rt2800mmio.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /* Copyright (C) 2009 - 2010 Ivo van Doorn <[email protected]>
  3. * Copyright (C) 2009 Alban Browaeys <[email protected]>
  4. * Copyright (C) 2009 Felix Fietkau <[email protected]>
  5. * Copyright (C) 2009 Luis Correia <[email protected]>
  6. * Copyright (C) 2009 Mattias Nissler <[email protected]>
  7. * Copyright (C) 2009 Mark Asselstine <[email protected]>
  8. * Copyright (C) 2009 Xose Vazquez Perez <[email protected]>
  9. * Copyright (C) 2009 Bart Zolnierkiewicz <[email protected]>
  10. * <http://rt2x00.serialmonkey.com>
  11. */
  12. /* Module: rt2800mmio
  13. * Abstract: rt2800 MMIO device routines.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/export.h>
  18. #include "rt2x00.h"
  19. #include "rt2x00mmio.h"
  20. #include "rt2800.h"
  21. #include "rt2800lib.h"
  22. #include "rt2800mmio.h"
  23. unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
  24. {
  25. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  26. struct queue_entry *entry;
  27. int idx, qid;
  28. switch (queue->qid) {
  29. case QID_AC_VO:
  30. case QID_AC_VI:
  31. case QID_AC_BE:
  32. case QID_AC_BK:
  33. qid = queue->qid;
  34. idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
  35. break;
  36. case QID_MGMT:
  37. idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
  38. break;
  39. case QID_RX:
  40. entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
  41. idx = entry->entry_idx;
  42. break;
  43. default:
  44. WARN_ON_ONCE(1);
  45. idx = 0;
  46. break;
  47. }
  48. return idx;
  49. }
  50. EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
  51. /*
  52. * TX descriptor initialization
  53. */
  54. __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
  55. {
  56. return (__le32 *) entry->skb->data;
  57. }
  58. EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
  59. void rt2800mmio_write_tx_desc(struct queue_entry *entry,
  60. struct txentry_desc *txdesc)
  61. {
  62. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  63. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  64. __le32 *txd = entry_priv->desc;
  65. u32 word;
  66. const unsigned int txwi_size = entry->queue->winfo_size;
  67. /*
  68. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  69. * must contains a TXWI structure + 802.11 header + padding + 802.11
  70. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  71. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  72. * data. It means that LAST_SEC0 is always 0.
  73. */
  74. /*
  75. * Initialize TX descriptor
  76. */
  77. word = 0;
  78. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  79. rt2x00_desc_write(txd, 0, word);
  80. word = 0;
  81. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  82. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  83. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  84. rt2x00_set_field32(&word, TXD_W1_BURST,
  85. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  86. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
  87. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  88. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  89. rt2x00_desc_write(txd, 1, word);
  90. word = 0;
  91. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  92. skbdesc->skb_dma + txwi_size);
  93. rt2x00_desc_write(txd, 2, word);
  94. word = 0;
  95. rt2x00_set_field32(&word, TXD_W3_WIV,
  96. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  97. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  98. rt2x00_desc_write(txd, 3, word);
  99. /*
  100. * Register descriptor details in skb frame descriptor.
  101. */
  102. skbdesc->desc = txd;
  103. skbdesc->desc_len = TXD_DESC_SIZE;
  104. }
  105. EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
  106. /*
  107. * RX control handlers
  108. */
  109. void rt2800mmio_fill_rxdone(struct queue_entry *entry,
  110. struct rxdone_entry_desc *rxdesc)
  111. {
  112. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  113. __le32 *rxd = entry_priv->desc;
  114. u32 word;
  115. word = rt2x00_desc_read(rxd, 3);
  116. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  117. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  118. /*
  119. * Unfortunately we don't know the cipher type used during
  120. * decryption. This prevents us from correct providing
  121. * correct statistics through debugfs.
  122. */
  123. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  124. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  125. /*
  126. * Hardware has stripped IV/EIV data from 802.11 frame during
  127. * decryption. Unfortunately the descriptor doesn't contain
  128. * any fields with the EIV/IV data either, so they can't
  129. * be restored by rt2x00lib.
  130. */
  131. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  132. /*
  133. * The hardware has already checked the Michael Mic and has
  134. * stripped it from the frame. Signal this to mac80211.
  135. */
  136. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  137. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
  138. rxdesc->flags |= RX_FLAG_DECRYPTED;
  139. } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
  140. /*
  141. * In order to check the Michael Mic, the packet must have
  142. * been decrypted. Mac80211 doesnt check the MMIC failure
  143. * flag to initiate MMIC countermeasures if the decoded flag
  144. * has not been set.
  145. */
  146. rxdesc->flags |= RX_FLAG_DECRYPTED;
  147. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  148. }
  149. }
  150. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  151. rxdesc->dev_flags |= RXDONE_MY_BSS;
  152. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  153. rxdesc->dev_flags |= RXDONE_L2PAD;
  154. /*
  155. * Process the RXWI structure that is at the start of the buffer.
  156. */
  157. rt2800_process_rxwi(entry, rxdesc);
  158. }
  159. EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
  160. /*
  161. * Interrupt functions.
  162. */
  163. static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
  164. {
  165. struct ieee80211_conf conf = { .flags = 0 };
  166. struct rt2x00lib_conf libconf = { .conf = &conf };
  167. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  168. }
  169. static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  170. struct rt2x00_field32 irq_field)
  171. {
  172. u32 reg;
  173. /*
  174. * Enable a single interrupt. The interrupt mask register
  175. * access needs locking.
  176. */
  177. spin_lock_irq(&rt2x00dev->irqmask_lock);
  178. reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
  179. rt2x00_set_field32(&reg, irq_field, 1);
  180. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  181. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  182. }
  183. void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
  184. {
  185. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  186. pretbtt_tasklet);
  187. rt2x00lib_pretbtt(rt2x00dev);
  188. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  189. rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
  190. }
  191. EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
  192. void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
  193. {
  194. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
  195. struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
  196. u32 reg;
  197. rt2x00lib_beacondone(rt2x00dev);
  198. if (rt2x00dev->intf_ap_count) {
  199. /*
  200. * The rt2800pci hardware tbtt timer is off by 1us per tbtt
  201. * causing beacon skew and as a result causing problems with
  202. * some powersaving clients over time. Shorten the beacon
  203. * interval every 64 beacons by 64us to mitigate this effect.
  204. */
  205. if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
  206. reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
  207. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  208. (rt2x00dev->beacon_int * 16) - 1);
  209. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  210. } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
  211. reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
  212. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  213. (rt2x00dev->beacon_int * 16));
  214. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  215. }
  216. drv_data->tbtt_tick++;
  217. drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
  218. }
  219. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  220. rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
  221. }
  222. EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
  223. void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
  224. {
  225. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  226. rxdone_tasklet);
  227. if (rt2x00mmio_rxdone(rt2x00dev))
  228. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  229. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  230. rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
  231. }
  232. EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
  233. void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
  234. {
  235. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  236. autowake_tasklet);
  237. rt2800mmio_wakeup(rt2x00dev);
  238. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  239. rt2800mmio_enable_interrupt(rt2x00dev,
  240. INT_MASK_CSR_AUTO_WAKEUP);
  241. }
  242. EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
  243. static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
  244. {
  245. u32 status;
  246. unsigned long flags;
  247. /*
  248. * The TX_FIFO_STATUS interrupt needs special care. We should
  249. * read TX_STA_FIFO but we should do it immediately as otherwise
  250. * the register can overflow and we would lose status reports.
  251. *
  252. * Hence, read the TX_STA_FIFO register and copy all tx status
  253. * reports into a kernel FIFO which is handled in the txstatus
  254. * tasklet. We use a tasklet to process the tx status reports
  255. * because we can schedule the tasklet multiple times (when the
  256. * interrupt fires again during tx status processing).
  257. *
  258. * We also read statuses from tx status timeout timer, use
  259. * lock to prevent concurent writes to fifo.
  260. */
  261. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  262. while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
  263. status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
  264. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  265. break;
  266. kfifo_put(&rt2x00dev->txstatus_fifo, status);
  267. }
  268. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  269. }
  270. void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
  271. {
  272. struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
  273. txstatus_tasklet);
  274. rt2800_txdone(rt2x00dev, 16);
  275. if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
  276. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  277. }
  278. EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
  279. irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
  280. {
  281. struct rt2x00_dev *rt2x00dev = dev_instance;
  282. u32 reg, mask;
  283. /* Read status and ACK all interrupts */
  284. reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
  285. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  286. if (!reg)
  287. return IRQ_NONE;
  288. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  289. return IRQ_HANDLED;
  290. /*
  291. * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
  292. * for interrupts and interrupt masks we can just use the value of
  293. * INT_SOURCE_CSR to create the interrupt mask.
  294. */
  295. mask = ~reg;
  296. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
  297. rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  298. rt2800mmio_fetch_txstatus(rt2x00dev);
  299. if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
  300. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  301. }
  302. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  303. tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
  304. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  305. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  306. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  307. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  308. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  309. tasklet_schedule(&rt2x00dev->autowake_tasklet);
  310. /*
  311. * Disable all interrupts for which a tasklet was scheduled right now,
  312. * the tasklet will reenable the appropriate interrupts.
  313. */
  314. spin_lock(&rt2x00dev->irqmask_lock);
  315. reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
  316. reg &= mask;
  317. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  318. spin_unlock(&rt2x00dev->irqmask_lock);
  319. return IRQ_HANDLED;
  320. }
  321. EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
  322. void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
  323. enum dev_state state)
  324. {
  325. u32 reg;
  326. unsigned long flags;
  327. /*
  328. * When interrupts are being enabled, the interrupt registers
  329. * should clear the register to assure a clean state.
  330. */
  331. if (state == STATE_RADIO_IRQ_ON) {
  332. reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
  333. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  334. }
  335. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  336. reg = 0;
  337. if (state == STATE_RADIO_IRQ_ON) {
  338. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
  339. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
  340. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
  341. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  342. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
  343. }
  344. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  345. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  346. if (state == STATE_RADIO_IRQ_OFF) {
  347. /*
  348. * Wait for possibly running tasklets to finish.
  349. */
  350. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  351. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  352. tasklet_kill(&rt2x00dev->autowake_tasklet);
  353. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  354. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  355. }
  356. }
  357. EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
  358. /*
  359. * Queue handlers.
  360. */
  361. void rt2800mmio_start_queue(struct data_queue *queue)
  362. {
  363. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  364. u32 reg;
  365. switch (queue->qid) {
  366. case QID_RX:
  367. reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
  368. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  369. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  370. break;
  371. case QID_BEACON:
  372. reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
  373. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  374. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  375. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  376. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  377. reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
  378. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
  379. rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
  380. break;
  381. default:
  382. break;
  383. }
  384. }
  385. EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
  386. /* 200 ms */
  387. #define TXSTATUS_TIMEOUT 200000000
  388. void rt2800mmio_kick_queue(struct data_queue *queue)
  389. {
  390. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  391. struct queue_entry *entry;
  392. switch (queue->qid) {
  393. case QID_AC_VO:
  394. case QID_AC_VI:
  395. case QID_AC_BE:
  396. case QID_AC_BK:
  397. WARN_ON_ONCE(rt2x00queue_empty(queue));
  398. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  399. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
  400. entry->entry_idx);
  401. hrtimer_start(&rt2x00dev->txstatus_timer,
  402. TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
  403. break;
  404. case QID_MGMT:
  405. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  406. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
  407. entry->entry_idx);
  408. break;
  409. default:
  410. break;
  411. }
  412. }
  413. EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
  414. void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
  415. {
  416. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  417. bool tx_queue = false;
  418. unsigned int i;
  419. switch (queue->qid) {
  420. case QID_AC_VO:
  421. case QID_AC_VI:
  422. case QID_AC_BE:
  423. case QID_AC_BK:
  424. tx_queue = true;
  425. break;
  426. case QID_RX:
  427. break;
  428. default:
  429. return;
  430. }
  431. for (i = 0; i < 5; i++) {
  432. /*
  433. * Check if the driver is already done, otherwise we
  434. * have to sleep a little while to give the driver/hw
  435. * the oppurtunity to complete interrupt process itself.
  436. */
  437. if (rt2x00queue_empty(queue))
  438. break;
  439. /*
  440. * For TX queues schedule completion tasklet to catch
  441. * tx status timeouts, othewise just wait.
  442. */
  443. if (tx_queue)
  444. queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
  445. /*
  446. * Wait for a little while to give the driver
  447. * the oppurtunity to recover itself.
  448. */
  449. msleep(50);
  450. }
  451. }
  452. EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
  453. void rt2800mmio_stop_queue(struct data_queue *queue)
  454. {
  455. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  456. u32 reg;
  457. switch (queue->qid) {
  458. case QID_RX:
  459. reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
  460. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  461. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  462. break;
  463. case QID_BEACON:
  464. reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
  465. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  466. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  467. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  468. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  469. reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
  470. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
  471. rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
  472. /*
  473. * Wait for current invocation to finish. The tasklet
  474. * won't be scheduled anymore afterwards since we disabled
  475. * the TBTT and PRE TBTT timer.
  476. */
  477. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  478. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  479. break;
  480. default:
  481. break;
  482. }
  483. }
  484. EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
  485. void rt2800mmio_queue_init(struct data_queue *queue)
  486. {
  487. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  488. unsigned short txwi_size, rxwi_size;
  489. rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
  490. switch (queue->qid) {
  491. case QID_RX:
  492. queue->limit = 128;
  493. queue->data_size = AGGREGATION_SIZE;
  494. queue->desc_size = RXD_DESC_SIZE;
  495. queue->winfo_size = rxwi_size;
  496. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  497. break;
  498. case QID_AC_VO:
  499. case QID_AC_VI:
  500. case QID_AC_BE:
  501. case QID_AC_BK:
  502. queue->limit = 64;
  503. queue->data_size = AGGREGATION_SIZE;
  504. queue->desc_size = TXD_DESC_SIZE;
  505. queue->winfo_size = txwi_size;
  506. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  507. break;
  508. case QID_BEACON:
  509. queue->limit = 8;
  510. queue->data_size = 0; /* No DMA required for beacons */
  511. queue->desc_size = TXD_DESC_SIZE;
  512. queue->winfo_size = txwi_size;
  513. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  514. break;
  515. case QID_ATIM:
  516. default:
  517. BUG();
  518. break;
  519. }
  520. }
  521. EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
  522. /*
  523. * Initialization functions.
  524. */
  525. bool rt2800mmio_get_entry_state(struct queue_entry *entry)
  526. {
  527. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  528. u32 word;
  529. if (entry->queue->qid == QID_RX) {
  530. word = rt2x00_desc_read(entry_priv->desc, 1);
  531. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  532. } else {
  533. word = rt2x00_desc_read(entry_priv->desc, 1);
  534. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  535. }
  536. }
  537. EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
  538. void rt2800mmio_clear_entry(struct queue_entry *entry)
  539. {
  540. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  541. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  542. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  543. u32 word;
  544. if (entry->queue->qid == QID_RX) {
  545. word = rt2x00_desc_read(entry_priv->desc, 0);
  546. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  547. rt2x00_desc_write(entry_priv->desc, 0, word);
  548. word = rt2x00_desc_read(entry_priv->desc, 1);
  549. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  550. rt2x00_desc_write(entry_priv->desc, 1, word);
  551. /*
  552. * Set RX IDX in register to inform hardware that we have
  553. * handled this entry and it is available for reuse again.
  554. */
  555. rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
  556. entry->entry_idx);
  557. } else {
  558. word = rt2x00_desc_read(entry_priv->desc, 1);
  559. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  560. rt2x00_desc_write(entry_priv->desc, 1, word);
  561. /* If last entry stop txstatus timer */
  562. if (entry->queue->length == 1)
  563. hrtimer_cancel(&rt2x00dev->txstatus_timer);
  564. }
  565. }
  566. EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
  567. int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
  568. {
  569. struct queue_entry_priv_mmio *entry_priv;
  570. /*
  571. * Initialize registers.
  572. */
  573. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  574. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
  575. entry_priv->desc_dma);
  576. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
  577. rt2x00dev->tx[0].limit);
  578. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  579. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  580. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  581. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
  582. entry_priv->desc_dma);
  583. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
  584. rt2x00dev->tx[1].limit);
  585. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  586. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  587. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  588. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
  589. entry_priv->desc_dma);
  590. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
  591. rt2x00dev->tx[2].limit);
  592. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  593. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  594. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  595. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
  596. entry_priv->desc_dma);
  597. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
  598. rt2x00dev->tx[3].limit);
  599. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  600. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  601. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
  602. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
  603. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
  604. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
  605. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
  606. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
  607. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
  608. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
  609. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  610. rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
  611. entry_priv->desc_dma);
  612. rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
  613. rt2x00dev->rx[0].limit);
  614. rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
  615. rt2x00dev->rx[0].limit - 1);
  616. rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
  617. rt2800_disable_wpdma(rt2x00dev);
  618. rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  619. return 0;
  620. }
  621. EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
  622. int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
  623. {
  624. u32 reg;
  625. /*
  626. * Reset DMA indexes
  627. */
  628. reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
  629. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  630. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  631. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  632. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  633. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  634. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  635. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  636. rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  637. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  638. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  639. if (rt2x00_is_pcie(rt2x00dev) &&
  640. (rt2x00_rt(rt2x00dev, RT3090) ||
  641. rt2x00_rt(rt2x00dev, RT3390) ||
  642. rt2x00_rt(rt2x00dev, RT3572) ||
  643. rt2x00_rt(rt2x00dev, RT3593) ||
  644. rt2x00_rt(rt2x00dev, RT5390) ||
  645. rt2x00_rt(rt2x00dev, RT5392) ||
  646. rt2x00_rt(rt2x00dev, RT5592))) {
  647. reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
  648. rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
  649. rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
  650. rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
  651. }
  652. rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  653. reg = 0;
  654. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  655. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  656. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  657. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  658. return 0;
  659. }
  660. EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
  661. /*
  662. * Device state switch handlers.
  663. */
  664. int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
  665. {
  666. /* Wait for DMA, ignore error until we initialize queues. */
  667. rt2800_wait_wpdma_ready(rt2x00dev);
  668. if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
  669. return -EIO;
  670. return rt2800_enable_radio(rt2x00dev);
  671. }
  672. EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
  673. static void rt2800mmio_work_txdone(struct work_struct *work)
  674. {
  675. struct rt2x00_dev *rt2x00dev =
  676. container_of(work, struct rt2x00_dev, txdone_work);
  677. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  678. return;
  679. while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
  680. rt2800_txstatus_timeout(rt2x00dev)) {
  681. tasklet_disable(&rt2x00dev->txstatus_tasklet);
  682. rt2800_txdone(rt2x00dev, UINT_MAX);
  683. rt2800_txdone_nostatus(rt2x00dev);
  684. tasklet_enable(&rt2x00dev->txstatus_tasklet);
  685. }
  686. if (rt2800_txstatus_pending(rt2x00dev))
  687. hrtimer_start(&rt2x00dev->txstatus_timer,
  688. TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
  689. }
  690. static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
  691. {
  692. struct rt2x00_dev *rt2x00dev =
  693. container_of(timer, struct rt2x00_dev, txstatus_timer);
  694. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  695. goto out;
  696. if (!rt2800_txstatus_pending(rt2x00dev))
  697. goto out;
  698. rt2800mmio_fetch_txstatus(rt2x00dev);
  699. if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
  700. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  701. else
  702. queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
  703. out:
  704. return HRTIMER_NORESTART;
  705. }
  706. int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
  707. {
  708. int retval;
  709. retval = rt2800_probe_hw(rt2x00dev);
  710. if (retval)
  711. return retval;
  712. /*
  713. * Set txstatus timer function.
  714. */
  715. rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
  716. /*
  717. * Overwrite TX done handler
  718. */
  719. INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
  720. return 0;
  721. }
  722. EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
  723. MODULE_AUTHOR(DRV_PROJECT);
  724. MODULE_VERSION(DRV_VERSION);
  725. MODULE_DESCRIPTION("rt2800 MMIO library");
  726. MODULE_LICENSE("GPL");