ixp4xx_hss.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Intel IXP4xx HSS (synchronous serial port) driver for Linux
  4. *
  5. * Copyright (C) 2007-2008 Krzysztof Hałasa <[email protected]>
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/module.h>
  9. #include <linux/bitops.h>
  10. #include <linux/cdev.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <linux/fs.h>
  14. #include <linux/hdlc.h>
  15. #include <linux/io.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mfd/syscon.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/poll.h>
  20. #include <linux/regmap.h>
  21. #include <linux/slab.h>
  22. #include <linux/gpio/consumer.h>
  23. #include <linux/of.h>
  24. #include <linux/soc/ixp4xx/npe.h>
  25. #include <linux/soc/ixp4xx/qmgr.h>
  26. #include <linux/soc/ixp4xx/cpu.h>
  27. /* This is what all IXP4xx platforms we know uses, if more frequencies
  28. * are needed, we need to migrate to the clock framework.
  29. */
  30. #define IXP4XX_TIMER_FREQ 66666000
  31. #define DEBUG_DESC 0
  32. #define DEBUG_RX 0
  33. #define DEBUG_TX 0
  34. #define DEBUG_PKT_BYTES 0
  35. #define DEBUG_CLOSE 0
  36. #define DRV_NAME "ixp4xx_hss"
  37. #define PKT_EXTRA_FLAGS 0 /* orig 1 */
  38. #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
  39. #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
  40. #define RX_DESCS 16 /* also length of all RX queues */
  41. #define TX_DESCS 16 /* also length of all TX queues */
  42. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  43. #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
  44. #define MAX_CLOSE_WAIT 1000 /* microseconds */
  45. #define HSS_COUNT 2
  46. #define FRAME_SIZE 256 /* doesn't matter at this point */
  47. #define FRAME_OFFSET 0
  48. #define MAX_CHANNELS (FRAME_SIZE / 8)
  49. #define NAPI_WEIGHT 16
  50. /* Queue IDs */
  51. #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
  52. #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
  53. #define HSS0_PKT_TX1_QUEUE 15
  54. #define HSS0_PKT_TX2_QUEUE 16
  55. #define HSS0_PKT_TX3_QUEUE 17
  56. #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
  57. #define HSS0_PKT_RXFREE1_QUEUE 19
  58. #define HSS0_PKT_RXFREE2_QUEUE 20
  59. #define HSS0_PKT_RXFREE3_QUEUE 21
  60. #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
  61. #define HSS1_PKT_RX_QUEUE 0
  62. #define HSS1_PKT_TX0_QUEUE 5
  63. #define HSS1_PKT_TX1_QUEUE 6
  64. #define HSS1_PKT_TX2_QUEUE 7
  65. #define HSS1_PKT_TX3_QUEUE 8
  66. #define HSS1_PKT_RXFREE0_QUEUE 1
  67. #define HSS1_PKT_RXFREE1_QUEUE 2
  68. #define HSS1_PKT_RXFREE2_QUEUE 3
  69. #define HSS1_PKT_RXFREE3_QUEUE 4
  70. #define HSS1_PKT_TXDONE_QUEUE 9
  71. #define NPE_PKT_MODE_HDLC 0
  72. #define NPE_PKT_MODE_RAW 1
  73. #define NPE_PKT_MODE_56KMODE 2
  74. #define NPE_PKT_MODE_56KENDIAN_MSB 4
  75. /* PKT_PIPE_HDLC_CFG_WRITE flags */
  76. #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
  77. #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
  78. #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
  79. /* hss_config, PCRs */
  80. /* Frame sync sampling, default = active low */
  81. #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
  82. #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
  83. #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
  84. /* Frame sync pin: input (default) or output generated off a given clk edge */
  85. #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
  86. #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
  87. /* Frame and data clock sampling on edge, default = falling */
  88. #define PCR_FCLK_EDGE_RISING 0x08000000
  89. #define PCR_DCLK_EDGE_RISING 0x04000000
  90. /* Clock direction, default = input */
  91. #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
  92. /* Generate/Receive frame pulses, default = enabled */
  93. #define PCR_FRM_PULSE_DISABLED 0x01000000
  94. /* Data rate is full (default) or half the configured clk speed */
  95. #define PCR_HALF_CLK_RATE 0x00200000
  96. /* Invert data between NPE and HSS FIFOs? (default = no) */
  97. #define PCR_DATA_POLARITY_INVERT 0x00100000
  98. /* TX/RX endianness, default = LSB */
  99. #define PCR_MSB_ENDIAN 0x00080000
  100. /* Normal (default) / open drain mode (TX only) */
  101. #define PCR_TX_PINS_OPEN_DRAIN 0x00040000
  102. /* No framing bit transmitted and expected on RX? (default = framing bit) */
  103. #define PCR_SOF_NO_FBIT 0x00020000
  104. /* Drive data pins? */
  105. #define PCR_TX_DATA_ENABLE 0x00010000
  106. /* Voice 56k type: drive the data pins low (default), high, high Z */
  107. #define PCR_TX_V56K_HIGH 0x00002000
  108. #define PCR_TX_V56K_HIGH_IMP 0x00004000
  109. /* Unassigned type: drive the data pins low (default), high, high Z */
  110. #define PCR_TX_UNASS_HIGH 0x00000800
  111. #define PCR_TX_UNASS_HIGH_IMP 0x00001000
  112. /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
  113. #define PCR_TX_FB_HIGH_IMP 0x00000400
  114. /* 56k data endiannes - which bit unused: high (default) or low */
  115. #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
  116. /* 56k data transmission type: 32/8 bit data (default) or 56K data */
  117. #define PCR_TX_56KS_56K_DATA 0x00000100
  118. /* hss_config, cCR */
  119. /* Number of packetized clients, default = 1 */
  120. #define CCR_NPE_HFIFO_2_HDLC 0x04000000
  121. #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
  122. /* default = no loopback */
  123. #define CCR_LOOPBACK 0x02000000
  124. /* HSS number, default = 0 (first) */
  125. #define CCR_SECOND_HSS 0x01000000
  126. /* hss_config, clkCR: main:10, num:10, denom:12 */
  127. #define CLK42X_SPEED_EXP ((0x3FF << 22) | (2 << 12) | 15) /*65 KHz*/
  128. #define CLK42X_SPEED_512KHZ ((130 << 22) | (2 << 12) | 15)
  129. #define CLK42X_SPEED_1536KHZ ((43 << 22) | (18 << 12) | 47)
  130. #define CLK42X_SPEED_1544KHZ ((43 << 22) | (33 << 12) | 192)
  131. #define CLK42X_SPEED_2048KHZ ((32 << 22) | (34 << 12) | 63)
  132. #define CLK42X_SPEED_4096KHZ ((16 << 22) | (34 << 12) | 127)
  133. #define CLK42X_SPEED_8192KHZ ((8 << 22) | (34 << 12) | 255)
  134. #define CLK46X_SPEED_512KHZ ((130 << 22) | (24 << 12) | 127)
  135. #define CLK46X_SPEED_1536KHZ ((43 << 22) | (152 << 12) | 383)
  136. #define CLK46X_SPEED_1544KHZ ((43 << 22) | (66 << 12) | 385)
  137. #define CLK46X_SPEED_2048KHZ ((32 << 22) | (280 << 12) | 511)
  138. #define CLK46X_SPEED_4096KHZ ((16 << 22) | (280 << 12) | 1023)
  139. #define CLK46X_SPEED_8192KHZ ((8 << 22) | (280 << 12) | 2047)
  140. /* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
  141. * A (10 bits), B (10 bits) and C (12 bits).
  142. * IXP42x HSS clock generator operation (verified with an oscilloscope):
  143. * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
  144. * The clock sequence consists of (C - B) states of 0s and 1s, each state is
  145. * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
  146. * (A + 1) bits wide.
  147. *
  148. * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
  149. * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
  150. * minimum freq = 66.666 MHz / (A + 1)
  151. * maximum freq = 66.666 MHz / A
  152. *
  153. * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
  154. * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
  155. * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
  156. * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
  157. * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
  158. * The sequence consists of 4 complete clock periods, thus the average
  159. * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
  160. * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
  161. */
  162. /* hss_config, LUT entries */
  163. #define TDMMAP_UNASSIGNED 0
  164. #define TDMMAP_HDLC 1 /* HDLC - packetized */
  165. #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
  166. #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
  167. /* offsets into HSS config */
  168. #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
  169. #define HSS_CONFIG_RX_PCR 0x04
  170. #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
  171. #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
  172. #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
  173. #define HSS_CONFIG_RX_FCR 0x14
  174. #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
  175. #define HSS_CONFIG_RX_LUT 0x38
  176. /* NPE command codes */
  177. /* writes the ConfigWord value to the location specified by offset */
  178. #define PORT_CONFIG_WRITE 0x40
  179. /* triggers the NPE to load the contents of the configuration table */
  180. #define PORT_CONFIG_LOAD 0x41
  181. /* triggers the NPE to return an HssErrorReadResponse message */
  182. #define PORT_ERROR_READ 0x42
  183. /* triggers the NPE to reset internal status and enable the HssPacketized
  184. * operation for the flow specified by pPipe
  185. */
  186. #define PKT_PIPE_FLOW_ENABLE 0x50
  187. #define PKT_PIPE_FLOW_DISABLE 0x51
  188. #define PKT_NUM_PIPES_WRITE 0x52
  189. #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
  190. #define PKT_PIPE_HDLC_CFG_WRITE 0x54
  191. #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
  192. #define PKT_PIPE_RX_SIZE_WRITE 0x56
  193. #define PKT_PIPE_MODE_WRITE 0x57
  194. /* HDLC packet status values - desc->status */
  195. #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
  196. #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
  197. #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
  198. #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
  199. * this packet (if buf_len < pkt_len)
  200. */
  201. #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
  202. #define ERR_HDLC_ABORT 6 /* abort sequence received */
  203. #define ERR_DISCONNECTING 7 /* disconnect is in progress */
  204. #ifdef __ARMEB__
  205. typedef struct sk_buff buffer_t;
  206. #define free_buffer dev_kfree_skb
  207. #define free_buffer_irq dev_consume_skb_irq
  208. #else
  209. typedef void buffer_t;
  210. #define free_buffer kfree
  211. #define free_buffer_irq kfree
  212. #endif
  213. struct port {
  214. struct device *dev;
  215. struct npe *npe;
  216. unsigned int txreadyq;
  217. unsigned int rxtrigq;
  218. unsigned int rxfreeq;
  219. unsigned int rxq;
  220. unsigned int txq;
  221. unsigned int txdoneq;
  222. struct gpio_desc *cts;
  223. struct gpio_desc *rts;
  224. struct gpio_desc *dcd;
  225. struct gpio_desc *dtr;
  226. struct gpio_desc *clk_internal;
  227. struct net_device *netdev;
  228. struct napi_struct napi;
  229. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  230. struct desc *desc_tab; /* coherent */
  231. dma_addr_t desc_tab_phys;
  232. unsigned int id;
  233. unsigned int clock_type, clock_rate, loopback;
  234. unsigned int initialized, carrier;
  235. u8 hdlc_cfg;
  236. u32 clock_reg;
  237. };
  238. /* NPE message structure */
  239. struct msg {
  240. #ifdef __ARMEB__
  241. u8 cmd, unused, hss_port, index;
  242. union {
  243. struct { u8 data8a, data8b, data8c, data8d; };
  244. struct { u16 data16a, data16b; };
  245. struct { u32 data32; };
  246. };
  247. #else
  248. u8 index, hss_port, unused, cmd;
  249. union {
  250. struct { u8 data8d, data8c, data8b, data8a; };
  251. struct { u16 data16b, data16a; };
  252. struct { u32 data32; };
  253. };
  254. #endif
  255. };
  256. /* HDLC packet descriptor */
  257. struct desc {
  258. u32 next; /* pointer to next buffer, unused */
  259. #ifdef __ARMEB__
  260. u16 buf_len; /* buffer length */
  261. u16 pkt_len; /* packet length */
  262. u32 data; /* pointer to data buffer in RAM */
  263. u8 status;
  264. u8 error_count;
  265. u16 __reserved;
  266. #else
  267. u16 pkt_len; /* packet length */
  268. u16 buf_len; /* buffer length */
  269. u32 data; /* pointer to data buffer in RAM */
  270. u16 __reserved;
  271. u8 error_count;
  272. u8 status;
  273. #endif
  274. u32 __reserved1[4];
  275. };
  276. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  277. (n) * sizeof(struct desc))
  278. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  279. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  280. ((n) + RX_DESCS) * sizeof(struct desc))
  281. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  282. /*****************************************************************************
  283. * global variables
  284. ****************************************************************************/
  285. static int ports_open;
  286. static struct dma_pool *dma_pool;
  287. static DEFINE_SPINLOCK(npe_lock);
  288. /*****************************************************************************
  289. * utility functions
  290. ****************************************************************************/
  291. static inline struct port *dev_to_port(struct net_device *dev)
  292. {
  293. return dev_to_hdlc(dev)->priv;
  294. }
  295. #ifndef __ARMEB__
  296. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  297. {
  298. int i;
  299. for (i = 0; i < cnt; i++)
  300. dest[i] = swab32(src[i]);
  301. }
  302. #endif
  303. /*****************************************************************************
  304. * HSS access
  305. ****************************************************************************/
  306. static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
  307. {
  308. u32 *val = (u32 *)msg;
  309. if (npe_send_message(port->npe, msg, what)) {
  310. pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
  311. port->id, val[0], val[1], npe_name(port->npe));
  312. BUG();
  313. }
  314. }
  315. static void hss_config_set_lut(struct port *port)
  316. {
  317. struct msg msg;
  318. int ch;
  319. memset(&msg, 0, sizeof(msg));
  320. msg.cmd = PORT_CONFIG_WRITE;
  321. msg.hss_port = port->id;
  322. for (ch = 0; ch < MAX_CHANNELS; ch++) {
  323. msg.data32 >>= 2;
  324. msg.data32 |= TDMMAP_HDLC << 30;
  325. if (ch % 16 == 15) {
  326. msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
  327. hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
  328. msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
  329. hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
  330. }
  331. }
  332. }
  333. static void hss_config(struct port *port)
  334. {
  335. struct msg msg;
  336. memset(&msg, 0, sizeof(msg));
  337. msg.cmd = PORT_CONFIG_WRITE;
  338. msg.hss_port = port->id;
  339. msg.index = HSS_CONFIG_TX_PCR;
  340. msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
  341. PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
  342. if (port->clock_type == CLOCK_INT)
  343. msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
  344. hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
  345. msg.index = HSS_CONFIG_RX_PCR;
  346. msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
  347. hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
  348. memset(&msg, 0, sizeof(msg));
  349. msg.cmd = PORT_CONFIG_WRITE;
  350. msg.hss_port = port->id;
  351. msg.index = HSS_CONFIG_CORE_CR;
  352. msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
  353. (port->id ? CCR_SECOND_HSS : 0);
  354. hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
  355. memset(&msg, 0, sizeof(msg));
  356. msg.cmd = PORT_CONFIG_WRITE;
  357. msg.hss_port = port->id;
  358. msg.index = HSS_CONFIG_CLOCK_CR;
  359. msg.data32 = port->clock_reg;
  360. hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
  361. memset(&msg, 0, sizeof(msg));
  362. msg.cmd = PORT_CONFIG_WRITE;
  363. msg.hss_port = port->id;
  364. msg.index = HSS_CONFIG_TX_FCR;
  365. msg.data16a = FRAME_OFFSET;
  366. msg.data16b = FRAME_SIZE - 1;
  367. hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
  368. memset(&msg, 0, sizeof(msg));
  369. msg.cmd = PORT_CONFIG_WRITE;
  370. msg.hss_port = port->id;
  371. msg.index = HSS_CONFIG_RX_FCR;
  372. msg.data16a = FRAME_OFFSET;
  373. msg.data16b = FRAME_SIZE - 1;
  374. hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
  375. hss_config_set_lut(port);
  376. memset(&msg, 0, sizeof(msg));
  377. msg.cmd = PORT_CONFIG_LOAD;
  378. msg.hss_port = port->id;
  379. hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
  380. if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
  381. /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
  382. msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
  383. pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
  384. BUG();
  385. }
  386. /* HDLC may stop working without this - check FIXME */
  387. npe_recv_message(port->npe, &msg, "FLUSH_IT");
  388. }
  389. static void hss_set_hdlc_cfg(struct port *port)
  390. {
  391. struct msg msg;
  392. memset(&msg, 0, sizeof(msg));
  393. msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
  394. msg.hss_port = port->id;
  395. msg.data8a = port->hdlc_cfg; /* rx_cfg */
  396. msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
  397. hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
  398. }
  399. static u32 hss_get_status(struct port *port)
  400. {
  401. struct msg msg;
  402. memset(&msg, 0, sizeof(msg));
  403. msg.cmd = PORT_ERROR_READ;
  404. msg.hss_port = port->id;
  405. hss_npe_send(port, &msg, "PORT_ERROR_READ");
  406. if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
  407. pr_crit("HSS-%i: unable to read HSS status\n", port->id);
  408. BUG();
  409. }
  410. return msg.data32;
  411. }
  412. static void hss_start_hdlc(struct port *port)
  413. {
  414. struct msg msg;
  415. memset(&msg, 0, sizeof(msg));
  416. msg.cmd = PKT_PIPE_FLOW_ENABLE;
  417. msg.hss_port = port->id;
  418. msg.data32 = 0;
  419. hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
  420. }
  421. static void hss_stop_hdlc(struct port *port)
  422. {
  423. struct msg msg;
  424. memset(&msg, 0, sizeof(msg));
  425. msg.cmd = PKT_PIPE_FLOW_DISABLE;
  426. msg.hss_port = port->id;
  427. hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
  428. hss_get_status(port); /* make sure it's halted */
  429. }
  430. static int hss_load_firmware(struct port *port)
  431. {
  432. struct msg msg;
  433. int err;
  434. if (port->initialized)
  435. return 0;
  436. if (!npe_running(port->npe)) {
  437. err = npe_load_firmware(port->npe, npe_name(port->npe),
  438. port->dev);
  439. if (err)
  440. return err;
  441. }
  442. /* HDLC mode configuration */
  443. memset(&msg, 0, sizeof(msg));
  444. msg.cmd = PKT_NUM_PIPES_WRITE;
  445. msg.hss_port = port->id;
  446. msg.data8a = PKT_NUM_PIPES;
  447. hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
  448. msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
  449. msg.data8a = PKT_PIPE_FIFO_SIZEW;
  450. hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
  451. msg.cmd = PKT_PIPE_MODE_WRITE;
  452. msg.data8a = NPE_PKT_MODE_HDLC;
  453. /* msg.data8b = inv_mask */
  454. /* msg.data8c = or_mask */
  455. hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
  456. msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
  457. msg.data16a = HDLC_MAX_MRU; /* including CRC */
  458. hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
  459. msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
  460. msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
  461. hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
  462. port->initialized = 1;
  463. return 0;
  464. }
  465. /*****************************************************************************
  466. * packetized (HDLC) operation
  467. ****************************************************************************/
  468. static inline void debug_pkt(struct net_device *dev, const char *func,
  469. u8 *data, int len)
  470. {
  471. #if DEBUG_PKT_BYTES
  472. int i;
  473. printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
  474. for (i = 0; i < len; i++) {
  475. if (i >= DEBUG_PKT_BYTES)
  476. break;
  477. printk("%s%02X", !(i % 4) ? " " : "", data[i]);
  478. }
  479. printk("\n");
  480. #endif
  481. }
  482. static inline void debug_desc(u32 phys, struct desc *desc)
  483. {
  484. #if DEBUG_DESC
  485. printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
  486. phys, desc->next, desc->buf_len, desc->pkt_len,
  487. desc->data, desc->status, desc->error_count);
  488. #endif
  489. }
  490. static inline int queue_get_desc(unsigned int queue, struct port *port,
  491. int is_tx)
  492. {
  493. u32 phys, tab_phys, n_desc;
  494. struct desc *tab;
  495. phys = qmgr_get_entry(queue);
  496. if (!phys)
  497. return -1;
  498. BUG_ON(phys & 0x1F);
  499. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  500. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  501. n_desc = (phys - tab_phys) / sizeof(struct desc);
  502. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  503. debug_desc(phys, &tab[n_desc]);
  504. BUG_ON(tab[n_desc].next);
  505. return n_desc;
  506. }
  507. static inline void queue_put_desc(unsigned int queue, u32 phys,
  508. struct desc *desc)
  509. {
  510. debug_desc(phys, desc);
  511. BUG_ON(phys & 0x1F);
  512. qmgr_put_entry(queue, phys);
  513. /* Don't check for queue overflow here, we've allocated sufficient
  514. * length and queues >= 32 don't support this check anyway.
  515. */
  516. }
  517. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  518. {
  519. #ifdef __ARMEB__
  520. dma_unmap_single(&port->netdev->dev, desc->data,
  521. desc->buf_len, DMA_TO_DEVICE);
  522. #else
  523. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  524. ALIGN((desc->data & 3) + desc->buf_len, 4),
  525. DMA_TO_DEVICE);
  526. #endif
  527. }
  528. static void hss_hdlc_set_carrier(void *pdev, int carrier)
  529. {
  530. struct net_device *netdev = pdev;
  531. struct port *port = dev_to_port(netdev);
  532. unsigned long flags;
  533. spin_lock_irqsave(&npe_lock, flags);
  534. port->carrier = carrier;
  535. if (!port->loopback) {
  536. if (carrier)
  537. netif_carrier_on(netdev);
  538. else
  539. netif_carrier_off(netdev);
  540. }
  541. spin_unlock_irqrestore(&npe_lock, flags);
  542. }
  543. static void hss_hdlc_rx_irq(void *pdev)
  544. {
  545. struct net_device *dev = pdev;
  546. struct port *port = dev_to_port(dev);
  547. #if DEBUG_RX
  548. printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
  549. #endif
  550. qmgr_disable_irq(port->rxq);
  551. napi_schedule(&port->napi);
  552. }
  553. static int hss_hdlc_poll(struct napi_struct *napi, int budget)
  554. {
  555. struct port *port = container_of(napi, struct port, napi);
  556. struct net_device *dev = port->netdev;
  557. unsigned int rxq = port->rxq;
  558. unsigned int rxfreeq = port->rxfreeq;
  559. int received = 0;
  560. #if DEBUG_RX
  561. printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
  562. #endif
  563. while (received < budget) {
  564. struct sk_buff *skb;
  565. struct desc *desc;
  566. int n;
  567. #ifdef __ARMEB__
  568. struct sk_buff *temp;
  569. u32 phys;
  570. #endif
  571. n = queue_get_desc(rxq, port, 0);
  572. if (n < 0) {
  573. #if DEBUG_RX
  574. printk(KERN_DEBUG "%s: hss_hdlc_poll"
  575. " napi_complete\n", dev->name);
  576. #endif
  577. napi_complete(napi);
  578. qmgr_enable_irq(rxq);
  579. if (!qmgr_stat_empty(rxq) &&
  580. napi_reschedule(napi)) {
  581. #if DEBUG_RX
  582. printk(KERN_DEBUG "%s: hss_hdlc_poll"
  583. " napi_reschedule succeeded\n",
  584. dev->name);
  585. #endif
  586. qmgr_disable_irq(rxq);
  587. continue;
  588. }
  589. #if DEBUG_RX
  590. printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
  591. dev->name);
  592. #endif
  593. return received; /* all work done */
  594. }
  595. desc = rx_desc_ptr(port, n);
  596. #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
  597. if (desc->error_count)
  598. printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
  599. " errors %u\n", dev->name, desc->status,
  600. desc->error_count);
  601. #endif
  602. skb = NULL;
  603. switch (desc->status) {
  604. case 0:
  605. #ifdef __ARMEB__
  606. skb = netdev_alloc_skb(dev, RX_SIZE);
  607. if (skb) {
  608. phys = dma_map_single(&dev->dev, skb->data,
  609. RX_SIZE,
  610. DMA_FROM_DEVICE);
  611. if (dma_mapping_error(&dev->dev, phys)) {
  612. dev_kfree_skb(skb);
  613. skb = NULL;
  614. }
  615. }
  616. #else
  617. skb = netdev_alloc_skb(dev, desc->pkt_len);
  618. #endif
  619. if (!skb)
  620. dev->stats.rx_dropped++;
  621. break;
  622. case ERR_HDLC_ALIGN:
  623. case ERR_HDLC_ABORT:
  624. dev->stats.rx_frame_errors++;
  625. dev->stats.rx_errors++;
  626. break;
  627. case ERR_HDLC_FCS:
  628. dev->stats.rx_crc_errors++;
  629. dev->stats.rx_errors++;
  630. break;
  631. case ERR_HDLC_TOO_LONG:
  632. dev->stats.rx_length_errors++;
  633. dev->stats.rx_errors++;
  634. break;
  635. default: /* FIXME - remove printk */
  636. netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
  637. desc->status, desc->error_count);
  638. dev->stats.rx_errors++;
  639. }
  640. if (!skb) {
  641. /* put the desc back on RX-ready queue */
  642. desc->buf_len = RX_SIZE;
  643. desc->pkt_len = desc->status = 0;
  644. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  645. continue;
  646. }
  647. /* process received frame */
  648. #ifdef __ARMEB__
  649. temp = skb;
  650. skb = port->rx_buff_tab[n];
  651. dma_unmap_single(&dev->dev, desc->data,
  652. RX_SIZE, DMA_FROM_DEVICE);
  653. #else
  654. dma_sync_single_for_cpu(&dev->dev, desc->data,
  655. RX_SIZE, DMA_FROM_DEVICE);
  656. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  657. ALIGN(desc->pkt_len, 4) / 4);
  658. #endif
  659. skb_put(skb, desc->pkt_len);
  660. debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
  661. skb->protocol = hdlc_type_trans(skb, dev);
  662. dev->stats.rx_packets++;
  663. dev->stats.rx_bytes += skb->len;
  664. netif_receive_skb(skb);
  665. /* put the new buffer on RX-free queue */
  666. #ifdef __ARMEB__
  667. port->rx_buff_tab[n] = temp;
  668. desc->data = phys;
  669. #endif
  670. desc->buf_len = RX_SIZE;
  671. desc->pkt_len = 0;
  672. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  673. received++;
  674. }
  675. #if DEBUG_RX
  676. printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
  677. #endif
  678. return received; /* not all work done */
  679. }
  680. static void hss_hdlc_txdone_irq(void *pdev)
  681. {
  682. struct net_device *dev = pdev;
  683. struct port *port = dev_to_port(dev);
  684. int n_desc;
  685. #if DEBUG_TX
  686. printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
  687. #endif
  688. while ((n_desc = queue_get_desc(port->txdoneq,
  689. port, 1)) >= 0) {
  690. struct desc *desc;
  691. int start;
  692. desc = tx_desc_ptr(port, n_desc);
  693. dev->stats.tx_packets++;
  694. dev->stats.tx_bytes += desc->pkt_len;
  695. dma_unmap_tx(port, desc);
  696. #if DEBUG_TX
  697. printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
  698. dev->name, port->tx_buff_tab[n_desc]);
  699. #endif
  700. free_buffer_irq(port->tx_buff_tab[n_desc]);
  701. port->tx_buff_tab[n_desc] = NULL;
  702. start = qmgr_stat_below_low_watermark(port->txreadyq);
  703. queue_put_desc(port->txreadyq,
  704. tx_desc_phys(port, n_desc), desc);
  705. if (start) { /* TX-ready queue was empty */
  706. #if DEBUG_TX
  707. printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
  708. " ready\n", dev->name);
  709. #endif
  710. netif_wake_queue(dev);
  711. }
  712. }
  713. }
  714. static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
  715. {
  716. struct port *port = dev_to_port(dev);
  717. unsigned int txreadyq = port->txreadyq;
  718. int len, offset, bytes, n;
  719. void *mem;
  720. u32 phys;
  721. struct desc *desc;
  722. #if DEBUG_TX
  723. printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
  724. #endif
  725. if (unlikely(skb->len > HDLC_MAX_MRU)) {
  726. dev_kfree_skb(skb);
  727. dev->stats.tx_errors++;
  728. return NETDEV_TX_OK;
  729. }
  730. debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
  731. len = skb->len;
  732. #ifdef __ARMEB__
  733. offset = 0; /* no need to keep alignment */
  734. bytes = len;
  735. mem = skb->data;
  736. #else
  737. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  738. bytes = ALIGN(offset + len, 4);
  739. mem = kmalloc(bytes, GFP_ATOMIC);
  740. if (!mem) {
  741. dev_kfree_skb(skb);
  742. dev->stats.tx_dropped++;
  743. return NETDEV_TX_OK;
  744. }
  745. memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
  746. dev_kfree_skb(skb);
  747. #endif
  748. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  749. if (dma_mapping_error(&dev->dev, phys)) {
  750. #ifdef __ARMEB__
  751. dev_kfree_skb(skb);
  752. #else
  753. kfree(mem);
  754. #endif
  755. dev->stats.tx_dropped++;
  756. return NETDEV_TX_OK;
  757. }
  758. n = queue_get_desc(txreadyq, port, 1);
  759. BUG_ON(n < 0);
  760. desc = tx_desc_ptr(port, n);
  761. #ifdef __ARMEB__
  762. port->tx_buff_tab[n] = skb;
  763. #else
  764. port->tx_buff_tab[n] = mem;
  765. #endif
  766. desc->data = phys + offset;
  767. desc->buf_len = desc->pkt_len = len;
  768. wmb();
  769. queue_put_desc(port->txq, tx_desc_phys(port, n), desc);
  770. if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
  771. #if DEBUG_TX
  772. printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
  773. #endif
  774. netif_stop_queue(dev);
  775. /* we could miss TX ready interrupt */
  776. if (!qmgr_stat_below_low_watermark(txreadyq)) {
  777. #if DEBUG_TX
  778. printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
  779. dev->name);
  780. #endif
  781. netif_wake_queue(dev);
  782. }
  783. }
  784. #if DEBUG_TX
  785. printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
  786. #endif
  787. return NETDEV_TX_OK;
  788. }
  789. static int request_hdlc_queues(struct port *port)
  790. {
  791. int err;
  792. err = qmgr_request_queue(port->rxfreeq, RX_DESCS, 0, 0,
  793. "%s:RX-free", port->netdev->name);
  794. if (err)
  795. return err;
  796. err = qmgr_request_queue(port->rxq, RX_DESCS, 0, 0,
  797. "%s:RX", port->netdev->name);
  798. if (err)
  799. goto rel_rxfree;
  800. err = qmgr_request_queue(port->txq, TX_DESCS, 0, 0,
  801. "%s:TX", port->netdev->name);
  802. if (err)
  803. goto rel_rx;
  804. err = qmgr_request_queue(port->txreadyq, TX_DESCS, 0, 0,
  805. "%s:TX-ready", port->netdev->name);
  806. if (err)
  807. goto rel_tx;
  808. err = qmgr_request_queue(port->txdoneq, TX_DESCS, 0, 0,
  809. "%s:TX-done", port->netdev->name);
  810. if (err)
  811. goto rel_txready;
  812. return 0;
  813. rel_txready:
  814. qmgr_release_queue(port->txreadyq);
  815. rel_tx:
  816. qmgr_release_queue(port->txq);
  817. rel_rx:
  818. qmgr_release_queue(port->rxq);
  819. rel_rxfree:
  820. qmgr_release_queue(port->rxfreeq);
  821. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  822. port->netdev->name);
  823. return err;
  824. }
  825. static void release_hdlc_queues(struct port *port)
  826. {
  827. qmgr_release_queue(port->rxfreeq);
  828. qmgr_release_queue(port->rxq);
  829. qmgr_release_queue(port->txdoneq);
  830. qmgr_release_queue(port->txq);
  831. qmgr_release_queue(port->txreadyq);
  832. }
  833. static int init_hdlc_queues(struct port *port)
  834. {
  835. int i;
  836. if (!ports_open) {
  837. dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
  838. POOL_ALLOC_SIZE, 32, 0);
  839. if (!dma_pool)
  840. return -ENOMEM;
  841. }
  842. port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL,
  843. &port->desc_tab_phys);
  844. if (!port->desc_tab)
  845. return -ENOMEM;
  846. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  847. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  848. /* Setup RX buffers */
  849. for (i = 0; i < RX_DESCS; i++) {
  850. struct desc *desc = rx_desc_ptr(port, i);
  851. buffer_t *buff;
  852. void *data;
  853. #ifdef __ARMEB__
  854. buff = netdev_alloc_skb(port->netdev, RX_SIZE);
  855. if (!buff)
  856. return -ENOMEM;
  857. data = buff->data;
  858. #else
  859. buff = kmalloc(RX_SIZE, GFP_KERNEL);
  860. if (!buff)
  861. return -ENOMEM;
  862. data = buff;
  863. #endif
  864. desc->buf_len = RX_SIZE;
  865. desc->data = dma_map_single(&port->netdev->dev, data,
  866. RX_SIZE, DMA_FROM_DEVICE);
  867. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  868. free_buffer(buff);
  869. return -EIO;
  870. }
  871. port->rx_buff_tab[i] = buff;
  872. }
  873. return 0;
  874. }
  875. static void destroy_hdlc_queues(struct port *port)
  876. {
  877. int i;
  878. if (port->desc_tab) {
  879. for (i = 0; i < RX_DESCS; i++) {
  880. struct desc *desc = rx_desc_ptr(port, i);
  881. buffer_t *buff = port->rx_buff_tab[i];
  882. if (buff) {
  883. dma_unmap_single(&port->netdev->dev,
  884. desc->data, RX_SIZE,
  885. DMA_FROM_DEVICE);
  886. free_buffer(buff);
  887. }
  888. }
  889. for (i = 0; i < TX_DESCS; i++) {
  890. struct desc *desc = tx_desc_ptr(port, i);
  891. buffer_t *buff = port->tx_buff_tab[i];
  892. if (buff) {
  893. dma_unmap_tx(port, desc);
  894. free_buffer(buff);
  895. }
  896. }
  897. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  898. port->desc_tab = NULL;
  899. }
  900. if (!ports_open && dma_pool) {
  901. dma_pool_destroy(dma_pool);
  902. dma_pool = NULL;
  903. }
  904. }
  905. static irqreturn_t hss_hdlc_dcd_irq(int irq, void *data)
  906. {
  907. struct net_device *dev = data;
  908. struct port *port = dev_to_port(dev);
  909. int val;
  910. val = gpiod_get_value(port->dcd);
  911. hss_hdlc_set_carrier(dev, val);
  912. return IRQ_HANDLED;
  913. }
  914. static int hss_hdlc_open(struct net_device *dev)
  915. {
  916. struct port *port = dev_to_port(dev);
  917. unsigned long flags;
  918. int i, err = 0;
  919. int val;
  920. err = hdlc_open(dev);
  921. if (err)
  922. return err;
  923. err = hss_load_firmware(port);
  924. if (err)
  925. goto err_hdlc_close;
  926. err = request_hdlc_queues(port);
  927. if (err)
  928. goto err_hdlc_close;
  929. err = init_hdlc_queues(port);
  930. if (err)
  931. goto err_destroy_queues;
  932. spin_lock_irqsave(&npe_lock, flags);
  933. /* Set the carrier, the GPIO is flagged active low so this will return
  934. * 1 if DCD is asserted.
  935. */
  936. val = gpiod_get_value(port->dcd);
  937. hss_hdlc_set_carrier(dev, val);
  938. /* Set up an IRQ for DCD */
  939. err = request_irq(gpiod_to_irq(port->dcd), hss_hdlc_dcd_irq, 0, "IXP4xx HSS", dev);
  940. if (err) {
  941. dev_err(&dev->dev, "ixp4xx_hss: failed to request DCD IRQ (%i)\n", err);
  942. goto err_unlock;
  943. }
  944. /* GPIOs are flagged active low so this asserts DTR and RTS */
  945. gpiod_set_value(port->dtr, 1);
  946. gpiod_set_value(port->rts, 1);
  947. spin_unlock_irqrestore(&npe_lock, flags);
  948. /* Populate queues with buffers, no failure after this point */
  949. for (i = 0; i < TX_DESCS; i++)
  950. queue_put_desc(port->txreadyq,
  951. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  952. for (i = 0; i < RX_DESCS; i++)
  953. queue_put_desc(port->rxfreeq,
  954. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  955. napi_enable(&port->napi);
  956. netif_start_queue(dev);
  957. qmgr_set_irq(port->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  958. hss_hdlc_rx_irq, dev);
  959. qmgr_set_irq(port->txdoneq, QUEUE_IRQ_SRC_NOT_EMPTY,
  960. hss_hdlc_txdone_irq, dev);
  961. qmgr_enable_irq(port->txdoneq);
  962. ports_open++;
  963. hss_set_hdlc_cfg(port);
  964. hss_config(port);
  965. hss_start_hdlc(port);
  966. /* we may already have RX data, enables IRQ */
  967. napi_schedule(&port->napi);
  968. return 0;
  969. err_unlock:
  970. spin_unlock_irqrestore(&npe_lock, flags);
  971. err_destroy_queues:
  972. destroy_hdlc_queues(port);
  973. release_hdlc_queues(port);
  974. err_hdlc_close:
  975. hdlc_close(dev);
  976. return err;
  977. }
  978. static int hss_hdlc_close(struct net_device *dev)
  979. {
  980. struct port *port = dev_to_port(dev);
  981. unsigned long flags;
  982. int i, buffs = RX_DESCS; /* allocated RX buffers */
  983. spin_lock_irqsave(&npe_lock, flags);
  984. ports_open--;
  985. qmgr_disable_irq(port->rxq);
  986. netif_stop_queue(dev);
  987. napi_disable(&port->napi);
  988. hss_stop_hdlc(port);
  989. while (queue_get_desc(port->rxfreeq, port, 0) >= 0)
  990. buffs--;
  991. while (queue_get_desc(port->rxq, port, 0) >= 0)
  992. buffs--;
  993. if (buffs)
  994. netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
  995. buffs);
  996. buffs = TX_DESCS;
  997. while (queue_get_desc(port->txq, port, 1) >= 0)
  998. buffs--; /* cancel TX */
  999. i = 0;
  1000. do {
  1001. while (queue_get_desc(port->txreadyq, port, 1) >= 0)
  1002. buffs--;
  1003. if (!buffs)
  1004. break;
  1005. } while (++i < MAX_CLOSE_WAIT);
  1006. if (buffs)
  1007. netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
  1008. buffs);
  1009. #if DEBUG_CLOSE
  1010. if (!buffs)
  1011. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  1012. #endif
  1013. qmgr_disable_irq(port->txdoneq);
  1014. free_irq(gpiod_to_irq(port->dcd), dev);
  1015. /* GPIOs are flagged active low so this de-asserts DTR and RTS */
  1016. gpiod_set_value(port->dtr, 0);
  1017. gpiod_set_value(port->rts, 0);
  1018. spin_unlock_irqrestore(&npe_lock, flags);
  1019. destroy_hdlc_queues(port);
  1020. release_hdlc_queues(port);
  1021. hdlc_close(dev);
  1022. return 0;
  1023. }
  1024. static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
  1025. unsigned short parity)
  1026. {
  1027. struct port *port = dev_to_port(dev);
  1028. if (encoding != ENCODING_NRZ)
  1029. return -EINVAL;
  1030. switch (parity) {
  1031. case PARITY_CRC16_PR1_CCITT:
  1032. port->hdlc_cfg = 0;
  1033. return 0;
  1034. case PARITY_CRC32_PR1_CCITT:
  1035. port->hdlc_cfg = PKT_HDLC_CRC_32;
  1036. return 0;
  1037. default:
  1038. return -EINVAL;
  1039. }
  1040. }
  1041. static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
  1042. u32 *best, u32 *best_diff, u32 *reg)
  1043. {
  1044. /* a is 10-bit, b is 10-bit, c is 12-bit */
  1045. u64 new_rate;
  1046. u32 new_diff;
  1047. new_rate = timer_freq * (u64)(c + 1);
  1048. do_div(new_rate, a * (c + 1) + b + 1);
  1049. new_diff = abs((u32)new_rate - rate);
  1050. if (new_diff < *best_diff) {
  1051. *best = new_rate;
  1052. *best_diff = new_diff;
  1053. *reg = (a << 22) | (b << 12) | c;
  1054. }
  1055. return new_diff;
  1056. }
  1057. static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
  1058. {
  1059. u32 a, b, diff = 0xFFFFFFFF;
  1060. a = timer_freq / rate;
  1061. if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
  1062. check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
  1063. return;
  1064. }
  1065. if (a == 0) { /* > 66.666 MHz */
  1066. a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
  1067. rate = timer_freq;
  1068. }
  1069. if (rate * a == timer_freq) { /* don't divide by 0 later */
  1070. check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
  1071. return;
  1072. }
  1073. for (b = 0; b < 0x400; b++) {
  1074. u64 c = (b + 1) * (u64)rate;
  1075. do_div(c, timer_freq - rate * a);
  1076. c--;
  1077. if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
  1078. if (b == 0 && /* also try a bit higher rate */
  1079. !check_clock(timer_freq, rate, a - 1, 1, 1, best,
  1080. &diff, reg))
  1081. return;
  1082. check_clock(timer_freq, rate, a, b, 0xFFF, best,
  1083. &diff, reg);
  1084. return;
  1085. }
  1086. if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
  1087. return;
  1088. if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
  1089. reg))
  1090. return;
  1091. }
  1092. }
  1093. static int hss_hdlc_set_clock(struct port *port, unsigned int clock_type)
  1094. {
  1095. switch (clock_type) {
  1096. case CLOCK_DEFAULT:
  1097. case CLOCK_EXT:
  1098. gpiod_set_value(port->clk_internal, 0);
  1099. return CLOCK_EXT;
  1100. case CLOCK_INT:
  1101. gpiod_set_value(port->clk_internal, 1);
  1102. return CLOCK_INT;
  1103. default:
  1104. return -EINVAL;
  1105. }
  1106. }
  1107. static int hss_hdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
  1108. {
  1109. const size_t size = sizeof(sync_serial_settings);
  1110. sync_serial_settings new_line;
  1111. sync_serial_settings __user *line = ifs->ifs_ifsu.sync;
  1112. struct port *port = dev_to_port(dev);
  1113. unsigned long flags;
  1114. int clk;
  1115. switch (ifs->type) {
  1116. case IF_GET_IFACE:
  1117. ifs->type = IF_IFACE_V35;
  1118. if (ifs->size < size) {
  1119. ifs->size = size; /* data size wanted */
  1120. return -ENOBUFS;
  1121. }
  1122. memset(&new_line, 0, sizeof(new_line));
  1123. new_line.clock_type = port->clock_type;
  1124. new_line.clock_rate = port->clock_rate;
  1125. new_line.loopback = port->loopback;
  1126. if (copy_to_user(line, &new_line, size))
  1127. return -EFAULT;
  1128. return 0;
  1129. case IF_IFACE_SYNC_SERIAL:
  1130. case IF_IFACE_V35:
  1131. if (!capable(CAP_NET_ADMIN))
  1132. return -EPERM;
  1133. if (copy_from_user(&new_line, line, size))
  1134. return -EFAULT;
  1135. clk = new_line.clock_type;
  1136. hss_hdlc_set_clock(port, clk);
  1137. if (clk != CLOCK_EXT && clk != CLOCK_INT)
  1138. return -EINVAL; /* No such clock setting */
  1139. if (new_line.loopback != 0 && new_line.loopback != 1)
  1140. return -EINVAL;
  1141. port->clock_type = clk; /* Update settings */
  1142. if (clk == CLOCK_INT) {
  1143. find_best_clock(IXP4XX_TIMER_FREQ,
  1144. new_line.clock_rate,
  1145. &port->clock_rate, &port->clock_reg);
  1146. } else {
  1147. port->clock_rate = 0;
  1148. port->clock_reg = CLK42X_SPEED_2048KHZ;
  1149. }
  1150. port->loopback = new_line.loopback;
  1151. spin_lock_irqsave(&npe_lock, flags);
  1152. if (dev->flags & IFF_UP)
  1153. hss_config(port);
  1154. if (port->loopback || port->carrier)
  1155. netif_carrier_on(port->netdev);
  1156. else
  1157. netif_carrier_off(port->netdev);
  1158. spin_unlock_irqrestore(&npe_lock, flags);
  1159. return 0;
  1160. default:
  1161. return hdlc_ioctl(dev, ifs);
  1162. }
  1163. }
  1164. /*****************************************************************************
  1165. * initialization
  1166. ****************************************************************************/
  1167. static const struct net_device_ops hss_hdlc_ops = {
  1168. .ndo_open = hss_hdlc_open,
  1169. .ndo_stop = hss_hdlc_close,
  1170. .ndo_start_xmit = hdlc_start_xmit,
  1171. .ndo_siocwandev = hss_hdlc_ioctl,
  1172. };
  1173. static int ixp4xx_hss_probe(struct platform_device *pdev)
  1174. {
  1175. struct of_phandle_args queue_spec;
  1176. struct of_phandle_args npe_spec;
  1177. struct device *dev = &pdev->dev;
  1178. struct net_device *ndev;
  1179. struct device_node *np;
  1180. struct regmap *rmap;
  1181. struct port *port;
  1182. hdlc_device *hdlc;
  1183. int err;
  1184. u32 val;
  1185. /*
  1186. * Go into the syscon and check if we have the HSS and HDLC
  1187. * features available, else this will not work.
  1188. */
  1189. rmap = syscon_regmap_lookup_by_compatible("syscon");
  1190. if (IS_ERR(rmap))
  1191. return dev_err_probe(dev, PTR_ERR(rmap),
  1192. "failed to look up syscon\n");
  1193. val = cpu_ixp4xx_features(rmap);
  1194. if ((val & (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
  1195. (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) {
  1196. dev_err(dev, "HDLC and HSS feature unavailable in platform\n");
  1197. return -ENODEV;
  1198. }
  1199. np = dev->of_node;
  1200. port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
  1201. if (!port)
  1202. return -ENOMEM;
  1203. err = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
  1204. &npe_spec);
  1205. if (err)
  1206. return dev_err_probe(dev, err, "no NPE engine specified\n");
  1207. /* NPE ID 0x00, 0x10, 0x20... */
  1208. port->npe = npe_request(npe_spec.args[0] << 4);
  1209. if (!port->npe) {
  1210. dev_err(dev, "unable to obtain NPE instance\n");
  1211. return -ENODEV;
  1212. }
  1213. /* Get the TX ready queue as resource from queue manager */
  1214. err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-txready", 1, 0,
  1215. &queue_spec);
  1216. if (err)
  1217. return dev_err_probe(dev, err, "no txready queue phandle\n");
  1218. port->txreadyq = queue_spec.args[0];
  1219. /* Get the RX trig queue as resource from queue manager */
  1220. err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-rxtrig", 1, 0,
  1221. &queue_spec);
  1222. if (err)
  1223. return dev_err_probe(dev, err, "no rxtrig queue phandle\n");
  1224. port->rxtrigq = queue_spec.args[0];
  1225. /* Get the RX queue as resource from queue manager */
  1226. err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rx", 1, 0,
  1227. &queue_spec);
  1228. if (err)
  1229. return dev_err_probe(dev, err, "no RX queue phandle\n");
  1230. port->rxq = queue_spec.args[0];
  1231. /* Get the TX queue as resource from queue manager */
  1232. err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-tx", 1, 0,
  1233. &queue_spec);
  1234. if (err)
  1235. return dev_err_probe(dev, err, "no RX queue phandle\n");
  1236. port->txq = queue_spec.args[0];
  1237. /* Get the RX free queue as resource from queue manager */
  1238. err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rxfree", 1, 0,
  1239. &queue_spec);
  1240. if (err)
  1241. return dev_err_probe(dev, err, "no RX free queue phandle\n");
  1242. port->rxfreeq = queue_spec.args[0];
  1243. /* Get the TX done queue as resource from queue manager */
  1244. err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-txdone", 1, 0,
  1245. &queue_spec);
  1246. if (err)
  1247. return dev_err_probe(dev, err, "no TX done queue phandle\n");
  1248. port->txdoneq = queue_spec.args[0];
  1249. /* Obtain all the line control GPIOs */
  1250. port->cts = devm_gpiod_get(dev, "cts", GPIOD_OUT_LOW);
  1251. if (IS_ERR(port->cts))
  1252. return dev_err_probe(dev, PTR_ERR(port->cts), "unable to get CTS GPIO\n");
  1253. port->rts = devm_gpiod_get(dev, "rts", GPIOD_OUT_LOW);
  1254. if (IS_ERR(port->rts))
  1255. return dev_err_probe(dev, PTR_ERR(port->rts), "unable to get RTS GPIO\n");
  1256. port->dcd = devm_gpiod_get(dev, "dcd", GPIOD_IN);
  1257. if (IS_ERR(port->dcd))
  1258. return dev_err_probe(dev, PTR_ERR(port->dcd), "unable to get DCD GPIO\n");
  1259. port->dtr = devm_gpiod_get(dev, "dtr", GPIOD_OUT_LOW);
  1260. if (IS_ERR(port->dtr))
  1261. return dev_err_probe(dev, PTR_ERR(port->dtr), "unable to get DTR GPIO\n");
  1262. port->clk_internal = devm_gpiod_get(dev, "clk-internal", GPIOD_OUT_LOW);
  1263. if (IS_ERR(port->clk_internal))
  1264. return dev_err_probe(dev, PTR_ERR(port->clk_internal),
  1265. "unable to get CLK internal GPIO\n");
  1266. ndev = alloc_hdlcdev(port);
  1267. port->netdev = alloc_hdlcdev(port);
  1268. if (!port->netdev) {
  1269. err = -ENOMEM;
  1270. goto err_plat;
  1271. }
  1272. SET_NETDEV_DEV(ndev, &pdev->dev);
  1273. hdlc = dev_to_hdlc(ndev);
  1274. hdlc->attach = hss_hdlc_attach;
  1275. hdlc->xmit = hss_hdlc_xmit;
  1276. ndev->netdev_ops = &hss_hdlc_ops;
  1277. ndev->tx_queue_len = 100;
  1278. port->clock_type = CLOCK_EXT;
  1279. port->clock_rate = 0;
  1280. port->clock_reg = CLK42X_SPEED_2048KHZ;
  1281. port->id = pdev->id;
  1282. port->dev = &pdev->dev;
  1283. netif_napi_add_weight(ndev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
  1284. err = register_hdlc_device(ndev);
  1285. if (err)
  1286. goto err_free_netdev;
  1287. platform_set_drvdata(pdev, port);
  1288. netdev_info(ndev, "initialized\n");
  1289. return 0;
  1290. err_free_netdev:
  1291. free_netdev(ndev);
  1292. err_plat:
  1293. npe_release(port->npe);
  1294. return err;
  1295. }
  1296. static int ixp4xx_hss_remove(struct platform_device *pdev)
  1297. {
  1298. struct port *port = platform_get_drvdata(pdev);
  1299. unregister_hdlc_device(port->netdev);
  1300. free_netdev(port->netdev);
  1301. npe_release(port->npe);
  1302. return 0;
  1303. }
  1304. static struct platform_driver ixp4xx_hss_driver = {
  1305. .driver.name = DRV_NAME,
  1306. .probe = ixp4xx_hss_probe,
  1307. .remove = ixp4xx_hss_remove,
  1308. };
  1309. module_platform_driver(ixp4xx_hss_driver);
  1310. MODULE_AUTHOR("Krzysztof Halasa");
  1311. MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
  1312. MODULE_LICENSE("GPL v2");
  1313. MODULE_ALIAS("platform:ixp4xx_hss");