can't obtain PCI resources\n");
  1884. goto fail1;
  1885. }
  1886. pmem_start = pci_resource_start(pdev, rtlpriv->cfg->bar_id);
  1887. pmem_len = pci_resource_len(pdev, rtlpriv->cfg->bar_id);
  1888. pmem_flags = pci_resource_flags(pdev, rtlpriv->cfg->bar_id);
  1889. /*shared mem start */
  1890. rtlpriv->io.pci_mem_start =
  1891. (unsigned long)pci_iomap(pdev,
  1892. rtlpriv->cfg->bar_id, pmem_len);
  1893. if (rtlpriv->io.pci_mem_start == 0) {
  1894. WARN_ONCE(true, "rtlwifi: Can't map PCI mem\n");
  1895. err = -ENOMEM;
  1896. goto fail2;
  1897. }
  1898. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1899. "mem mapped space: start: 0x%08lx len:%08lx flags:%08lx, after map:0x%08lx\n",
  1900. pmem_start, pmem_len, pmem_flags,
  1901. rtlpriv->io.pci_mem_start);
  1902. /* Disable Clk Request */
  1903. pci_write_config_byte(pdev, 0x81, 0);
  1904. /* leave D3 mode */
  1905. pci_write_config_byte(pdev, 0x44, 0);
  1906. pci_write_config_byte(pdev, 0x04, 0x06);
  1907. pci_write_config_byte(pdev, 0x04, 0x07);
  1908. /* find adapter */
  1909. if (!_rtl_pci_find_adapter(pdev, hw)) {
  1910. err = -ENODEV;
  1911. goto fail2;
  1912. }
  1913. /* Init IO handler */
  1914. _rtl_pci_io_handler_init(&pdev->dev, hw);
  1915. /*like read eeprom and so on */
  1916. rtlpriv->cfg->ops->read_eeprom_info(hw);
  1917. if (rtlpriv->cfg->ops->init_sw_vars(hw)) {
  1918. pr_err("Can't init_sw_vars\n");
  1919. err = -ENODEV;
  1920. goto fail3;
  1921. }
  1922. rtlpriv->cfg->ops->init_sw_leds(hw);
  1923. /*aspm */
  1924. rtl_pci_init_aspm(hw);
  1925. /* Init mac80211 sw */
  1926. err = rtl_init_core(hw);
  1927. if (err) {
  1928. pr_err("Can't allocate sw for mac80211\n");
  1929. goto fail3;
  1930. }
  1931. /* Init PCI sw */
  1932. err = rtl_pci_init(hw, pdev);
  1933. if (err) {
  1934. pr_err("Failed to init PCI\n");
  1935. goto fail3;
  1936. }
  1937. err = ieee80211_register_hw(hw);
  1938. if (err) {
  1939. pr_err("Can't register mac80211 hw.\n");
  1940. err = -ENODEV;
  1941. goto fail3;
  1942. }
  1943. rtlpriv->mac80211.mac80211_registered = 1;
  1944. /* add for debug */
  1945. rtl_debug_add_one(hw);
  1946. /*init rfkill */
  1947. rtl_init_rfkill(hw); /* Init PCI sw */
  1948. rtlpci = rtl_pcidev(pcipriv);
  1949. err = rtl_pci_intr_mode_decide(hw);
  1950. if (err) {
  1951. rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
  1952. "%s: failed to register IRQ handler\n",
  1953. wiphy_name(hw->wiphy));
  1954. goto fail3;
  1955. }
  1956. rtlpci->irq_alloc = 1;
  1957. set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
  1958. return 0;
  1959. fail3:
  1960. pci_set_drvdata(pdev, NULL);
  1961. rtl_deinit_core(hw);
  1962. fail2:
  1963. if (rtlpriv->io.pci_mem_start != 0)
  1964. pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
  1965. pci_release_regions(pdev);
  1966. complete(&rtlpriv->firmware_loading_complete);
  1967. fail1:
  1968. if (hw)
  1969. ieee80211_free_hw(hw);
  1970. pci_disable_device(pdev);
  1971. return err;
  1972. }
  1973. EXPORT_SYMBOL(rtl_pci_probe);
  1974. void rtl_pci_disconnect(struct pci_dev *pdev)
  1975. {
  1976. struct ieee80211_hw *hw = pci_get_drvdata(pdev);
  1977. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1978. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1979. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  1980. struct rtl_mac *rtlmac = rtl_mac(rtlpriv);
  1981. /* just in case driver is removed before firmware callback */
  1982. wait_for_completion(&rtlpriv->firmware_loading_complete);
  1983. clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
  1984. /* remove form debug */
  1985. rtl_debug_remove_one(hw);
  1986. /*ieee80211_unregister_hw will call ops_stop */
  1987. if (rtlmac->mac80211_registered == 1) {
  1988. ieee80211_unregister_hw(hw);
  1989. rtlmac->mac80211_registered = 0;
  1990. } else {
  1991. rtl_deinit_deferred_work(hw, false);
  1992. rtlpriv->intf_ops->adapter_stop(hw);
  1993. }
  1994. rtlpriv->cfg->ops->disable_interrupt(hw);
  1995. /*deinit rfkill */
  1996. rtl_deinit_rfkill(hw);
  1997. rtl_pci_deinit(hw);
  1998. rtl_deinit_core(hw);
  1999. rtlpriv->cfg->ops->deinit_sw_vars(hw);
  2000. if (rtlpci->irq_alloc) {
  2001. free_irq(rtlpci->pdev->irq, hw);
  2002. rtlpci->irq_alloc = 0;
  2003. }
  2004. if (rtlpci->using_msi)
  2005. pci_disable_msi(rtlpci->pdev);
  2006. list_del(&rtlpriv->list);
  2007. if (rtlpriv->io.pci_mem_start != 0) {
  2008. pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
  2009. pci_release_regions(pdev);
  2010. }
  2011. pci_disable_device(pdev);
  2012. rtl_pci_disable_aspm(hw);
  2013. pci_set_drvdata(pdev, NULL);
  2014. ieee80211_free_hw(hw);
  2015. }
  2016. EXPORT_SYMBOL(rtl_pci_disconnect);
  2017. #ifdef CONFIG_PM_SLEEP
  2018. /***************************************
  2019. * kernel pci power state define:
  2020. * PCI_D0 ((pci_power_t __force) 0)
  2021. * PCI_D1 ((pci_power_t __force) 1)
  2022. * PCI_D2 ((pci_power_t __force) 2)
  2023. * PCI_D3hot ((pci_power_t __force) 3)
  2024. * PCI_D3cold ((pci_power_t __force) 4)
  2025. * PCI_UNKNOWN ((pci_power_t __force) 5)
  2026. * This function is called when system
  2027. * goes into suspend state mac80211 will
  2028. * call rtl_mac_stop() from the mac80211
  2029. * suspend function first, So there is
  2030. * no need to call hw_disable here.
  2031. ****************************************/
  2032. int rtl_pci_suspend(struct device *dev)
  2033. {
  2034. struct ieee80211_hw *hw = dev_get_drvdata(dev);
  2035. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2036. rtlpriv->cfg->ops->hw_suspend(hw);
  2037. rtl_deinit_rfkill(hw);
  2038. return 0;
  2039. }
  2040. EXPORT_SYMBOL(rtl_pci_suspend);
  2041. int rtl_pci_resume(struct device *dev)
  2042. {
  2043. struct ieee80211_hw *hw = dev_get_drvdata(dev);
  2044. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2045. rtlpriv->cfg->ops->hw_resume(hw);
  2046. rtl_init_rfkill(hw);
  2047. return 0;
  2048. }
  2049. EXPORT_SYMBOL(rtl_pci_resume);
  2050. #endif /* CONFIG_PM_SLEEP */
  2051. const struct rtl_intf_ops rtl_pci_ops = {
  2052. .read_efuse_byte = read_efuse_byte,
  2053. .adapter_start = rtl_pci_start,
  2054. .adapter_stop = rtl_pci_stop,
  2055. .check_buddy_priv = rtl_pci_check_buddy_priv,
  2056. .adapter_tx = rtl_pci_tx,
  2057. .flush = rtl_pci_flush,
  2058. .reset_trx_ring = rtl_pci_reset_trx_ring,
  2059. .waitq_insert = rtl_pci_tx_chk_waitq_insert,
  2060. .disable_aspm = rtl_pci_disable_aspm,
  2061. .enable_aspm = rtl_pci_enable_aspm,
  2062. };