rt61pci.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. Copyright (C) 2004 - 2009 Ivo van Doorn <[email protected]>
  4. <http://rt2x00.serialmonkey.com>
  5. */
  6. /*
  7. Module: rt61pci
  8. Abstract: rt61pci device specific routines.
  9. Supported chipsets: RT2561, RT2561s, RT2661.
  10. */
  11. #include <linux/crc-itu-t.h>
  12. #include <linux/delay.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/pci.h>
  18. #include <linux/eeprom_93cx6.h>
  19. #include "rt2x00.h"
  20. #include "rt2x00mmio.h"
  21. #include "rt2x00pci.h"
  22. #include "rt61pci.h"
  23. /*
  24. * Allow hardware encryption to be disabled.
  25. */
  26. static bool modparam_nohwcrypt = false;
  27. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
  28. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  29. /*
  30. * Register access.
  31. * BBP and RF register require indirect register access,
  32. * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  33. * These indirect registers work with busy bits,
  34. * and we will try maximal REGISTER_BUSY_COUNT times to access
  35. * the register while taking a REGISTER_BUSY_DELAY us delay
  36. * between each attempt. When the busy bit is still set at that time,
  37. * the access attempt is considered to have failed,
  38. * and we will print an error.
  39. */
  40. #define WAIT_FOR_BBP(__dev, __reg) \
  41. rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  42. #define WAIT_FOR_RF(__dev, __reg) \
  43. rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  44. #define WAIT_FOR_MCU(__dev, __reg) \
  45. rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  46. H2M_MAILBOX_CSR_OWNER, (__reg))
  47. static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  48. const unsigned int word, const u8 value)
  49. {
  50. u32 reg;
  51. mutex_lock(&rt2x00dev->csr_mutex);
  52. /*
  53. * Wait until the BBP becomes available, afterwards we
  54. * can safely write the new data into the register.
  55. */
  56. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  57. reg = 0;
  58. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  59. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  60. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  61. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  62. rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
  63. }
  64. mutex_unlock(&rt2x00dev->csr_mutex);
  65. }
  66. static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  67. const unsigned int word)
  68. {
  69. u32 reg;
  70. u8 value;
  71. mutex_lock(&rt2x00dev->csr_mutex);
  72. /*
  73. * Wait until the BBP becomes available, afterwards we
  74. * can safely write the read request into the register.
  75. * After the data has been written, we wait until hardware
  76. * returns the correct value, if at any time the register
  77. * doesn't become available in time, reg will be 0xffffffff
  78. * which means we return 0xff to the caller.
  79. */
  80. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  81. reg = 0;
  82. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  83. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  84. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  85. rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
  86. WAIT_FOR_BBP(rt2x00dev, &reg);
  87. }
  88. value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  89. mutex_unlock(&rt2x00dev->csr_mutex);
  90. return value;
  91. }
  92. static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  104. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
  105. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  107. rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
  113. const u8 command, const u8 token,
  114. const u8 arg0, const u8 arg1)
  115. {
  116. u32 reg;
  117. mutex_lock(&rt2x00dev->csr_mutex);
  118. /*
  119. * Wait until the MCU becomes available, afterwards we
  120. * can safely write the new data into the register.
  121. */
  122. if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
  123. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  124. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  125. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  126. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  127. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
  128. reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
  129. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  130. rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
  131. rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
  132. }
  133. mutex_unlock(&rt2x00dev->csr_mutex);
  134. }
  135. static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  136. {
  137. struct rt2x00_dev *rt2x00dev = eeprom->data;
  138. u32 reg;
  139. reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
  140. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  141. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  142. eeprom->reg_data_clock =
  143. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  144. eeprom->reg_chip_select =
  145. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  146. }
  147. static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  148. {
  149. struct rt2x00_dev *rt2x00dev = eeprom->data;
  150. u32 reg = 0;
  151. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  152. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  153. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  154. !!eeprom->reg_data_clock);
  155. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  156. !!eeprom->reg_chip_select);
  157. rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
  158. }
  159. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  160. static const struct rt2x00debug rt61pci_rt2x00debug = {
  161. .owner = THIS_MODULE,
  162. .csr = {
  163. .read = rt2x00mmio_register_read,
  164. .write = rt2x00mmio_register_write,
  165. .flags = RT2X00DEBUGFS_OFFSET,
  166. .word_base = CSR_REG_BASE,
  167. .word_size = sizeof(u32),
  168. .word_count = CSR_REG_SIZE / sizeof(u32),
  169. },
  170. .eeprom = {
  171. .read = rt2x00_eeprom_read,
  172. .write = rt2x00_eeprom_write,
  173. .word_base = EEPROM_BASE,
  174. .word_size = sizeof(u16),
  175. .word_count = EEPROM_SIZE / sizeof(u16),
  176. },
  177. .bbp = {
  178. .read = rt61pci_bbp_read,
  179. .write = rt61pci_bbp_write,
  180. .word_base = BBP_BASE,
  181. .word_size = sizeof(u8),
  182. .word_count = BBP_SIZE / sizeof(u8),
  183. },
  184. .rf = {
  185. .read = rt2x00_rf_read,
  186. .write = rt61pci_rf_write,
  187. .word_base = RF_BASE,
  188. .word_size = sizeof(u32),
  189. .word_count = RF_SIZE / sizeof(u32),
  190. },
  191. };
  192. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  193. static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  194. {
  195. u32 reg;
  196. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
  197. return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
  198. }
  199. #ifdef CONFIG_RT2X00_LIB_LEDS
  200. static void rt61pci_brightness_set(struct led_classdev *led_cdev,
  201. enum led_brightness brightness)
  202. {
  203. struct rt2x00_led *led =
  204. container_of(led_cdev, struct rt2x00_led, led_dev);
  205. unsigned int enabled = brightness != LED_OFF;
  206. unsigned int a_mode =
  207. (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
  208. unsigned int bg_mode =
  209. (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
  210. if (led->type == LED_TYPE_RADIO) {
  211. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  212. MCU_LEDCS_RADIO_STATUS, enabled);
  213. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  214. (led->rt2x00dev->led_mcu_reg & 0xff),
  215. ((led->rt2x00dev->led_mcu_reg >> 8)));
  216. } else if (led->type == LED_TYPE_ASSOC) {
  217. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  218. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  219. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  220. MCU_LEDCS_LINK_A_STATUS, a_mode);
  221. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  222. (led->rt2x00dev->led_mcu_reg & 0xff),
  223. ((led->rt2x00dev->led_mcu_reg >> 8)));
  224. } else if (led->type == LED_TYPE_QUALITY) {
  225. /*
  226. * The brightness is divided into 6 levels (0 - 5),
  227. * this means we need to convert the brightness
  228. * argument into the matching level within that range.
  229. */
  230. rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  231. brightness / (LED_FULL / 6), 0);
  232. }
  233. }
  234. static int rt61pci_blink_set(struct led_classdev *led_cdev,
  235. unsigned long *delay_on,
  236. unsigned long *delay_off)
  237. {
  238. struct rt2x00_led *led =
  239. container_of(led_cdev, struct rt2x00_led, led_dev);
  240. u32 reg;
  241. reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
  242. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
  243. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
  244. rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
  245. return 0;
  246. }
  247. static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
  248. struct rt2x00_led *led,
  249. enum led_type type)
  250. {
  251. led->rt2x00dev = rt2x00dev;
  252. led->type = type;
  253. led->led_dev.brightness_set = rt61pci_brightness_set;
  254. led->led_dev.blink_set = rt61pci_blink_set;
  255. led->flags = LED_INITIALIZED;
  256. }
  257. #endif /* CONFIG_RT2X00_LIB_LEDS */
  258. /*
  259. * Configuration handlers.
  260. */
  261. static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
  262. struct rt2x00lib_crypto *crypto,
  263. struct ieee80211_key_conf *key)
  264. {
  265. /*
  266. * Let the software handle the shared keys,
  267. * since the hardware decryption does not work reliably,
  268. * because the firmware does not know the key's keyidx.
  269. */
  270. return -EOPNOTSUPP;
  271. }
  272. static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
  273. struct rt2x00lib_crypto *crypto,
  274. struct ieee80211_key_conf *key)
  275. {
  276. struct hw_pairwise_ta_entry addr_entry;
  277. struct hw_key_entry key_entry;
  278. u32 mask;
  279. u32 reg;
  280. if (crypto->cmd == SET_KEY) {
  281. /*
  282. * rt2x00lib can't determine the correct free
  283. * key_idx for pairwise keys. We have 2 registers
  284. * with key valid bits. The goal is simple: read
  285. * the first register. If that is full, move to
  286. * the next register.
  287. * When both registers are full, we drop the key.
  288. * Otherwise, we use the first invalid entry.
  289. */
  290. reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
  291. if (reg && reg == ~0) {
  292. key->hw_key_idx = 32;
  293. reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
  294. if (reg && reg == ~0)
  295. return -ENOSPC;
  296. }
  297. key->hw_key_idx += reg ? ffz(reg) : 0;
  298. /*
  299. * Upload key to hardware
  300. */
  301. memcpy(key_entry.key, crypto->key,
  302. sizeof(key_entry.key));
  303. memcpy(key_entry.tx_mic, crypto->tx_mic,
  304. sizeof(key_entry.tx_mic));
  305. memcpy(key_entry.rx_mic, crypto->rx_mic,
  306. sizeof(key_entry.rx_mic));
  307. memset(&addr_entry, 0, sizeof(addr_entry));
  308. memcpy(&addr_entry, crypto->address, ETH_ALEN);
  309. addr_entry.cipher = crypto->cipher;
  310. reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
  311. rt2x00mmio_register_multiwrite(rt2x00dev, reg,
  312. &key_entry, sizeof(key_entry));
  313. reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
  314. rt2x00mmio_register_multiwrite(rt2x00dev, reg,
  315. &addr_entry, sizeof(addr_entry));
  316. /*
  317. * Enable pairwise lookup table for given BSS idx.
  318. * Without this, received frames will not be decrypted
  319. * by the hardware.
  320. */
  321. reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
  322. reg |= (1 << crypto->bssidx);
  323. rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
  324. /*
  325. * The driver does not support the IV/EIV generation
  326. * in hardware. However it doesn't support the IV/EIV
  327. * inside the ieee80211 frame either, but requires it
  328. * to be provided separately for the descriptor.
  329. * rt2x00lib will cut the IV/EIV data out of all frames
  330. * given to us by mac80211, but we must tell mac80211
  331. * to generate the IV/EIV data.
  332. */
  333. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  334. }
  335. /*
  336. * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
  337. * a particular key is valid. Because using the FIELD32()
  338. * defines directly will cause a lot of overhead, we use
  339. * a calculation to determine the correct bit directly.
  340. */
  341. if (key->hw_key_idx < 32) {
  342. mask = 1 << key->hw_key_idx;
  343. reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
  344. if (crypto->cmd == SET_KEY)
  345. reg |= mask;
  346. else if (crypto->cmd == DISABLE_KEY)
  347. reg &= ~mask;
  348. rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
  349. } else {
  350. mask = 1 << (key->hw_key_idx - 32);
  351. reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
  352. if (crypto->cmd == SET_KEY)
  353. reg |= mask;
  354. else if (crypto->cmd == DISABLE_KEY)
  355. reg &= ~mask;
  356. rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
  357. }
  358. return 0;
  359. }
  360. static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
  361. const unsigned int filter_flags)
  362. {
  363. u32 reg;
  364. /*
  365. * Start configuration steps.
  366. * Note that the version error will always be dropped
  367. * and broadcast frames will always be accepted since
  368. * there is no filter for it at this time.
  369. */
  370. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
  371. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  372. !(filter_flags & FIF_FCSFAIL));
  373. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  374. !(filter_flags & FIF_PLCPFAIL));
  375. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  376. !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
  377. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  378. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
  379. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  380. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
  381. !rt2x00dev->intf_ap_count);
  382. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  383. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  384. !(filter_flags & FIF_ALLMULTI));
  385. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  386. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  387. !(filter_flags & FIF_CONTROL));
  388. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
  389. }
  390. static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
  391. struct rt2x00_intf *intf,
  392. struct rt2x00intf_conf *conf,
  393. const unsigned int flags)
  394. {
  395. u32 reg;
  396. if (flags & CONFIG_UPDATE_TYPE) {
  397. /*
  398. * Enable synchronisation.
  399. */
  400. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  401. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  402. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  403. }
  404. if (flags & CONFIG_UPDATE_MAC) {
  405. reg = le32_to_cpu(conf->mac[1]);
  406. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  407. conf->mac[1] = cpu_to_le32(reg);
  408. rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
  409. conf->mac, sizeof(conf->mac));
  410. }
  411. if (flags & CONFIG_UPDATE_BSSID) {
  412. reg = le32_to_cpu(conf->bssid[1]);
  413. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  414. conf->bssid[1] = cpu_to_le32(reg);
  415. rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
  416. conf->bssid,
  417. sizeof(conf->bssid));
  418. }
  419. }
  420. static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
  421. struct rt2x00lib_erp *erp,
  422. u32 changed)
  423. {
  424. u32 reg;
  425. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
  426. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
  427. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  428. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
  429. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  430. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
  431. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  432. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  433. !!erp->short_preamble);
  434. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
  435. }
  436. if (changed & BSS_CHANGED_BASIC_RATES)
  437. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
  438. erp->basic_rates);
  439. if (changed & BSS_CHANGED_BEACON_INT) {
  440. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  441. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  442. erp->beacon_int * 16);
  443. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  444. }
  445. if (changed & BSS_CHANGED_ERP_SLOT) {
  446. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
  447. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
  448. rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
  449. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
  450. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
  451. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  452. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
  453. rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
  454. }
  455. }
  456. static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  457. struct antenna_setup *ant)
  458. {
  459. u8 r3;
  460. u8 r4;
  461. u8 r77;
  462. r3 = rt61pci_bbp_read(rt2x00dev, 3);
  463. r4 = rt61pci_bbp_read(rt2x00dev, 4);
  464. r77 = rt61pci_bbp_read(rt2x00dev, 77);
  465. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
  466. /*
  467. * Configure the RX antenna.
  468. */
  469. switch (ant->rx) {
  470. case ANTENNA_HW_DIVERSITY:
  471. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  472. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  473. (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
  474. break;
  475. case ANTENNA_A:
  476. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  477. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  478. if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
  479. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  480. else
  481. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  482. break;
  483. case ANTENNA_B:
  484. default:
  485. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  486. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  487. if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
  488. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  489. else
  490. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  491. break;
  492. }
  493. rt61pci_bbp_write(rt2x00dev, 77, r77);
  494. rt61pci_bbp_write(rt2x00dev, 3, r3);
  495. rt61pci_bbp_write(rt2x00dev, 4, r4);
  496. }
  497. static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  498. struct antenna_setup *ant)
  499. {
  500. u8 r3;
  501. u8 r4;
  502. u8 r77;
  503. r3 = rt61pci_bbp_read(rt2x00dev, 3);
  504. r4 = rt61pci_bbp_read(rt2x00dev, 4);
  505. r77 = rt61pci_bbp_read(rt2x00dev, 77);
  506. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
  507. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  508. !rt2x00_has_cap_frame_type(rt2x00dev));
  509. /*
  510. * Configure the RX antenna.
  511. */
  512. switch (ant->rx) {
  513. case ANTENNA_HW_DIVERSITY:
  514. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  515. break;
  516. case ANTENNA_A:
  517. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  518. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  519. break;
  520. case ANTENNA_B:
  521. default:
  522. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  523. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  524. break;
  525. }
  526. rt61pci_bbp_write(rt2x00dev, 77, r77);
  527. rt61pci_bbp_write(rt2x00dev, 3, r3);
  528. rt61pci_bbp_write(rt2x00dev, 4, r4);
  529. }
  530. static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
  531. const int p1, const int p2)
  532. {
  533. u32 reg;
  534. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
  535. rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
  536. rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
  537. rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
  538. rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
  539. rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
  540. }
  541. static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
  542. struct antenna_setup *ant)
  543. {
  544. u8 r3;
  545. u8 r4;
  546. u8 r77;
  547. r3 = rt61pci_bbp_read(rt2x00dev, 3);
  548. r4 = rt61pci_bbp_read(rt2x00dev, 4);
  549. r77 = rt61pci_bbp_read(rt2x00dev, 77);
  550. /*
  551. * Configure the RX antenna.
  552. */
  553. switch (ant->rx) {
  554. case ANTENNA_A:
  555. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  556. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  557. rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
  558. break;
  559. case ANTENNA_HW_DIVERSITY:
  560. /*
  561. * FIXME: Antenna selection for the rf 2529 is very confusing
  562. * in the legacy driver. Just default to antenna B until the
  563. * legacy code can be properly translated into rt2x00 code.
  564. */
  565. case ANTENNA_B:
  566. default:
  567. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  568. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  569. rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
  570. break;
  571. }
  572. rt61pci_bbp_write(rt2x00dev, 77, r77);
  573. rt61pci_bbp_write(rt2x00dev, 3, r3);
  574. rt61pci_bbp_write(rt2x00dev, 4, r4);
  575. }
  576. struct antenna_sel {
  577. u8 word;
  578. /*
  579. * value[0] -> non-LNA
  580. * value[1] -> LNA
  581. */
  582. u8 value[2];
  583. };
  584. static const struct antenna_sel antenna_sel_a[] = {
  585. { 96, { 0x58, 0x78 } },
  586. { 104, { 0x38, 0x48 } },
  587. { 75, { 0xfe, 0x80 } },
  588. { 86, { 0xfe, 0x80 } },
  589. { 88, { 0xfe, 0x80 } },
  590. { 35, { 0x60, 0x60 } },
  591. { 97, { 0x58, 0x58 } },
  592. { 98, { 0x58, 0x58 } },
  593. };
  594. static const struct antenna_sel antenna_sel_bg[] = {
  595. { 96, { 0x48, 0x68 } },
  596. { 104, { 0x2c, 0x3c } },
  597. { 75, { 0xfe, 0x80 } },
  598. { 86, { 0xfe, 0x80 } },
  599. { 88, { 0xfe, 0x80 } },
  600. { 35, { 0x50, 0x50 } },
  601. { 97, { 0x48, 0x48 } },
  602. { 98, { 0x48, 0x48 } },
  603. };
  604. static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
  605. struct antenna_setup *ant)
  606. {
  607. const struct antenna_sel *sel;
  608. unsigned int lna;
  609. unsigned int i;
  610. u32 reg;
  611. /*
  612. * We should never come here because rt2x00lib is supposed
  613. * to catch this and send us the correct antenna explicitely.
  614. */
  615. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  616. ant->tx == ANTENNA_SW_DIVERSITY);
  617. if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
  618. sel = antenna_sel_a;
  619. lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
  620. } else {
  621. sel = antenna_sel_bg;
  622. lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
  623. }
  624. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  625. rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  626. reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
  627. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  628. rt2x00dev->curr_band == NL80211_BAND_2GHZ);
  629. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  630. rt2x00dev->curr_band == NL80211_BAND_5GHZ);
  631. rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
  632. if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
  633. rt61pci_config_antenna_5x(rt2x00dev, ant);
  634. else if (rt2x00_rf(rt2x00dev, RF2527))
  635. rt61pci_config_antenna_2x(rt2x00dev, ant);
  636. else if (rt2x00_rf(rt2x00dev, RF2529)) {
  637. if (rt2x00_has_cap_double_antenna(rt2x00dev))
  638. rt61pci_config_antenna_2x(rt2x00dev, ant);
  639. else
  640. rt61pci_config_antenna_2529(rt2x00dev, ant);
  641. }
  642. }
  643. static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
  644. struct rt2x00lib_conf *libconf)
  645. {
  646. u16 eeprom;
  647. short lna_gain = 0;
  648. if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
  649. if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
  650. lna_gain += 14;
  651. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
  652. lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  653. } else {
  654. if (rt2x00_has_cap_external_lna_a(rt2x00dev))
  655. lna_gain += 14;
  656. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
  657. lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  658. }
  659. rt2x00dev->lna_gain = lna_gain;
  660. }
  661. static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
  662. struct rf_channel *rf, const int txpower)
  663. {
  664. u8 r3;
  665. u8 r94;
  666. u8 smart;
  667. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  668. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  669. smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
  670. r3 = rt61pci_bbp_read(rt2x00dev, 3);
  671. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  672. rt61pci_bbp_write(rt2x00dev, 3, r3);
  673. r94 = 6;
  674. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  675. r94 += txpower - MAX_TXPOWER;
  676. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  677. r94 += txpower;
  678. rt61pci_bbp_write(rt2x00dev, 94, r94);
  679. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  680. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  681. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  682. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  683. udelay(200);
  684. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  685. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  686. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  687. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  688. udelay(200);
  689. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  690. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  691. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  692. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  693. msleep(1);
  694. }
  695. static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  696. const int txpower)
  697. {
  698. struct rf_channel rf;
  699. rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
  700. rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
  701. rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
  702. rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
  703. rt61pci_config_channel(rt2x00dev, &rf, txpower);
  704. }
  705. static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  706. struct rt2x00lib_conf *libconf)
  707. {
  708. u32 reg;
  709. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
  710. rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
  711. rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
  712. rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
  713. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
  714. libconf->conf->long_frame_max_tx_count);
  715. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
  716. libconf->conf->short_frame_max_tx_count);
  717. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
  718. }
  719. static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
  720. struct rt2x00lib_conf *libconf)
  721. {
  722. enum dev_state state =
  723. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  724. STATE_SLEEP : STATE_AWAKE;
  725. u32 reg;
  726. if (state == STATE_SLEEP) {
  727. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
  728. rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
  729. rt2x00dev->beacon_int - 10);
  730. rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
  731. libconf->conf->listen_interval - 1);
  732. rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
  733. /* We must first disable autowake before it can be enabled */
  734. rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
  735. rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
  736. rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
  737. rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
  738. rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
  739. 0x00000005);
  740. rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
  741. rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
  742. rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
  743. } else {
  744. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
  745. rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
  746. rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
  747. rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
  748. rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
  749. rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
  750. rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
  751. 0x00000007);
  752. rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
  753. rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
  754. rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
  755. }
  756. }
  757. static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
  758. struct rt2x00lib_conf *libconf,
  759. const unsigned int flags)
  760. {
  761. /* Always recalculate LNA gain before changing configuration */
  762. rt61pci_config_lna_gain(rt2x00dev, libconf);
  763. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  764. rt61pci_config_channel(rt2x00dev, &libconf->rf,
  765. libconf->conf->power_level);
  766. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  767. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  768. rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
  769. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  770. rt61pci_config_retry_limit(rt2x00dev, libconf);
  771. if (flags & IEEE80211_CONF_CHANGE_PS)
  772. rt61pci_config_ps(rt2x00dev, libconf);
  773. }
  774. /*
  775. * Link tuning
  776. */
  777. static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
  778. struct link_qual *qual)
  779. {
  780. u32 reg;
  781. /*
  782. * Update FCS error count from register.
  783. */
  784. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
  785. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  786. /*
  787. * Update False CCA count from register.
  788. */
  789. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
  790. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  791. }
  792. static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  793. struct link_qual *qual, u8 vgc_level)
  794. {
  795. if (qual->vgc_level != vgc_level) {
  796. rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
  797. qual->vgc_level = vgc_level;
  798. qual->vgc_level_reg = vgc_level;
  799. }
  800. }
  801. static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  802. struct link_qual *qual)
  803. {
  804. rt61pci_set_vgc(rt2x00dev, qual, 0x20);
  805. }
  806. static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  807. struct link_qual *qual, const u32 count)
  808. {
  809. u8 up_bound;
  810. u8 low_bound;
  811. /*
  812. * Determine r17 bounds.
  813. */
  814. if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
  815. low_bound = 0x28;
  816. up_bound = 0x48;
  817. if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
  818. low_bound += 0x10;
  819. up_bound += 0x10;
  820. }
  821. } else {
  822. low_bound = 0x20;
  823. up_bound = 0x40;
  824. if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
  825. low_bound += 0x10;
  826. up_bound += 0x10;
  827. }
  828. }
  829. /*
  830. * If we are not associated, we should go straight to the
  831. * dynamic CCA tuning.
  832. */
  833. if (!rt2x00dev->intf_associated)
  834. goto dynamic_cca_tune;
  835. /*
  836. * Special big-R17 for very short distance
  837. */
  838. if (qual->rssi >= -35) {
  839. rt61pci_set_vgc(rt2x00dev, qual, 0x60);
  840. return;
  841. }
  842. /*
  843. * Special big-R17 for short distance
  844. */
  845. if (qual->rssi >= -58) {
  846. rt61pci_set_vgc(rt2x00dev, qual, up_bound);
  847. return;
  848. }
  849. /*
  850. * Special big-R17 for middle-short distance
  851. */
  852. if (qual->rssi >= -66) {
  853. rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
  854. return;
  855. }
  856. /*
  857. * Special mid-R17 for middle distance
  858. */
  859. if (qual->rssi >= -74) {
  860. rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
  861. return;
  862. }
  863. /*
  864. * Special case: Change up_bound based on the rssi.
  865. * Lower up_bound when rssi is weaker then -74 dBm.
  866. */
  867. up_bound -= 2 * (-74 - qual->rssi);
  868. if (low_bound > up_bound)
  869. up_bound = low_bound;
  870. if (qual->vgc_level > up_bound) {
  871. rt61pci_set_vgc(rt2x00dev, qual, up_bound);
  872. return;
  873. }
  874. dynamic_cca_tune:
  875. /*
  876. * r17 does not yet exceed upper limit, continue and base
  877. * the r17 tuning on the false CCA count.
  878. */
  879. if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
  880. rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  881. else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
  882. rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  883. }
  884. /*
  885. * Queue handlers.
  886. */
  887. static void rt61pci_start_queue(struct data_queue *queue)
  888. {
  889. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  890. u32 reg;
  891. switch (queue->qid) {
  892. case QID_RX:
  893. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
  894. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  895. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
  896. break;
  897. case QID_BEACON:
  898. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  899. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  900. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  901. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  902. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  903. break;
  904. default:
  905. break;
  906. }
  907. }
  908. static void rt61pci_kick_queue(struct data_queue *queue)
  909. {
  910. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  911. u32 reg;
  912. switch (queue->qid) {
  913. case QID_AC_VO:
  914. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  915. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
  916. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  917. break;
  918. case QID_AC_VI:
  919. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  920. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
  921. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  922. break;
  923. case QID_AC_BE:
  924. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  925. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
  926. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  927. break;
  928. case QID_AC_BK:
  929. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  930. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
  931. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  932. break;
  933. default:
  934. break;
  935. }
  936. }
  937. static void rt61pci_stop_queue(struct data_queue *queue)
  938. {
  939. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  940. u32 reg;
  941. switch (queue->qid) {
  942. case QID_AC_VO:
  943. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  944. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
  945. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  946. break;
  947. case QID_AC_VI:
  948. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  949. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
  950. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  951. break;
  952. case QID_AC_BE:
  953. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  954. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
  955. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  956. break;
  957. case QID_AC_BK:
  958. reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
  959. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
  960. rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  961. break;
  962. case QID_RX:
  963. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
  964. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
  965. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
  966. break;
  967. case QID_BEACON:
  968. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  969. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  970. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  971. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  972. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  973. /*
  974. * Wait for possibly running tbtt tasklets.
  975. */
  976. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  977. break;
  978. default:
  979. break;
  980. }
  981. }
  982. /*
  983. * Firmware functions
  984. */
  985. static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  986. {
  987. u16 chip;
  988. char *fw_name;
  989. pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
  990. switch (chip) {
  991. case RT2561_PCI_ID:
  992. fw_name = FIRMWARE_RT2561;
  993. break;
  994. case RT2561s_PCI_ID:
  995. fw_name = FIRMWARE_RT2561s;
  996. break;
  997. case RT2661_PCI_ID:
  998. fw_name = FIRMWARE_RT2661;
  999. break;
  1000. default:
  1001. fw_name = NULL;
  1002. break;
  1003. }
  1004. return fw_name;
  1005. }
  1006. static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  1007. const u8 *data, const size_t len)
  1008. {
  1009. u16 fw_crc;
  1010. u16 crc;
  1011. /*
  1012. * Only support 8kb firmware files.
  1013. */
  1014. if (len != 8192)
  1015. return FW_BAD_LENGTH;
  1016. /*
  1017. * The last 2 bytes in the firmware array are the crc checksum itself.
  1018. * This means that we should never pass those 2 bytes to the crc
  1019. * algorithm.
  1020. */
  1021. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  1022. /*
  1023. * Use the crc itu-t algorithm.
  1024. */
  1025. crc = crc_itu_t(0, data, len - 2);
  1026. crc = crc_itu_t_byte(crc, 0);
  1027. crc = crc_itu_t_byte(crc, 0);
  1028. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  1029. }
  1030. static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  1031. const u8 *data, const size_t len)
  1032. {
  1033. int i;
  1034. u32 reg;
  1035. /*
  1036. * Wait for stable hardware.
  1037. */
  1038. for (i = 0; i < 100; i++) {
  1039. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
  1040. if (reg)
  1041. break;
  1042. msleep(1);
  1043. }
  1044. if (!reg) {
  1045. rt2x00_err(rt2x00dev, "Unstable hardware\n");
  1046. return -EBUSY;
  1047. }
  1048. /*
  1049. * Prepare MCU and mailbox for firmware loading.
  1050. */
  1051. reg = 0;
  1052. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  1053. rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  1054. rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1055. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  1056. rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
  1057. /*
  1058. * Write firmware to device.
  1059. */
  1060. reg = 0;
  1061. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  1062. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
  1063. rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  1064. rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  1065. data, len);
  1066. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
  1067. rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  1068. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
  1069. rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  1070. for (i = 0; i < 100; i++) {
  1071. reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
  1072. if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
  1073. break;
  1074. msleep(1);
  1075. }
  1076. if (i == 100) {
  1077. rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
  1078. return -EBUSY;
  1079. }
  1080. /*
  1081. * Hardware needs another millisecond before it is ready.
  1082. */
  1083. msleep(1);
  1084. /*
  1085. * Reset MAC and BBP registers.
  1086. */
  1087. reg = 0;
  1088. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1089. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1090. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1091. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
  1092. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1093. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1094. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1095. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
  1096. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1097. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1098. return 0;
  1099. }
  1100. /*
  1101. * Initialization functions.
  1102. */
  1103. static bool rt61pci_get_entry_state(struct queue_entry *entry)
  1104. {
  1105. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1106. u32 word;
  1107. if (entry->queue->qid == QID_RX) {
  1108. word = rt2x00_desc_read(entry_priv->desc, 0);
  1109. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  1110. } else {
  1111. word = rt2x00_desc_read(entry_priv->desc, 0);
  1112. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1113. rt2x00_get_field32(word, TXD_W0_VALID));
  1114. }
  1115. }
  1116. static void rt61pci_clear_entry(struct queue_entry *entry)
  1117. {
  1118. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1119. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1120. u32 word;
  1121. if (entry->queue->qid == QID_RX) {
  1122. word = rt2x00_desc_read(entry_priv->desc, 5);
  1123. rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
  1124. skbdesc->skb_dma);
  1125. rt2x00_desc_write(entry_priv->desc, 5, word);
  1126. word = rt2x00_desc_read(entry_priv->desc, 0);
  1127. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  1128. rt2x00_desc_write(entry_priv->desc, 0, word);
  1129. } else {
  1130. word = rt2x00_desc_read(entry_priv->desc, 0);
  1131. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  1132. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  1133. rt2x00_desc_write(entry_priv->desc, 0, word);
  1134. }
  1135. }
  1136. static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
  1137. {
  1138. struct queue_entry_priv_mmio *entry_priv;
  1139. u32 reg;
  1140. /*
  1141. * Initialize registers.
  1142. */
  1143. reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
  1144. rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
  1145. rt2x00dev->tx[0].limit);
  1146. rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
  1147. rt2x00dev->tx[1].limit);
  1148. rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
  1149. rt2x00dev->tx[2].limit);
  1150. rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
  1151. rt2x00dev->tx[3].limit);
  1152. rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
  1153. reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
  1154. rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
  1155. rt2x00dev->tx[0].desc_size / 4);
  1156. rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
  1157. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  1158. reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
  1159. rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
  1160. entry_priv->desc_dma);
  1161. rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
  1162. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  1163. reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
  1164. rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
  1165. entry_priv->desc_dma);
  1166. rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
  1167. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  1168. reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
  1169. rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
  1170. entry_priv->desc_dma);
  1171. rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
  1172. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  1173. reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
  1174. rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
  1175. entry_priv->desc_dma);
  1176. rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
  1177. reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
  1178. rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
  1179. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
  1180. rt2x00dev->rx->desc_size / 4);
  1181. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
  1182. rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
  1183. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  1184. reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
  1185. rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
  1186. entry_priv->desc_dma);
  1187. rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
  1188. reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
  1189. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
  1190. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
  1191. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
  1192. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
  1193. rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
  1194. reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
  1195. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
  1196. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
  1197. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
  1198. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
  1199. rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
  1200. reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
  1201. rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
  1202. rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1203. return 0;
  1204. }
  1205. static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
  1206. {
  1207. u32 reg;
  1208. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
  1209. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  1210. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  1211. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  1212. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
  1213. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
  1214. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  1215. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  1216. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  1217. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  1218. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  1219. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  1220. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  1221. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  1222. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
  1223. /*
  1224. * CCK TXD BBP registers
  1225. */
  1226. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
  1227. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  1228. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  1229. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  1230. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  1231. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  1232. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  1233. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  1234. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  1235. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
  1236. /*
  1237. * OFDM TXD BBP registers
  1238. */
  1239. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
  1240. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  1241. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  1242. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  1243. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  1244. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  1245. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  1246. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
  1247. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
  1248. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  1249. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  1250. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  1251. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  1252. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
  1253. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
  1254. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  1255. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  1256. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  1257. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  1258. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
  1259. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  1260. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
  1261. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  1262. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
  1263. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  1264. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  1265. rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
  1266. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  1267. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  1268. rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
  1269. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
  1270. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  1271. rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
  1272. rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
  1273. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  1274. return -EBUSY;
  1275. rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
  1276. /*
  1277. * Invalidate all Shared Keys (SEC_CSR0),
  1278. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1279. */
  1280. rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1281. rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1282. rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1283. rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
  1284. rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
  1285. rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1286. rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
  1287. rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
  1288. rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
  1289. rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1290. /*
  1291. * Clear all beacons
  1292. * For the Beacon base registers we only need to clear
  1293. * the first byte since that byte contains the VALID and OWNER
  1294. * bits which (when set to 0) will invalidate the entire beacon.
  1295. */
  1296. rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1297. rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1298. rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1299. rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1300. /*
  1301. * We must clear the error counters.
  1302. * These registers are cleared on read,
  1303. * so we may pass a useless variable to store the value.
  1304. */
  1305. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
  1306. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
  1307. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
  1308. /*
  1309. * Reset MAC and BBP registers.
  1310. */
  1311. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
  1312. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1313. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1314. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1315. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
  1316. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1317. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1318. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1319. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
  1320. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1321. rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
  1322. return 0;
  1323. }
  1324. static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  1325. {
  1326. unsigned int i;
  1327. u8 value;
  1328. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1329. value = rt61pci_bbp_read(rt2x00dev, 0);
  1330. if ((value != 0xff) && (value != 0x00))
  1331. return 0;
  1332. udelay(REGISTER_BUSY_DELAY);
  1333. }
  1334. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  1335. return -EACCES;
  1336. }
  1337. static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  1338. {
  1339. unsigned int i;
  1340. u16 eeprom;
  1341. u8 reg_id;
  1342. u8 value;
  1343. if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
  1344. return -EACCES;
  1345. rt61pci_bbp_write(rt2x00dev, 3, 0x00);
  1346. rt61pci_bbp_write(rt2x00dev, 15, 0x30);
  1347. rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
  1348. rt61pci_bbp_write(rt2x00dev, 22, 0x38);
  1349. rt61pci_bbp_write(rt2x00dev, 23, 0x06);
  1350. rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
  1351. rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
  1352. rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
  1353. rt61pci_bbp_write(rt2x00dev, 34, 0x12);
  1354. rt61pci_bbp_write(rt2x00dev, 37, 0x07);
  1355. rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
  1356. rt61pci_bbp_write(rt2x00dev, 41, 0x60);
  1357. rt61pci_bbp_write(rt2x00dev, 53, 0x10);
  1358. rt61pci_bbp_write(rt2x00dev, 54, 0x18);
  1359. rt61pci_bbp_write(rt2x00dev, 60, 0x10);
  1360. rt61pci_bbp_write(rt2x00dev, 61, 0x04);
  1361. rt61pci_bbp_write(rt2x00dev, 62, 0x04);
  1362. rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
  1363. rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
  1364. rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
  1365. rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
  1366. rt61pci_bbp_write(rt2x00dev, 99, 0x00);
  1367. rt61pci_bbp_write(rt2x00dev, 102, 0x16);
  1368. rt61pci_bbp_write(rt2x00dev, 107, 0x04);
  1369. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1370. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
  1371. if (eeprom != 0xffff && eeprom != 0x0000) {
  1372. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1373. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1374. rt61pci_bbp_write(rt2x00dev, reg_id, value);
  1375. }
  1376. }
  1377. return 0;
  1378. }
  1379. /*
  1380. * Device state switch handlers.
  1381. */
  1382. static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  1383. enum dev_state state)
  1384. {
  1385. int mask = (state == STATE_RADIO_IRQ_OFF);
  1386. u32 reg;
  1387. unsigned long flags;
  1388. /*
  1389. * When interrupts are being enabled, the interrupt registers
  1390. * should clear the register to assure a clean state.
  1391. */
  1392. if (state == STATE_RADIO_IRQ_ON) {
  1393. reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
  1394. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1395. reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
  1396. rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
  1397. }
  1398. /*
  1399. * Only toggle the interrupts bits we are going to use.
  1400. * Non-checked interrupt bits are disabled by default.
  1401. */
  1402. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  1403. reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
  1404. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
  1405. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
  1406. rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
  1407. rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
  1408. rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
  1409. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1410. reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
  1411. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
  1412. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
  1413. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
  1414. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
  1415. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
  1416. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
  1417. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
  1418. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
  1419. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
  1420. rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1421. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  1422. if (state == STATE_RADIO_IRQ_OFF) {
  1423. /*
  1424. * Ensure that all tasklets are finished.
  1425. */
  1426. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  1427. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  1428. tasklet_kill(&rt2x00dev->autowake_tasklet);
  1429. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  1430. }
  1431. }
  1432. static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  1433. {
  1434. u32 reg;
  1435. /*
  1436. * Initialize all registers.
  1437. */
  1438. if (unlikely(rt61pci_init_queues(rt2x00dev) ||
  1439. rt61pci_init_registers(rt2x00dev) ||
  1440. rt61pci_init_bbp(rt2x00dev)))
  1441. return -EIO;
  1442. /*
  1443. * Enable RX.
  1444. */
  1445. reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
  1446. rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
  1447. rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1448. return 0;
  1449. }
  1450. static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1451. {
  1452. /*
  1453. * Disable power
  1454. */
  1455. rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1456. }
  1457. static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1458. {
  1459. u32 reg, reg2;
  1460. unsigned int i;
  1461. bool put_to_sleep;
  1462. put_to_sleep = (state != STATE_AWAKE);
  1463. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
  1464. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1465. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1466. rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
  1467. /*
  1468. * Device is not guaranteed to be in the requested state yet.
  1469. * We must wait until the register indicates that the
  1470. * device has entered the correct state.
  1471. */
  1472. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1473. reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
  1474. state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
  1475. if (state == !put_to_sleep)
  1476. return 0;
  1477. rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
  1478. msleep(10);
  1479. }
  1480. return -EBUSY;
  1481. }
  1482. static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1483. enum dev_state state)
  1484. {
  1485. int retval = 0;
  1486. switch (state) {
  1487. case STATE_RADIO_ON:
  1488. retval = rt61pci_enable_radio(rt2x00dev);
  1489. break;
  1490. case STATE_RADIO_OFF:
  1491. rt61pci_disable_radio(rt2x00dev);
  1492. break;
  1493. case STATE_RADIO_IRQ_ON:
  1494. case STATE_RADIO_IRQ_OFF:
  1495. rt61pci_toggle_irq(rt2x00dev, state);
  1496. break;
  1497. case STATE_DEEP_SLEEP:
  1498. case STATE_SLEEP:
  1499. case STATE_STANDBY:
  1500. case STATE_AWAKE:
  1501. retval = rt61pci_set_state(rt2x00dev, state);
  1502. break;
  1503. default:
  1504. retval = -ENOTSUPP;
  1505. break;
  1506. }
  1507. if (unlikely(retval))
  1508. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  1509. state, retval);
  1510. return retval;
  1511. }
  1512. /*
  1513. * TX descriptor initialization
  1514. */
  1515. static void rt61pci_write_tx_desc(struct queue_entry *entry,
  1516. struct txentry_desc *txdesc)
  1517. {
  1518. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1519. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1520. __le32 *txd = entry_priv->desc;
  1521. u32 word;
  1522. /*
  1523. * Start writing the descriptor words.
  1524. */
  1525. word = rt2x00_desc_read(txd, 1);
  1526. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
  1527. rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
  1528. rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
  1529. rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
  1530. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  1531. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
  1532. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  1533. rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
  1534. rt2x00_desc_write(txd, 1, word);
  1535. word = rt2x00_desc_read(txd, 2);
  1536. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
  1537. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
  1538. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
  1539. txdesc->u.plcp.length_low);
  1540. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
  1541. txdesc->u.plcp.length_high);
  1542. rt2x00_desc_write(txd, 2, word);
  1543. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  1544. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  1545. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  1546. }
  1547. word = rt2x00_desc_read(txd, 5);
  1548. rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
  1549. rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
  1550. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1551. TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
  1552. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1553. rt2x00_desc_write(txd, 5, word);
  1554. if (entry->queue->qid != QID_BEACON) {
  1555. word = rt2x00_desc_read(txd, 6);
  1556. rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
  1557. skbdesc->skb_dma);
  1558. rt2x00_desc_write(txd, 6, word);
  1559. word = rt2x00_desc_read(txd, 11);
  1560. rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
  1561. txdesc->length);
  1562. rt2x00_desc_write(txd, 11, word);
  1563. }
  1564. /*
  1565. * Writing TXD word 0 must the last to prevent a race condition with
  1566. * the device, whereby the device may take hold of the TXD before we
  1567. * finished updating it.
  1568. */
  1569. word = rt2x00_desc_read(txd, 0);
  1570. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1571. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1572. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1573. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1574. rt2x00_set_field32(&word, TXD_W0_ACK,
  1575. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1576. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1577. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1578. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1579. (txdesc->rate_mode == RATE_MODE_OFDM));
  1580. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  1581. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1582. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1583. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
  1584. test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
  1585. rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
  1586. test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
  1587. rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
  1588. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1589. rt2x00_set_field32(&word, TXD_W0_BURST,
  1590. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1591. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
  1592. rt2x00_desc_write(txd, 0, word);
  1593. /*
  1594. * Register descriptor details in skb frame descriptor.
  1595. */
  1596. skbdesc->desc = txd;
  1597. skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
  1598. TXD_DESC_SIZE;
  1599. }
  1600. /*
  1601. * TX data initialization
  1602. */
  1603. static void rt61pci_write_beacon(struct queue_entry *entry,
  1604. struct txentry_desc *txdesc)
  1605. {
  1606. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1607. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1608. unsigned int beacon_base;
  1609. unsigned int padding_len;
  1610. u32 orig_reg, reg;
  1611. /*
  1612. * Disable beaconing while we are reloading the beacon data,
  1613. * otherwise we might be sending out invalid data.
  1614. */
  1615. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  1616. orig_reg = reg;
  1617. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  1618. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  1619. /*
  1620. * Write the TX descriptor for the beacon.
  1621. */
  1622. rt61pci_write_tx_desc(entry, txdesc);
  1623. /*
  1624. * Dump beacon to userspace through debugfs.
  1625. */
  1626. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
  1627. /*
  1628. * Write entire beacon with descriptor and padding to register.
  1629. */
  1630. padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
  1631. if (padding_len && skb_pad(entry->skb, padding_len)) {
  1632. rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
  1633. /* skb freed by skb_pad() on failure */
  1634. entry->skb = NULL;
  1635. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
  1636. return;
  1637. }
  1638. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  1639. rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
  1640. entry_priv->desc, TXINFO_SIZE);
  1641. rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
  1642. entry->skb->data,
  1643. entry->skb->len + padding_len);
  1644. /*
  1645. * Enable beaconing again.
  1646. *
  1647. * For Wi-Fi faily generated beacons between participating
  1648. * stations. Set TBTT phase adaptive adjustment step to 8us.
  1649. */
  1650. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1651. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1652. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  1653. /*
  1654. * Clean up beacon skb.
  1655. */
  1656. dev_kfree_skb_any(entry->skb);
  1657. entry->skb = NULL;
  1658. }
  1659. static void rt61pci_clear_beacon(struct queue_entry *entry)
  1660. {
  1661. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1662. u32 orig_reg, reg;
  1663. /*
  1664. * Disable beaconing while we are reloading the beacon data,
  1665. * otherwise we might be sending out invalid data.
  1666. */
  1667. orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
  1668. reg = orig_reg;
  1669. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  1670. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
  1671. /*
  1672. * Clear beacon.
  1673. */
  1674. rt2x00mmio_register_write(rt2x00dev,
  1675. HW_BEACON_OFFSET(entry->entry_idx), 0);
  1676. /*
  1677. * Restore global beaconing state.
  1678. */
  1679. rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
  1680. }
  1681. /*
  1682. * RX control handlers
  1683. */
  1684. static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1685. {
  1686. u8 offset = rt2x00dev->lna_gain;
  1687. u8 lna;
  1688. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1689. switch (lna) {
  1690. case 3:
  1691. offset += 90;
  1692. break;
  1693. case 2:
  1694. offset += 74;
  1695. break;
  1696. case 1:
  1697. offset += 64;
  1698. break;
  1699. default:
  1700. return 0;
  1701. }
  1702. if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
  1703. if (lna == 3 || lna == 2)
  1704. offset += 10;
  1705. }
  1706. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1707. }
  1708. static void rt61pci_fill_rxdone(struct queue_entry *entry,
  1709. struct rxdone_entry_desc *rxdesc)
  1710. {
  1711. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1712. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1713. u32 word0;
  1714. u32 word1;
  1715. word0 = rt2x00_desc_read(entry_priv->desc, 0);
  1716. word1 = rt2x00_desc_read(entry_priv->desc, 1);
  1717. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1718. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1719. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
  1720. rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
  1721. if (rxdesc->cipher != CIPHER_NONE) {
  1722. rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
  1723. rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
  1724. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1725. rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
  1726. rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
  1727. /*
  1728. * Hardware has stripped IV/EIV data from 802.11 frame during
  1729. * decryption. It has provided the data separately but rt2x00lib
  1730. * should decide if it should be reinserted.
  1731. */
  1732. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  1733. /*
  1734. * The hardware has already checked the Michael Mic and has
  1735. * stripped it from the frame. Signal this to mac80211.
  1736. */
  1737. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1738. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1739. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1740. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1741. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1742. }
  1743. /*
  1744. * Obtain the status about this packet.
  1745. * When frame was received with an OFDM bitrate,
  1746. * the signal is the PLCP value. If it was received with
  1747. * a CCK bitrate the signal is the rate in 100kbit/s.
  1748. */
  1749. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1750. rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
  1751. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1752. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1753. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1754. else
  1755. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1756. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1757. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1758. }
  1759. /*
  1760. * Interrupt functions.
  1761. */
  1762. static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
  1763. {
  1764. struct data_queue *queue;
  1765. struct queue_entry *entry;
  1766. struct queue_entry *entry_done;
  1767. struct queue_entry_priv_mmio *entry_priv;
  1768. struct txdone_entry_desc txdesc;
  1769. u32 word;
  1770. u32 reg;
  1771. int type;
  1772. int index;
  1773. int i;
  1774. /*
  1775. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  1776. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  1777. * flag is not set anymore.
  1778. *
  1779. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  1780. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  1781. * tx ring size for now.
  1782. */
  1783. for (i = 0; i < rt2x00dev->tx->limit; i++) {
  1784. reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
  1785. if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
  1786. break;
  1787. /*
  1788. * Skip this entry when it contains an invalid
  1789. * queue identication number.
  1790. */
  1791. type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
  1792. queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
  1793. if (unlikely(!queue))
  1794. continue;
  1795. /*
  1796. * Skip this entry when it contains an invalid
  1797. * index number.
  1798. */
  1799. index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
  1800. if (unlikely(index >= queue->limit))
  1801. continue;
  1802. entry = &queue->entries[index];
  1803. entry_priv = entry->priv_data;
  1804. word = rt2x00_desc_read(entry_priv->desc, 0);
  1805. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1806. !rt2x00_get_field32(word, TXD_W0_VALID))
  1807. return;
  1808. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1809. while (entry != entry_done) {
  1810. /* Catch up.
  1811. * Just report any entries we missed as failed.
  1812. */
  1813. rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
  1814. entry_done->entry_idx);
  1815. rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
  1816. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1817. }
  1818. /*
  1819. * Obtain the status about this packet.
  1820. */
  1821. txdesc.flags = 0;
  1822. switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
  1823. case 0: /* Success, maybe with retry */
  1824. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1825. break;
  1826. case 6: /* Failure, excessive retries */
  1827. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1828. fallthrough; /* this is a failed frame! */
  1829. default: /* Failure */
  1830. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1831. }
  1832. txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
  1833. /*
  1834. * the frame was retried at least once
  1835. * -> hw used fallback rates
  1836. */
  1837. if (txdesc.retry)
  1838. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  1839. rt2x00lib_txdone(entry, &txdesc);
  1840. }
  1841. }
  1842. static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
  1843. {
  1844. struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
  1845. rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  1846. }
  1847. static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1848. struct rt2x00_field32 irq_field)
  1849. {
  1850. u32 reg;
  1851. /*
  1852. * Enable a single interrupt. The interrupt mask register
  1853. * access needs locking.
  1854. */
  1855. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1856. reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
  1857. rt2x00_set_field32(&reg, irq_field, 0);
  1858. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1859. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1860. }
  1861. static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
  1862. struct rt2x00_field32 irq_field)
  1863. {
  1864. u32 reg;
  1865. /*
  1866. * Enable a single MCU interrupt. The interrupt mask register
  1867. * access needs locking.
  1868. */
  1869. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1870. reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
  1871. rt2x00_set_field32(&reg, irq_field, 0);
  1872. rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1873. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1874. }
  1875. static void rt61pci_txstatus_tasklet(struct tasklet_struct *t)
  1876. {
  1877. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  1878. txstatus_tasklet);
  1879. rt61pci_txdone(rt2x00dev);
  1880. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1881. rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
  1882. }
  1883. static void rt61pci_tbtt_tasklet(struct tasklet_struct *t)
  1884. {
  1885. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
  1886. rt2x00lib_beacondone(rt2x00dev);
  1887. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1888. rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
  1889. }
  1890. static void rt61pci_rxdone_tasklet(struct tasklet_struct *t)
  1891. {
  1892. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  1893. rxdone_tasklet);
  1894. if (rt2x00mmio_rxdone(rt2x00dev))
  1895. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1896. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1897. rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
  1898. }
  1899. static void rt61pci_autowake_tasklet(struct tasklet_struct *t)
  1900. {
  1901. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  1902. autowake_tasklet);
  1903. rt61pci_wakeup(rt2x00dev);
  1904. rt2x00mmio_register_write(rt2x00dev,
  1905. M2H_CMD_DONE_CSR, 0xffffffff);
  1906. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1907. rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
  1908. }
  1909. static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
  1910. {
  1911. struct rt2x00_dev *rt2x00dev = dev_instance;
  1912. u32 reg_mcu, mask_mcu;
  1913. u32 reg, mask;
  1914. /*
  1915. * Get the interrupt sources & saved to local variable.
  1916. * Write register value back to clear pending interrupts.
  1917. */
  1918. reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
  1919. rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
  1920. reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
  1921. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1922. if (!reg && !reg_mcu)
  1923. return IRQ_NONE;
  1924. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1925. return IRQ_HANDLED;
  1926. /*
  1927. * Schedule tasklets for interrupt handling.
  1928. */
  1929. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
  1930. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1931. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
  1932. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1933. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
  1934. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1935. if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
  1936. tasklet_schedule(&rt2x00dev->autowake_tasklet);
  1937. /*
  1938. * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
  1939. * for interrupts and interrupt masks we can just use the value of
  1940. * INT_SOURCE_CSR to create the interrupt mask.
  1941. */
  1942. mask = reg;
  1943. mask_mcu = reg_mcu;
  1944. /*
  1945. * Disable all interrupts for which a tasklet was scheduled right now,
  1946. * the tasklet will reenable the appropriate interrupts.
  1947. */
  1948. spin_lock(&rt2x00dev->irqmask_lock);
  1949. reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
  1950. reg |= mask;
  1951. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1952. reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
  1953. reg |= mask_mcu;
  1954. rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1955. spin_unlock(&rt2x00dev->irqmask_lock);
  1956. return IRQ_HANDLED;
  1957. }
  1958. /*
  1959. * Device probe functions.
  1960. */
  1961. static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1962. {
  1963. struct eeprom_93cx6 eeprom;
  1964. u32 reg;
  1965. u16 word;
  1966. u8 *mac;
  1967. s8 value;
  1968. reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
  1969. eeprom.data = rt2x00dev;
  1970. eeprom.register_read = rt61pci_eepromregister_read;
  1971. eeprom.register_write = rt61pci_eepromregister_write;
  1972. eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
  1973. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1974. eeprom.reg_data_in = 0;
  1975. eeprom.reg_data_out = 0;
  1976. eeprom.reg_data_clock = 0;
  1977. eeprom.reg_chip_select = 0;
  1978. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1979. EEPROM_SIZE / sizeof(u16));
  1980. /*
  1981. * Start validation of the data that has been read.
  1982. */
  1983. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1984. rt2x00lib_set_mac_address(rt2x00dev, mac);
  1985. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  1986. if (word == 0xffff) {
  1987. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1988. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1989. ANTENNA_B);
  1990. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1991. ANTENNA_B);
  1992. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1993. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1994. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1995. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
  1996. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1997. rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
  1998. }
  1999. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
  2000. if (word == 0xffff) {
  2001. rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
  2002. rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
  2003. rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
  2004. rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
  2005. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  2006. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  2007. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  2008. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  2009. rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
  2010. }
  2011. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
  2012. if (word == 0xffff) {
  2013. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  2014. LED_MODE_DEFAULT);
  2015. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  2016. rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
  2017. }
  2018. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
  2019. if (word == 0xffff) {
  2020. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  2021. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  2022. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  2023. rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
  2024. }
  2025. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
  2026. if (word == 0xffff) {
  2027. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  2028. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  2029. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  2030. rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  2031. } else {
  2032. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  2033. if (value < -10 || value > 10)
  2034. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  2035. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  2036. if (value < -10 || value > 10)
  2037. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  2038. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  2039. }
  2040. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
  2041. if (word == 0xffff) {
  2042. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  2043. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  2044. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  2045. rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  2046. } else {
  2047. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  2048. if (value < -10 || value > 10)
  2049. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  2050. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  2051. if (value < -10 || value > 10)
  2052. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  2053. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  2054. }
  2055. return 0;
  2056. }
  2057. static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  2058. {
  2059. u32 reg;
  2060. u16 value;
  2061. u16 eeprom;
  2062. /*
  2063. * Read EEPROM word for configuration.
  2064. */
  2065. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  2066. /*
  2067. * Identify RF chipset.
  2068. */
  2069. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  2070. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
  2071. rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
  2072. value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
  2073. if (!rt2x00_rf(rt2x00dev, RF5225) &&
  2074. !rt2x00_rf(rt2x00dev, RF5325) &&
  2075. !rt2x00_rf(rt2x00dev, RF2527) &&
  2076. !rt2x00_rf(rt2x00dev, RF2529)) {
  2077. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  2078. return -ENODEV;
  2079. }
  2080. /*
  2081. * Determine number of antennas.
  2082. */
  2083. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
  2084. __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
  2085. /*
  2086. * Identify default antenna configuration.
  2087. */
  2088. rt2x00dev->default_ant.tx =
  2089. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  2090. rt2x00dev->default_ant.rx =
  2091. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  2092. /*
  2093. * Read the Frame type.
  2094. */
  2095. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  2096. __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
  2097. /*
  2098. * Detect if this device has a hardware controlled radio.
  2099. */
  2100. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  2101. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  2102. /*
  2103. * Read frequency offset and RF programming sequence.
  2104. */
  2105. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
  2106. if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
  2107. __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
  2108. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  2109. /*
  2110. * Read external LNA informations.
  2111. */
  2112. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
  2113. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  2114. __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
  2115. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  2116. __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
  2117. /*
  2118. * When working with a RF2529 chip without double antenna,
  2119. * the antenna settings should be gathered from the NIC
  2120. * eeprom word.
  2121. */
  2122. if (rt2x00_rf(rt2x00dev, RF2529) &&
  2123. !rt2x00_has_cap_double_antenna(rt2x00dev)) {
  2124. rt2x00dev->default_ant.rx =
  2125. ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
  2126. rt2x00dev->default_ant.tx =
  2127. ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
  2128. if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
  2129. rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
  2130. if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
  2131. rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
  2132. }
  2133. /*
  2134. * Store led settings, for correct led behaviour.
  2135. * If the eeprom value is invalid,
  2136. * switch to default led mode.
  2137. */
  2138. #ifdef CONFIG_RT2X00_LIB_LEDS
  2139. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
  2140. value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
  2141. rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  2142. rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  2143. if (value == LED_MODE_SIGNAL_STRENGTH)
  2144. rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  2145. LED_TYPE_QUALITY);
  2146. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  2147. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  2148. rt2x00_get_field16(eeprom,
  2149. EEPROM_LED_POLARITY_GPIO_0));
  2150. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  2151. rt2x00_get_field16(eeprom,
  2152. EEPROM_LED_POLARITY_GPIO_1));
  2153. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  2154. rt2x00_get_field16(eeprom,
  2155. EEPROM_LED_POLARITY_GPIO_2));
  2156. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  2157. rt2x00_get_field16(eeprom,
  2158. EEPROM_LED_POLARITY_GPIO_3));
  2159. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  2160. rt2x00_get_field16(eeprom,
  2161. EEPROM_LED_POLARITY_GPIO_4));
  2162. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  2163. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  2164. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  2165. rt2x00_get_field16(eeprom,
  2166. EEPROM_LED_POLARITY_RDY_G));
  2167. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  2168. rt2x00_get_field16(eeprom,
  2169. EEPROM_LED_POLARITY_RDY_A));
  2170. #endif /* CONFIG_RT2X00_LIB_LEDS */
  2171. return 0;
  2172. }
  2173. /*
  2174. * RF value list for RF5225 & RF5325
  2175. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
  2176. */
  2177. static const struct rf_channel rf_vals_noseq[] = {
  2178. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  2179. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  2180. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  2181. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  2182. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  2183. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  2184. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  2185. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  2186. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  2187. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  2188. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  2189. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  2190. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  2191. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  2192. /* 802.11 UNI / HyperLan 2 */
  2193. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  2194. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  2195. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  2196. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  2197. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  2198. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  2199. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  2200. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  2201. /* 802.11 HyperLan 2 */
  2202. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  2203. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  2204. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  2205. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  2206. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  2207. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  2208. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  2209. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  2210. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  2211. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  2212. /* 802.11 UNII */
  2213. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  2214. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  2215. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  2216. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  2217. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  2218. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  2219. /* MMAC(Japan)J52 ch 34,38,42,46 */
  2220. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  2221. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  2222. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  2223. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  2224. };
  2225. /*
  2226. * RF value list for RF5225 & RF5325
  2227. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
  2228. */
  2229. static const struct rf_channel rf_vals_seq[] = {
  2230. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  2231. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  2232. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  2233. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  2234. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  2235. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  2236. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  2237. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  2238. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  2239. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  2240. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  2241. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  2242. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  2243. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  2244. /* 802.11 UNI / HyperLan 2 */
  2245. { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
  2246. { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
  2247. { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
  2248. { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
  2249. { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
  2250. { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
  2251. { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
  2252. { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
  2253. /* 802.11 HyperLan 2 */
  2254. { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
  2255. { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
  2256. { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
  2257. { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
  2258. { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
  2259. { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
  2260. { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
  2261. { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
  2262. { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
  2263. { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
  2264. /* 802.11 UNII */
  2265. { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
  2266. { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
  2267. { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
  2268. { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
  2269. { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
  2270. { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
  2271. /* MMAC(Japan)J52 ch 34,38,42,46 */
  2272. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
  2273. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
  2274. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
  2275. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
  2276. };
  2277. static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  2278. {
  2279. struct hw_mode_spec *spec = &rt2x00dev->spec;
  2280. struct channel_info *info;
  2281. u8 *tx_power;
  2282. unsigned int i;
  2283. /*
  2284. * Disable powersaving as default.
  2285. */
  2286. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  2287. /*
  2288. * Initialize all hw fields.
  2289. */
  2290. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  2291. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  2292. ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
  2293. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  2294. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  2295. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  2296. rt2x00_eeprom_addr(rt2x00dev,
  2297. EEPROM_MAC_ADDR_0));
  2298. /*
  2299. * As rt61 has a global fallback table we cannot specify
  2300. * more then one tx rate per frame but since the hw will
  2301. * try several rates (based on the fallback table) we should
  2302. * initialize max_report_rates to the maximum number of rates
  2303. * we are going to try. Otherwise mac80211 will truncate our
  2304. * reported tx rates and the rc algortihm will end up with
  2305. * incorrect data.
  2306. */
  2307. rt2x00dev->hw->max_rates = 1;
  2308. rt2x00dev->hw->max_report_rates = 7;
  2309. rt2x00dev->hw->max_rate_tries = 1;
  2310. /*
  2311. * Initialize hw_mode information.
  2312. */
  2313. spec->supported_bands = SUPPORT_BAND_2GHZ;
  2314. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  2315. if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
  2316. spec->num_channels = 14;
  2317. spec->channels = rf_vals_noseq;
  2318. } else {
  2319. spec->num_channels = 14;
  2320. spec->channels = rf_vals_seq;
  2321. }
  2322. if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
  2323. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  2324. spec->num_channels = ARRAY_SIZE(rf_vals_seq);
  2325. }
  2326. /*
  2327. * Create channel information array
  2328. */
  2329. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  2330. if (!info)
  2331. return -ENOMEM;
  2332. spec->channels_info = info;
  2333. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  2334. for (i = 0; i < 14; i++) {
  2335. info[i].max_power = MAX_TXPOWER;
  2336. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  2337. }
  2338. if (spec->num_channels > 14) {
  2339. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  2340. for (i = 14; i < spec->num_channels; i++) {
  2341. info[i].max_power = MAX_TXPOWER;
  2342. info[i].default_power1 =
  2343. TXPOWER_FROM_DEV(tx_power[i - 14]);
  2344. }
  2345. }
  2346. return 0;
  2347. }
  2348. static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  2349. {
  2350. int retval;
  2351. u32 reg;
  2352. /*
  2353. * Disable power saving.
  2354. */
  2355. rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
  2356. /*
  2357. * Allocate eeprom data.
  2358. */
  2359. retval = rt61pci_validate_eeprom(rt2x00dev);
  2360. if (retval)
  2361. return retval;
  2362. retval = rt61pci_init_eeprom(rt2x00dev);
  2363. if (retval)
  2364. return retval;
  2365. /*
  2366. * Enable rfkill polling by setting GPIO direction of the
  2367. * rfkill switch GPIO pin correctly.
  2368. */
  2369. reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
  2370. rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
  2371. rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
  2372. /*
  2373. * Initialize hw specifications.
  2374. */
  2375. retval = rt61pci_probe_hw_mode(rt2x00dev);
  2376. if (retval)
  2377. return retval;
  2378. /*
  2379. * This device has multiple filters for control frames,
  2380. * but has no a separate filter for PS Poll frames.
  2381. */
  2382. __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
  2383. /*
  2384. * This device requires firmware and DMA mapped skbs.
  2385. */
  2386. __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
  2387. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  2388. if (!modparam_nohwcrypt)
  2389. __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
  2390. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  2391. /*
  2392. * Set the rssi offset.
  2393. */
  2394. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  2395. return 0;
  2396. }
  2397. /*
  2398. * IEEE80211 stack callback functions.
  2399. */
  2400. static int rt61pci_conf_tx(struct ieee80211_hw *hw,
  2401. struct ieee80211_vif *vif,
  2402. unsigned int link_id, u16 queue_idx,
  2403. const struct ieee80211_tx_queue_params *params)
  2404. {
  2405. struct rt2x00_dev *rt2x00dev = hw->priv;
  2406. struct data_queue *queue;
  2407. struct rt2x00_field32 field;
  2408. int retval;
  2409. u32 reg;
  2410. u32 offset;
  2411. /*
  2412. * First pass the configuration through rt2x00lib, that will
  2413. * update the queue settings and validate the input. After that
  2414. * we are free to update the registers based on the value
  2415. * in the queue parameter.
  2416. */
  2417. retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
  2418. if (retval)
  2419. return retval;
  2420. /*
  2421. * We only need to perform additional register initialization
  2422. * for WMM queues.
  2423. */
  2424. if (queue_idx >= 4)
  2425. return 0;
  2426. queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  2427. /* Update WMM TXOP register */
  2428. offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
  2429. field.bit_offset = (queue_idx & 1) * 16;
  2430. field.bit_mask = 0xffff << field.bit_offset;
  2431. reg = rt2x00mmio_register_read(rt2x00dev, offset);
  2432. rt2x00_set_field32(&reg, field, queue->txop);
  2433. rt2x00mmio_register_write(rt2x00dev, offset, reg);
  2434. /* Update WMM registers */
  2435. field.bit_offset = queue_idx * 4;
  2436. field.bit_mask = 0xf << field.bit_offset;
  2437. reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
  2438. rt2x00_set_field32(&reg, field, queue->aifs);
  2439. rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
  2440. reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
  2441. rt2x00_set_field32(&reg, field, queue->cw_min);
  2442. rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
  2443. reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
  2444. rt2x00_set_field32(&reg, field, queue->cw_max);
  2445. rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
  2446. return 0;
  2447. }
  2448. static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  2449. {
  2450. struct rt2x00_dev *rt2x00dev = hw->priv;
  2451. u64 tsf;
  2452. u32 reg;
  2453. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
  2454. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  2455. reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
  2456. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  2457. return tsf;
  2458. }
  2459. static const struct ieee80211_ops rt61pci_mac80211_ops = {
  2460. .tx = rt2x00mac_tx,
  2461. .start = rt2x00mac_start,
  2462. .stop = rt2x00mac_stop,
  2463. .add_interface = rt2x00mac_add_interface,
  2464. .remove_interface = rt2x00mac_remove_interface,
  2465. .config = rt2x00mac_config,
  2466. .configure_filter = rt2x00mac_configure_filter,
  2467. .set_key = rt2x00mac_set_key,
  2468. .sw_scan_start = rt2x00mac_sw_scan_start,
  2469. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  2470. .get_stats = rt2x00mac_get_stats,
  2471. .bss_info_changed = rt2x00mac_bss_info_changed,
  2472. .conf_tx = rt61pci_conf_tx,
  2473. .get_tsf = rt61pci_get_tsf,
  2474. .rfkill_poll = rt2x00mac_rfkill_poll,
  2475. .flush = rt2x00mac_flush,
  2476. .set_antenna = rt2x00mac_set_antenna,
  2477. .get_antenna = rt2x00mac_get_antenna,
  2478. .get_ringparam = rt2x00mac_get_ringparam,
  2479. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  2480. };
  2481. static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
  2482. .irq_handler = rt61pci_interrupt,
  2483. .txstatus_tasklet = rt61pci_txstatus_tasklet,
  2484. .tbtt_tasklet = rt61pci_tbtt_tasklet,
  2485. .rxdone_tasklet = rt61pci_rxdone_tasklet,
  2486. .autowake_tasklet = rt61pci_autowake_tasklet,
  2487. .probe_hw = rt61pci_probe_hw,
  2488. .get_firmware_name = rt61pci_get_firmware_name,
  2489. .check_firmware = rt61pci_check_firmware,
  2490. .load_firmware = rt61pci_load_firmware,
  2491. .initialize = rt2x00mmio_initialize,
  2492. .uninitialize = rt2x00mmio_uninitialize,
  2493. .get_entry_state = rt61pci_get_entry_state,
  2494. .clear_entry = rt61pci_clear_entry,
  2495. .set_device_state = rt61pci_set_device_state,
  2496. .rfkill_poll = rt61pci_rfkill_poll,
  2497. .link_stats = rt61pci_link_stats,
  2498. .reset_tuner = rt61pci_reset_tuner,
  2499. .link_tuner = rt61pci_link_tuner,
  2500. .start_queue = rt61pci_start_queue,
  2501. .kick_queue = rt61pci_kick_queue,
  2502. .stop_queue = rt61pci_stop_queue,
  2503. .flush_queue = rt2x00mmio_flush_queue,
  2504. .write_tx_desc = rt61pci_write_tx_desc,
  2505. .write_beacon = rt61pci_write_beacon,
  2506. .clear_beacon = rt61pci_clear_beacon,
  2507. .fill_rxdone = rt61pci_fill_rxdone,
  2508. .config_shared_key = rt61pci_config_shared_key,
  2509. .config_pairwise_key = rt61pci_config_pairwise_key,
  2510. .config_filter = rt61pci_config_filter,
  2511. .config_intf = rt61pci_config_intf,
  2512. .config_erp = rt61pci_config_erp,
  2513. .config_ant = rt61pci_config_ant,
  2514. .config = rt61pci_config,
  2515. };
  2516. static void rt61pci_queue_init(struct data_queue *queue)
  2517. {
  2518. switch (queue->qid) {
  2519. case QID_RX:
  2520. queue->limit = 32;
  2521. queue->data_size = DATA_FRAME_SIZE;
  2522. queue->desc_size = RXD_DESC_SIZE;
  2523. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  2524. break;
  2525. case QID_AC_VO:
  2526. case QID_AC_VI:
  2527. case QID_AC_BE:
  2528. case QID_AC_BK:
  2529. queue->limit = 32;
  2530. queue->data_size = DATA_FRAME_SIZE;
  2531. queue->desc_size = TXD_DESC_SIZE;
  2532. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  2533. break;
  2534. case QID_BEACON:
  2535. queue->limit = 4;
  2536. queue->data_size = 0; /* No DMA required for beacons */
  2537. queue->desc_size = TXINFO_SIZE;
  2538. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  2539. break;
  2540. case QID_ATIM:
  2541. default:
  2542. BUG();
  2543. break;
  2544. }
  2545. }
  2546. static const struct rt2x00_ops rt61pci_ops = {
  2547. .name = KBUILD_MODNAME,
  2548. .max_ap_intf = 4,
  2549. .eeprom_size = EEPROM_SIZE,
  2550. .rf_size = RF_SIZE,
  2551. .tx_queues = NUM_TX_QUEUES,
  2552. .queue_init = rt61pci_queue_init,
  2553. .lib = &rt61pci_rt2x00_ops,
  2554. .hw = &rt61pci_mac80211_ops,
  2555. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  2556. .debugfs = &rt61pci_rt2x00debug,
  2557. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  2558. };
  2559. /*
  2560. * RT61pci module information.
  2561. */
  2562. static const struct pci_device_id rt61pci_device_table[] = {
  2563. /* RT2561s */
  2564. { PCI_DEVICE(0x1814, 0x0301) },
  2565. /* RT2561 v2 */
  2566. { PCI_DEVICE(0x1814, 0x0302) },
  2567. /* RT2661 */
  2568. { PCI_DEVICE(0x1814, 0x0401) },
  2569. { 0, }
  2570. };
  2571. MODULE_AUTHOR(DRV_PROJECT);
  2572. MODULE_VERSION(DRV_VERSION);
  2573. MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
  2574. MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
  2575. MODULE_FIRMWARE(FIRMWARE_RT2561);
  2576. MODULE_FIRMWARE(FIRMWARE_RT2561s);
  2577. MODULE_FIRMWARE(FIRMWARE_RT2661);
  2578. MODULE_LICENSE("GPL");
  2579. static int rt61pci_probe(struct pci_dev *pci_dev,
  2580. const struct pci_device_id *id)
  2581. {
  2582. return rt2x00pci_probe(pci_dev, &rt61pci_ops);
  2583. }
  2584. static struct pci_driver rt61pci_driver = {
  2585. .name = KBUILD_MODNAME,
  2586. .id_table = rt61pci_device_table,
  2587. .probe = rt61pci_probe,
  2588. .remove = rt2x00pci_remove,
  2589. .driver.pm = &rt2x00pci_pm_ops,
  2590. };
  2591. module_pci_driver(rt61pci_driver);